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Summary

Components based on shape-memory alloys are often subjected to several loading cycles that result in substantial
alteration of material behavior. In such a framework, accurate models as well as robust and e cient numerical
approaches become essential to allow for the simulation of complex devices. The present paper focuses on the
numerical simulation of quasi-static problems involving shape memory alloy (SMA) structures or components
subjected to multiple loading-unloading cycles. A novel state-update procedure for a three-dimensional
phenomenological model able to describe the saturation of permanent inelasticity, including degradation e ects, is
here proposed. The algorithm, being of the predictor-corrector type and relying on an incremental energy
minimization approach, is based on elastic checks, closed-form solutions of polynomial equations, and nonlinear
scalar equations solved through a combination of Newton-Raphson and bisection methods. This allows for an easy
implementation of model equations and to avoid the use of regularization parameters for the treatment of
non-smooth functions. Numerical results assess the good performances of the proposed approach in predicting both

pseudoelastic and shape-memory material behavior under cyclic loading as well as algorithm robustness.

Keywords: Shape-memory alloys, incremental energy minimization, permanent inelasticity.

1 Introduction

Shape-memory alloys (SMAs) are metallic alloys possessing the unique properties known as pseudoelasticity (PE) and
shape-memory e ect (SME). The material is in fact able to recover the original shape through a phase transformation

caused by the imposition of a stress (i.e., PE) and/or temperature (i.e., SME) eld. Such unique thermo-mechanical
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properties make SMAs an e ective material for several innovative technological applications in the biomedical up to
the mechanical eld (1).

Cyclic loading is one important feature of many of these applications, no matter whether they exploit mechanical
or thermal recovery (i.e., PE and one/two-way SME, respectively) (2). Typical examples of cyclic loading are the
pulsatile blood pressure, that is applied to cardiovascular devices as stents or aortic valves, temperature cycling in
actuation components as robotic grippers or thermal valves, or force cycles in damping applications.

A factor that limits the service life of SMA-based applications subjected to cyclic loading is fatigue, both in terms of
material integrity (i.e., structural fatigue) and of the change of functional properties and reversibility (i.e., functional
fatigue) (3). The thermo-mechanical response of SMA materials under cyclic loading is however more complex than
the response of classical metals, due to the occurrence of phase transformation and plastic deformation, which can
lead to di erent physical situations (4). Experimental evidences (5 11) have reported that thermal cycling in one-way
SME applications su ers a decrease in the exploitable displacement. On the other hand, mechanical cycling in PE
components determines an increasing level of permanent deformation, that saturates on a stable value after a certain
number of cycles, shifts the hysteresis loop downward, lowers its height and width, and decreases the level of dissipated
energy. Such physical evidences originate from the combination of residual martensitic phase and transformation-
induced plasticity, that is the formation of microscopic plastic deformation during the stress-induced transformation.
Moreover, such e ects are present not only in the widely-used SMAs based on Nickel-Titanium, but also in other
types of SMASs, and recent studies have also investigated the behavior of additive-manufactured SMAs (12).

For these reasons, both understanding the underlying processes and incorporating them in constitutive modeling
are of utmost importance to e ectively predict material response and to support the design of SMA components.
Several models taking into account the inelastic strain build-up due to not-completed reverse phase transformation
or/and plasticity, its accumulation during cyclic loads, and degradation e ects, are available from the literature; see,
e.g., (13[26). Recently, such models have been used in connection with shakedown theorems |(27| 28) and fatigue
approaches |(29| 30).

We shall here focus on the three-dimensional model by Auricchio et al.| (13), later generalized in (15), which is
capable of describing permanent inelastic e ects in both pseudo-elastic and shape-memory behaviors with a low
number of physical parameters.

In the modeling framework, it is important to provide a robust and e cient numerical approach to treat model
equations and to allow for the simulation of complex devices. Model equations generally involve humerous tensorial
and scalar internal variables, subjected to constraints, and include evolution equations in order to describe several

physical e ects and transformations. Therefore, the numerical implementation in this case is particularly challenging.
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In general, the state-update procedures adopted to treat SMA constitutive equations are mostly based on return-
map schemes, e.g., (31, 32), while only in the last years the attention towards incremental energy minimization
approaches |(33/ 36) or algorithms for mathematical programming (37, 38) is being increased.

So far, the solution of the model (13/ 15) has been performed by means of an elastic-predictor inelastic-corrector
return map procedure with a -regularized version to control the smoothness of the norm regularization. Since the
model includes two tensorial internal variables to describe material behavior, i.e., the transformation and permanent
inelastic strains, the return-mapping algorithm involves 10-12 scalar parameters. A standard Newton-Raphson scheme
has been adopted in|(13, 15) to solve the nonlinear system of equations in both the unsaturated and saturated cases.
The model has been tested on uniaxial and biaxial tests in the Matlab environment, but its investigation in a three-
dimensional nite element (FE) framework is lacking. The large number of scalar parameters may in fact increase
computational costs and cause trouble of convergence when using Newton-Raphson procedures.

The aim of the present work is to propose a new time-integration algorithm for the numerical implementation of
the model described in (13, 15). As it will be demonstrated, the proposed algorithm can be readily integrated in a
nite-element code for solving boundary value problems.

Among the several numerical approaches cited above, the proposed algorithm belongs to the class of variational
methods relying on an incremental energy minimization approach. The idea of applying such an approach to SMAs
stems from previous works, e.g.,| (33 36), and it is here applied to the model described in (13, 15). The incremental
energy minimization approach has been successfully applied in (36) to the original model (39), in which the transfor-
mation strain is the only internal variable and permanent inelastic strains are not taken into account. The algorithm
developed in (36) is here extended to the model under consideration, taking into account both transformation-induced
strains and permanent inelasticity. In the present case, two tensorial internal variables (i.e., the transformation strain
and the permanent inelastic strain) are introduced and their evolution in a nite time step incrementally minimizes a
convex functional, given by the sum of the free-energy energy and the dissipation functional. The proposed algorithm
is based on elastic checks, closed-form solutions of polynomial equations, and nonlinear scalar equations solved
through a combination of Newton-Raphson and bisection methods. This allows to avoid the di culties mentioned
above, when using Newton-Raphson procedures.

This suitable variational structure facilitates the treatment of internal constraints and allows for an e cient
numerical implementation. Other advantages of the proposed algorithm are its easy implementation and, overall, the
possibility of avoiding regularized terms in both energy/dissipation de nition and norms, that may a ect material
response as well as numerical convergence.

To test the performance and robustness of the proposed algorithm several FE analyses are presented. The simu-

lations range from classical uniaxial tests to more complex representative problems, involving both pseudoelasticity
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and shape-memory e ect. The complex problems involve the three-dimensional analyses of a stent strut and of a
spring actuator, given the importance of such devices under cyclic loading conditions (40, 41). The results show that
the model implemented with the proposed algorithm is able to catch material response for several sets of materials
parameters and di erent time steps.

The paper is organized as follows. Section] 2 brie y reviews the continuum equations of the model under investiga-
tion. Section[3 presents the equations in the time-discrete framework and describes the proposed algorithmic scheme.

Then, Section[4 presents the results of several numerical simulations. Finally, conclusions are given in Section 5.

2 Model equations

This section brie y recalls main model continuum equations in the small strain regime, as presented in (13, 15).
The model assumes the total strain” and the absolute temperatureT as control variables, while the transformation
strain e" and the permanent inelastic straing as internal ones. Bothe" and q are symmetric trace-free second order
tensors. Speci cally, the transformation strain e describes the strain associated to the austenite-martensite phase
transformation and the permanent inelastic strain g gives a measure of the part ot that cannot be recovered when

unloading to a zero stress state, since has no fully reversible evolution. The transformation strain e is required
to satisfy the constraint:

ke"k " Q)
"L being a material parameter corresponding to the maximum transformation strain reached at the end of the
transformation during a uniaxial test. The norm k k in Eq. (Eb is the Euclidean norm, as de ned by ke" k = P el el

P
where : denotes the contraction with respect to the last two indices (e.g.a:b= " a;hy).

The Helmholtz free-energy density function is expressed as
= ot | "L (2)

where

o(";e";q) = %K 2+ Gke e"kK®+ yke' gk+ %H ke" k? + %hqu2 Ae" :q )

and 8
20  ifke'k "

I, (e") =
+1 otherwise.
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In (@, and e are the volumetric and the deviatoric part of "; K and G are, respectively, the bulk and the shear
modulus; y = hI'  Tei, where is a material parameter related to the dependence of the critical stress on the
temperature, Ty is the temperature below which only martensite phase is stable, anth i is the positive part function;
H, h, and A de ne, respectively, the hardening of the phase transformation, the saturation of the permanent inelastic
strain evolution, and model degradation. The energy terml- (e") is the indicator function associated with the

constraint ().

For later reference, we note that the energy in Eq. ) is strictly convex provided that:
hH A%2> 0 (4)

In the following, the condition (@ is assumed to be satis ed.

The dissipation function originally considered in ref. (13) is de ned as:
"iq) = Ry max(k' k; kgk) (5)
whereRy and are non-negative material paramete@ We note that Eq. (Eb can be written as follows:
(") = Ryk("";ak 1

where:

k(vi;va)k .1 = max(kvik; kvak)
is a weighted supremum norm. As detailed by Barrera et al. |(15), other choices of norms can be made, leading to
other expressions of (rate-independent) dissipation functions. In particular, the supremum nornk k .; in Eqg. @
could be replaced by the weighted taxicab norm:

k(vi;v2)k .1 = kvik+  Kkvok

or the weighted Euclidean norm:

KViva)K 2 = - KR+ 2RVRE:

INote that our notation corresponds to 1= in the paper by Auricchio et al. (13).
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As explained in ref. (15), the normsk k .; and k k ., lead to results that are more consistent with experiments
than the norm k k .; . In the following, we choose the normk k ., which seems to be the simplest one to handle

for three-dimensional numerical implementation. To alleviate the notations, the normk k ., is denoted by k k

from now on. The dissipation function is thus assumed to be of the form:
q__
= Ryk(e";qk =Ry ke"k2+ 2kgk2: (6)

Following standards arguments, the stress-strain relation is obtained by di erentiating the free energy function

with respect to the strain ", yielding:

1l
A
(%]

1

=2G(e e') (7)

©
I

Q|®

®®

where p and s are the hydrostatic and deviatoric part of the stress , respectively. Similarly, the thermodynamic
forces (X ; Q) associated to the internal variables(e" ;q) are usually de ned by the relations X = @ =@" and
Q = @ =@. Inthe present case, however, special care must be taken becausds only subdi erentiable in (e" ;q).

In such case, the usual de nition needs to be amended as(X ; Q) 2 @ where @denotes the subdi erential operator

with respect to (e' ; q). It follows that
(X;Q)2( s+He" Aghg Ae")+ y@e" gk+ @- (e"): ®)

The reader is referred to, e.g., (42, 43) for an in-depth introduction to subdi erentials and related tools in convex
analysis. We simply recall here that the subdi erential of a convex function F (e' ; q) is the multi-valued operator

@€Fde ned by:
@Re";q)= f(a;b): F(e";e) F(e";q)+a:(e" e")+b:(qg q) 8" ;x)g:

In particular, we have:
g (etr q q etl’ )
' i tr
@etr k = ketr qk it et & q (9)
akK=_n 0
o (; ):itr =0k k 1 ife" =g
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and

@"L (etr ) =

8
% (0:0) if ke k<",
% (e:0): 0 ifkefk="_ (10)

n )
: if ke k>"_

Note that @e" gk is multi-valued when e" = g. Similarly, @~ _(e") is multi-valued when ke k = " .

The evolution equation for (e" ; q) is determined by the dissipation function as:

(X;Q)2@ "";q): (11)

Following the framework of standard generalized materials|(44), Eq.[(1]1) respects the second law of thermodynam-

ics for any choice of positive, convex dissipation function that vanishes at the origin. Using expression |(6) of the

dissipation function yields: 8
uwir . 2q_
SRy =L if ("9 6(0:0)
aia= k(2 ak (12)
- C if (""";q)=(0;0)
with:
C=f( 1; 2):tr 1=tr ,=0;k 1k®+ izk k2 Rig: (13)

Relation (El) can be rewritten in a more familiar form by noting that it is equivalent to:
""@2@ (X;Q) (14)

where is the Legendre transform of the dissipation function ,asdened by (X ;Q)= sup(..n Q X :""+Q:

a ("";q). Usiexpression ), it can be calculated that is the indicator function of the domain Cin (. It

follows that Eq. ([L4) becomes:

r. — X .1
A= i

kX k' (15)

Q.
kQk

with conditions:

0; kX K+ iszkZ RZ 0, (kXK*+ iszkz R2)=0: (16)
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Egs. ) and ) correspond to a normality ow rule for the variables (e" ;q). Correspondingly, the domain C

introduced in Eq. can be interpreted as the elasticity domain of the material. In the space o{ X ; Q) variables,

For later reference, we note that Egs. ) and

the domain C has an ellipsoidal shape with axisRy and R vy.
) can be combined as:

0;002( s+ He" Aghg Ae")+ m@e" gk+ @ (e")+ @ ";q): (17)

3 Incremental algorithm

This section discusses the time-discretization of the constitutive laws[(7) and[(17). Time discretization consists in
introducing a nite number of time instants tp < <ty and estimating the state at each time instant t, in
a time-marching approach. Let p,, sn, €\, g, be respectively the hydrostatic stress, deviatoric stress, transfor-
mation strain, and permanent inelastic strain at time t,. We focus on the central issue of estimating the state
(Pn+1;Sn+1 ;€M1 :0n4 ) at current time tp4q , assuming that : (i) the control variables at current time t,.; (i.e, the

total strain "1 and the temperature T,.; ) are prescribed,(ii ) the state (el ;q,) at previous time t, is known and

satis es the constraint kel k " . A natural way of performing the state update is to discretize Eq. ) using an

implicit Euler scheme as:

etr etr q q
(O: 0) 2 ( Sn+1 t H e';]r+1 Aqn+1 ;hqn+1 AeE'||’+1 )+ M;n +1 @eg+1 qn+1 k+ @"L (eg+1 )+ @ tn+l tn ; tn+l t s )
n+1 n n+1 n
(18)
with

Pr+r = K n+1; Sner = 2G(€n+1 eg+1); Mn+1 = hTpsr  Toi: (19)

In Eq. (@[), n+1 and eps+1 are the volumetric and deviatoric part of " 41 , respectively. To alleviate the notations,

the scalar ., +1 Wwill be denoted by \ in the following. Eliminating s,.1 between Egs. [18) and [(1p) and noting

that @ is positively homogeneous of degree 0, we obtain the equation:
(0; 0) 2 (ZGOEEH_ a, hqn+1 )+ M @egﬂ On+1 K A(Qn+l ;eg+1)+ @"L (eg+1)+ @ eg+1 eg 1 On+1 qn) (20)
where G®= G + H=2 and a = 2Gey+1 . In Eq. (0), the unknowns are the two deviatoric tensors(ef.; ; dy.+1 )-

In a nite-element framework, Eq. (@ typically needs to be solved at each Gauss point. A computationally e cient

algorithm for solving Eq. (@[) is thus essential. Aside from nonlinearity, there are two main di culties in solving Eq.



Peigney et al 9

@). The rst one is that several terms in Eq. (@I) are not di erentiable, meaning that those terms are multi-valued
for certain values of (e¥,, ;0,4 ). The second diculty lies in the dimensionality of the problem: compared (for
instance) to the Souza-Auricchio model (39) 45), there are now two internal variablege" ; q) instead of one (namely,
e'"), hence the dimensionality jumps from 5 to 10.

For our purpose, it is important to note that a variational formulation is attached to Eq. ( Consider indeed

the convex function F (€' ; q) de ned by

FEe";a)=( "nese™;q)+ (" eviqg dp)

where is the Helmoltz energy function and is the dissipation potential, as introduced in (2) and (6) respectively.

Since and__ are proper, lower-semicontinuous and convex, the functior is also proper, lower-semicontinuous and

convex (42, 43). Hence the solutions to the minimization problem

inf  F(e";q) (21)
(e";q)
are characterized by the optimality condition
(0;0)2 @ (e";q): (22)

Moreover, we have@ (e ;q) = @ "n+1;€";q)+ @ e ef;q q,) where@ is the subdierential of  with

respect to the variables(e' ; q). From expression (2) we nd

@ (e";q)=(2G%" a;hg)+ w@e" gk A(ge")+ @- (e")+ @ €' el;q q,) (23)

Any (ef.1 ;0,1 ) satisfying Eq. (20) clearly veri es Egs (23) and (23), i.e. is a solution to the minimization problem
([@1). Conversely, any solution to (21) veri es Eq. (20). The formulations (20) and (21) are thus equivalent.

Eqg. @) can be interpreted as an incremental energy minimization problem. The state update equatioO) of
the Euler implicit scheme can be interpreted as the optimality condition in the minimization problem (.

The variational formulation ( notably allows one to justify the existence and uniqueness of the updated state
(el,; ;0,41 ) introduced in Eq. @ Under the requirement @) the function F is indeed strictly convex, with in nite

growth at in nity, and therefore admits a unique minimizer. The solution (el ;q,.;) to (@ is thus uniquely
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de ned. In the following, we will take advantage of the variational formulation ( for determining (el,;;0,.+;) ina
robust and consistent manner. The overall strategy that we propose breaks down into three steps. The rst step (see
Section[3.1) consists in checking whethetefi., ;q,.1) = (€} ;q,). If not, the second step (see Sectioh 3]2) consists

in solving the minimization problem obtained by ignoring the term |- _(e") in Eq. @ If the state (e" ;¢) obtained

in such fashion satis es the constraint ke k 'L, then we have (el,;;q,.;) = (&";¢). Otherwise, we move to

the third and nal step (see Section [3.3) which consists in solving Eq. [(2R) with respect to pairs(efj.; ;.1 ) that

saturates the constraint, i.e., such thatkel,, k= ".

3.1 Elastic evolution

In this section we detail the procedure for checking whether(el’,, ;d,.,) = (€l ;q,) i.e., whether the incremental

evolution is elastic. From Eqs.) and ), the condition for the evolution to be elastic is:
(b; ©)2 v@ey g.k+ @- (e")+C (24)

where:

b=a 2G%" + Aq,; c=hg, Ael:

Detailing condition ( any further requires to distinguish between di erent cases, depending on the value ofe ;q,,).

3.1.1 Case el 6 q, with kel k<"

We rst consider the situation where e 6 q,, and kel k <" | . Using Egs. Q) and ), condition ) becomes:

(u;v)2cC (25)
whereu and v are de ned by
etr q etr q
- b n n : - c+ n n
) M ket g,k v M ket g,k

From the expression ofC in Eq. (, condition ( can be rewritten as:

2kuk? + kvk?®  2R2: (26)
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3.1.2 Case el 6 q, with kel k="_

We now consider the situation wheree 6 ¢, and kell k = " . In such case, by Egs.[(p) and[(10), condition|[(2}) is

satis ed if and only if (u e ;v) 2 C for some 0. This is equivalent to requiring that:
inf 2ku  e"k?+ kvk?  2RZ: (27)

Letu, = u (u:el)el ="2 be the projection of u on the orthogonal of ¥, so that:

ku efk®=k(u:ef)="L " LK+ kusk*:
It follows that: 8
. 2 2 . afr .
- glr ku, ks ifu:e 0;
inf ku el i = ku U enlgrye = o "
L “ kuk? ifu:el O

Substituting in Eq. (, we obtain that the condition for (el ;q,) to be the solution to problem ) reads as:

ku el k? + kvk?  ?RZ: (28)

hu:elli
2
L
3.1.3 Case el =q, with kelk<"_
In the caseel! = ¢, with ke k <", condition ( is satis ed if and only if:
(b ; c+ )2C (29)
for some deviatoric tensor such that k k m . Condition (Q can be rewritten as :
kirE(f 2kb k? + kc k? 2RZ: (30)
: M

Using expansion:

2kb K2+ ke K2=( 2+1)k K2 2 :( 2b+c)+ 2kbk?+ kck?
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as well as the Cauchy-Schwarz inequality, it can_be easily seen that the tensor reaching the in mum in problem

is positively collinear to 2b+ c. Condition (BO) can thus be simpli ed as:
Fi ?R% (31)

where

Fi= min (2+1)t? 2tk *b+ ck+ 2kbk® + kek?: (32)

Solving the quadratic minimization problem de ning F; leads to the following expressions:

2

8
2 : 2 2 .
Fl_271+ skb ¢k ifk “b+ck ( “+1) wm;

7 (2+1) 2 2uk 2b+ ck+ 2kbk2+ kck? otherwise.
3.1.4 Case el =q, with kel k="_
We nally consider the situation where e = g,and ke k = " . In that case, condition ) is satis ed if and only if
(b el;s c+ )2cC (33)
for some 0 and some deviatoric tensor such thatk k . Condition ( can be rewritten as:
F2  *R{ (34)

where

Fp= inf 2kb elk?+ ke k%

The quadratic minimization problem de ning F, can be solved in closed form, although the expressions are more
involved than those obtained for Fy in Eq. (B2). We set:
el o+ o

— . n "o — "o — - 2 . N
LE—a."L+(A 2GY"; a=(h A)'L; d= M s o B - kek a:s
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Table 1: Conditions for elastic evolution.

kel k<" kel k="
tr 2111 12 2 2p2 2 hu:efi o 2 2 2p2
ey 6 q, kuk= + kvk R¢ ku —5——e, k“+ kvk R{
L
e}{ =q;, F1 2R$ Fs 2R$

Omitting the detail of the calculations, F; is given by the following expressions:

“ifk 2b+ck (2+1) um:

8
% 2+1) 2wk 2b+ ck+ 2Kbk?+ kck? if b e

H 2
o 5B if e deand &+ Iz B
2 Ci 2 2 . 2 2 2
Xﬂz S+ x* +(e X) if e deand &+ Tz B W
-ifk b+ ck (2+1) m:
8 1
———k ?b+ ck®+ 2kbk®+ kck? if b o
12+ ? 2 2
— H 2
Fo = 1+ 28 ifh cand+ 72 B W
§ 2 2 2 2
Xﬂz 1 S +x% +(e x)? ifh cand@+ % B 2

The scalar x that appears in the above expressions is obtained by solving the polynomial equation
(x* ZA)e+ %x)?+ “Bx?=0 (35)

on[ wm:min( v ;k)]. Since the polynomial in Eq. ) is of degree 4, its roots can be obtained in closed form.

3.1.5 Summary

The conditions for the incremental evolution to be elastic are summarized in Tabl¢ L. If those conditions are satis ed,

then the solution (eY,, ;q,.;) to problem @) is simply obtained as(el,; ;d,.1) = (€V;q,). We emphasize that

all the calculations needed for checking the conditions in Tabl¢]1 can be done in closed form, without resorting to a
2 2
nonlinear solver, as in the case of ref| (13). In the most complex caskd! k = "| with e = g, and 2+ 1+ 2 B

&), a polynomial equation of degree 4 needs to be solved.
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3.2 Unsaturated phase transformation

If the conditions reported in Table are not satis ed, then (el,; ;0.1 ) 6 (e ;q,), i-e., phase transformation occurs.

To carry out the state update in that case, we rst consider the incremental energy minimization problem obtained

by dropping the term 1. (e") in (2). The corresponding minimization problem can be written as

ey T @ (36)

where

Fo(e";a)= o("ns1;e";aq)+ ( € en;a dp) (37)

and ¢ is denedasin Eq. @). For later reference, we note that problem ) can be written in a more explicit form

as
inf G%e"k? e" :a+ yke' qgk+ }hquz Ae" g+ (e ef:q q,): (38)
(€";a) 2
SinceFq is strictly convex and grows to in nity as (e" ;q) tends to in nity, problem ( admits a unique solution

that we denote by (e" ; &). The latter is characterized by the optimality condition (0;0) 2 F o(e" ;¢), i.e.

(0;0)2 (2G%" a;heg)+ y@e" gk A(ge")+ @ &' e':g q,): (39)

32.1 Case &' = ¢

In order to nd (e" ;¢), the strategy that we propose consists in rst carrying out the optimization with respect to

pairs (" ;q) such that e = g. We thus consider the problem
igf Fo(9;0): (40)

The minimization problem ( is easier to solve than problem ), because it involves only one tensorial unknown,

instead of two. From expression ) ofFg, can be rewritten as

.1
|r(1qf EGO(qu2 g:a+(q e':q q,) (41)
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where G®=2G%+ h 2A.

Let g be the (unique) solution to problem ). If el 6 q,,, then q is characterized by the optimality condition:

0=G% a+R7Y((1+ g el Zq,) (42)

with

y=k(q en;qa  gyk: (43)

From Eq. we obtain :

_ya+Ry(el + 2q,).

yGOO+ RY (1 + 2) (44)

Substituting (44) in (#3) gives an equation in whichy is the only unknown. After some manipulation, that equation

is found to read as

ao+ a1y + ay’+ agy*+ ay’ =0 (45)

with:
= *R{(L+ key q,k*
a; = 2Ry G% %kell  q,k?;
a; = k(G%®!I' a;G%, a)k? RZ(1+ 2?)%

az= 2Ry (1+ ?)G%

a,= G%:

Since the polynomial equation ) is of degree 4, the value of can be obtained in closed form. Substituting the
result in Eq. (44) gives the value ofq .

The solution q t(@;oblem being found, we proceed to check i{e" ;&) = (q ;q ), i.e., if (q ;q ) is the

solution to problem . Eq. shows that it happens to be the case if:

kh  A)qg +R7Y2(q gk w: (46)

Remark: in the caseel! = q,, one rst needs to check whether:

P
kG, ak Ry 1+ 2 (47)
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If condition (§7) is satis ed, then q = q, so that (q ;q ) = (e ;q,). We already know from Section[3.1 that
(el ;q,) is not the solution to problem @1). It follows that (q ;q ) = (e ;q,) is not the solution to problem (36)
neither.

If condition (§7) is not satis ed, q is obtained by expressions|(44)}(45), and condition[(46) for checking ife" ; &) =

(q ;g ) still applies.

3.2.2 Case e" 6 ¢

If (q ;q ) does not provide the solution to problem ), then we necessarily have"” 6 & and the optimality

conditions (39) become: 38 . :
r r tr
20=2G%" a+ Me 4 Aq+RYu
Xt y (48)
.B 0= hq’ + M q Aetl’ + ZRY q yqn

wherex = ke gkandy = k(" el;& q,)k . Forgivenx andy, Eq. (#8) can be viewed as a linear system in
(e" : &) and put in matrix form:

0 10 1 0 1

ZGO 0 0 0 A tr Oetr
B> Y 5B° 5=8""77 K (49)
° & 2y

x° A x%+ h+ 2y n

wherex®= =x and y°= Ry=y. Let M be the 2 2 matrix that appears in the left-hand side of system [49). We

have:

detM =2G%h A%+ x%G% xY%1+ 2)+ y%2 2G°+ h)+ 2%y®: (50)

Using condition @) it can easily be checked that2G% A2 > 0 so that detM > 0 for any positive (x;y). System
can be thus inverted to give:

0 1 0 10 1
r 0+h+ 2y,0 0+A + Oetr
o K=l £B Vg,

© 2y%,

t
(51)

& x%+ A 2G0+ x0+ y0
Through relations @) (e" : &) are expressed as explicit functions of the two unknown scalaréx;y). It remains to

nd the value of (x;y). To do so, we note from system|(5[1) that:

tr 1

4= Germ® (52)
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with

d=(h+ %% A)a+y%l)+(A 2G° y9 %y%,:

A crucial observation is that tensor d is independent onx. We can thus use Eg. ) to obtainx as a function ofy.

More precisely, taking the norm of Eq. ) gives:

x detM = kdk:

Using Eq. ), we nd:
kdk  wm (G%+ yY1+ ?)

XT 26 AZ+yq2 2G0+ h)+ 2y@

(53)

and substituting in system (Q) yields:

0o 1 0 y y 1o 1
%)e” g 1 %(h*' 2y9) @(h A+ 292 A+ @(A h o 2y%A 2G° 9 %ba+ y%elf g
7
o A+ (A h A(A 260 y) (G%+y) (A 260 y)T Ay,
kdk kdk
(54)
whereY =2Gh A%+ y92 2G%+ h)+ 2y®,
We are now left with the issue of nding the scalary. This is accomplished by solving the equation:
f(y)=0 (55)

where:

f(y)= k(e" ef;& gDk vy

in which (e" ;&) are expressed as functions of via system ). Since(e" ;&) is uniquely de ned, the equation
f (y) =0 has a unique solution in]0;+ 1 [. In practice, the nonlinear equation ) needs to be solved numerically.
It can be veried that f(y)! 1 asy! +1 and that f (y) converges towards a non negative value ag! 0. In

practical computations, those properties can be useful for initializing a bisection algorithm.
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3.3 Saturated phase transformation

If the values (" ; &) found in Section are such thatke" k ", then (e" ;&) satis es the optimality condition
[@0) so that (€Y, ;0,41 ) = (" ;&). Otherwise, the solution (ell,; ;0,1 ) to problem @1) necessarily saturates the

constraint, i.e., veries kell,; k= "_.

3.3.1 Case e',; = Q41

As in Section, we rst carry out the optimization with respect to pairs (e" ;q) such that e = q. The strategy

consists in determining the (unique) solutiong to the minimization problem

igf F(g:q) (56)

and check whether(e,; ;0,41 ) =(9q ;q ). Problem ) can equivalently be rewritten as

H } 0 2 . tr. .
it 56 kak* q:a+ (g ef:q q): (57)

Observe that if the value g introduced in Section satiseskq k "_,thenqg = q . In that case, we already
know from Section that (€",,;dn41) 6 (g ;g ). In the following, we examine the situation wherekq k>" . In

that case,q necessarily saturates the constraint in ) , .e.

kg k=":

In the special case wheree!l = g, with ke k= ", it is possible that q = q,. This occurs if:

_ p
e Ry 1+ 2 (58)

In that case, as we know from Section 3]1 that(e! ;q,) is not the solution to problem [@I), we have again
(eg+1;qn+1) 6(q ;q )
Except in the very special case whereell = ¢, kel k = ", and inequality (58) are satis ed, the optimality

condition in (b7) becomes

0= a+R7Y((1+ a9 er )+ g (59)
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with 0 and

y=k(a ej;a gpk: (60)

It follows that:
ya+ RY(eE'nr + 2qn) .

“la+ Ry (€] + 7q,)k 1

Subsituting ( in (Q leads to the equation
gy)=0 (62)

where
ya :ug+ Rykugk?

kya + Ry Uok "2+ %) kelk®  2kg,k?

aly) = y?+2",

andup = el + 2q,.
In practice, Eq. needs to be solved numerically. Substituting the obtained value foty in ( givesq . Having

found the solution g to problem (56), we check whether(q ;q ) pens to be the solution to problem [21). Using

Egs. (10)-(20), we obtain that (q ;q ) is the solution to problem (21) if:

kh A)g + N 2q gk w:
y (63)

ka + RTYUOI( (G R7v(1+ DNE

If condition ( is satis ed, then (e¥,;;0n+1)=(9 ;9 ).

3.3.2 Case e,; 6 Q.41

If the procedure described in Sectiof 3.3]1 does not the provide the solution to problenj (1), theeff,; 6 q,,; and

kefr.; k= "L. Hence the optimality condition (R0) becomes:

8

etr etr tr
30=2G%",, a+ gyt G oaq R St Gy oar

Goss € o) g (64)
2 0= hQpay + w0t ) L Ael. 4 2Ry n+1y n

with

tr tr

X = ken+1 qn+1 k; y = I((en+1 Eg ;qn+1 qn)k ; 0:
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The solution to problem (Q} can be obtained by solving the nonlinear problem:
h()=0 (65)

where:

h( )= ke" ( )k ",
and (e ( );q( )) denotes the solution to the unconstrained problem (parameterized by ).

( infq)% ke"k?+ G%e"k? e" :a+ yke" qgk+ %hqu2 Ae" :q+ (e" e':q q,): (66)
etr ;

Problem (66)) is formally identical to problem (B8), the only di erence being that the term G%e" k? in Eq. is
replaced by(% + GOke'" k2. Consequently, the method presented in Secti02 can be directly used for solving

problem ). The updated state is obtained ag€e",; ;0,.1) =(€" ( );q( )), where is the solution to problem @).

3.4 Summary

The pseudocode of the proposed algorithm in summarized below in Algorithrh]1. The input variables are the internal
variables (e ;q,) at time t, and the control variables (en+1 ; Th+1) at current time ty.; . The output is the state
variables (e",; ;0,., ) at time tp.1, from which the stress can be deduced using Eq9). The proposed algorithm
results from a careful analysis of the incremental energy minimization problem[(21) and delivers the solution of the
time-discretized problem ) in all cases. The presented algorithm can be readily implemented in a FE code for
solving three-dimensional boundary value problems, as will be demonstrated in Sectidn 4.

The overall structure of the algorithm is of the predictor-corrector type. One rst checks (through the conditions
in Table [1) whether the elastic guess happens to give the solution. If not, the value ofe" ., ; q,.; ) is updated so as
to satisfy the optimality condition (. That updating procedure proceeds in a two-step fashion by distinguishing
between the cases of unsaturated phase transformation and saturated phase transformation. In general, iterative
solvers are needed for solving the nonlinear equation5)2)5) that arise in the updating procedure. We
emphasize that all those nonlinear equations are scalar and can thus be solved in a very robust fashion by using (for
instance) a combination of bisection and Newton methods (see, e.g., ref. (46, 47)).

We recall that the idea, the structure, and the formalism of elastic/unsaturated/saturated evolution stem from
previous works, see, e.g., (383 36). The present algorithm can be in fact interpreted as an extension of a radial return

algorithm proposed in ref. (36) for the original Souza-Auricchio model in whiche is the only internal variable.
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The algorithm in ref. (36) involves a single scalar parameter, whereas more conventional return-mapping algorithms
(see, e.g., |(4B)) involve 5-7 parameters (namely, the components @', the plastic multiplier, and a Lagrange
multiplier associated with the constraint ke k " ). For the model considered in this paper which includes the
permanent inelastic strain q as an additional internal variable it can be expected that conventional return-mapping
algorithms would involve 10-12 scalar parameters, as reported in ref, (13). This may increase computational costs and
cause trouble of convergence when using Newton-Raphson procedures. Such di culties are avoided by the presented

algorithm, since it has the distinctive property of involving only scalar nonlinear equations.

Algorithm 1 Pseudocode of the proposed algorithm

1:a 2Gen+1,Up eV + 2q,
2: if the conditions in Table [1 are veri ed then

3 (eMyidn.)  (ef;an) . Elastic evolution
4: else D

5. if el =g, and kG, ak Ry 1+ Zthen

6: q el

7: go to line[1§

8: else

9: Calculate y by solving the polynomial equation )
_ ya+ Ryug

P9 ye R )

11: if kh A)q + Rv 2(q  qg,)k wu then

12: (e";e) (a;a)

13: go to line[18

14: end if

15: end if

16:  Calculate y by solving f (y) =0 in Eq.
17 Calculate (" ; &) by Eq. (54)

18: if ke"k "_ then
19: (€', :0n.1) (") . Unsaturated phase transformation
20: else D D
21: if (kgk "L)or (el =qg,and kel k="_and B Ry 1+ 2)then
22: go to line[3Q
23: else
24: Calculate y by solving g(y) =0 in Eq. @
25: q "L _ya® RyUo_ Ry Uo
kya + Ry ugk
26: if k(h A)g + Rv 2@ g,k v and ka + RTYuok (G%+ R7Y(1+ 2))"L then
21 (eg+1 ;Qn+1) (9;9)
28: go to line[3§
29: end if
30: Calculate by solving h( ) =0 in Eq. (65)
31 (efiridnar) (€T ( );a( ) . Saturated phase transformation
32: end if
33: end if
34: end if

35: retum (el iGpay)




22 Peigney et al
3.5 Tangent sti ness operator

The tangent sti ness operator d =d' can be obtained in a fully explicit form. Let 1 and | be the second-order and

fourth order identity tensors, respectively. SettingJ=(1 1)=3andK =1 J, we have from Eq. [1):
d del
= C 4621y 67
5 - (67)

where C = 3K | +2GK is the elasticity tensor. In the case of an elastic evolution, we obviously havele!,, =da =0,
so that d =d" = C. In the following, we give the expression ofde",, =da = 0 and d =d' in the case where phase

transformation occurs. In accordance with previous developments, di erent expressions are obtained depending on

the values of (e, ;0,41 )- We refer to|[APPENDIX A for the derivation of the results presented next.

3.5.1 Unsaturated phase transformation ( kel k<"|)

Let us rst consider the situation where e¥,, = q,,; . As detailed in APPENDIX A, |we have :

deg+1 _ yOx
da Ty oy Yo ©9
where:
Uo=(L+ "y € O X =(G¥+yx1+ ?) - (69)

We recall that y = k(g,4; €V:dnp41 d,)k andy®= Ry=y. Substituting Eq. ( into Eq. ( gives:

d _ ) yoX
g =C A K+ e

UO Uo . (70)

The expression of the operatorde",, =da gets more involved in the situation wheree",, 6 q,.,; . Introducing the

tensors
U= ( h + 2y0 A)(etnr+l c1n+1 );

V = (XO+ h + Zyo)(egﬂ eg ) + 2(X0+ A)(qn+1 qn); (71)

VO= (XO+ A)(egﬂ eH)+ 2(ZGO'|' XO+ yo)(qn+1 Qn);
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and the scalar quantities o
Xll: ;/72 \ :(eg+1 eg)+ 2V0:(qn+1 qn) ;
X22 = éo(GOO*' L+ 2)y9; (72)
X
Xiz= W VO (el Gp);
y
it can be calculated (se¢ APPENDIX A) that:
detr O+ + 2,,0
- =X hD YK+YuU U+YnV V+YoU V+V U) (73)
where: b
1x° X11 1y° X22 17 x%0X
Yu= 221 2y ivp=L@a EE)iv,= = 21z
11 sz( D )! 22 Zyz( D ) 12 Z Xy D
and
D =G+ x%+ y)(x°+ h+ 29 (x°+ A)% Z=(D Xz)D Xu) X (74)
Expression ) holds ifkel',; k<" and e",, 6 q,.; . In such case, we obtain from Eq.) that:
04f h+ 20
‘;,, e o462 XN VL VAU U4 YV VYU V4V U) (75)

3.5.2 Saturated phase transformation ( kel  k="0)

In the caseel,, = q,,; with ke, k= "_, we obtain:
n+1 n+1 n+1
|

tr
®a o pr—IX 42 2 (76)
da y2  yOX'kU § k2

where X = " =(kak + y%ell + 2q,)),P=K (el,; €",;)="2 andU] = PU,. In Eq. (@, Uo is de ned as in

Eq. . The operator P can be interpreted as the projector on the orthogonal toe!,; in the deviatoric space. It

follows from Eq. ) that:

d _¢ aex pr— YK yz oz 7
d y2  yOxkU k2
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In the caseel,, 6 q,,; with ke, k=", the operator dell,, =da takes the form:

detr O+ h+ 2,,0
dn;lzx Y P+ vuU? U7 +YuV? V72 +¥pU? V7I+V? U?) (78)

whereU? = PU, V"’ = PV and (U;V) are de ned as in Eq. {71). The scalar¥iy, Yz, Yi2 in (78) are de ned by:

p
1 x° X11 1y0 Xo2o 1 X X12
V= 12X Xuy.g, -1V Xz o 100X
= et ) iTes 2l ) e = oy

where
D=02G%+ +x°+y(x°+h+ %9 (xX°+A)% Z=(D Xp)D Xu) X5
and 0
Xu=lz V7 (e e+ W (G 6 |
— XO 00 2 2 D (eH+1 :(qn+1 eH’+1 ))2 .
XZZ - ﬁ (G + +( +1)y%kpqn+lk + X0+ K + 2y0 ..E ’ (79)
p
X
X12 = WO(V? W) : (eg+1 qn+1):
Xy
The tensor W that appears in Eq. ) is given by:
- 0 D 2 tr . tr .
W =PV "+ m?(enﬂ “(On+1 On))epan:
From Egs. @) and ) we nally obtain:
0 2,,0
=c a2 XN Vol viu7 U YRVT VI YRUT VP EV? U)o (80)

du

To close this section, we emphasize that the various expressions obtained for the tangent sti ness operator are fully
explicit and do not involve any matrix inversion, thus making for an e cient and accurate numerical evaluation of

d =d'.

4 Numerical results

This section presents the results obtained by the numerical implementation of the proposed algorithm in a FE

framework.
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Table 2: Adopted model parameters taken from ref. |(13).

Parameter Set1l Set2 Set3 Unit

E 50000 50000 50000 MPa
0.35 0.35 0.35 -
2 2 2 MPa/K
To 223 223 223 K
H 1000 1000 1000 MPa
Ry 50 50 50 MPa
"L 0.04 0.04 0.04 -
h 0 15000 15000 MPa
A 0 0 2000 MPa

10 10 10 -

We implemented the algorithm within a user-de ned material subroutine (UMAT) of the FE software ABAQUS/-
Standard (48). Following the methodology proposed in ref. |(49), we exploited the capabilities of the package AceGen
(50) of the symbolic software Mathematica to generate the UMAT.

In the pseudocode of the algorithm as presented in Sedi. 3.4, there appear several equality conditions of the form
u = v, whereu and v are two scalar quantities. In the numerical implementation, such equality conditions have been
replaced by inequality conditions of the formju vj o where  is an absolute tolerance parameter set td0 .
Indeed, round-o errors in practical computations almost always prevent oating-point variables to be exactly equal.
Since the solution(el,; ;d,+; ) to the minimization problem ( depends continuously on the data(en+1;€el ;q,),
the exact value of the tolerance parameter (o is expected not to impact the robustness of the algorithm.

Numerical experiments aim to verify model implementation as well as to evaluate algorithm performances and
robustness. We perform several tests involving both PE and SME, of increasing complexity, starting from simple
uniaxial tests to more complex three-dimensional boundary-value problems on real devices.

We consider the three sets of material properties proposed in ref. (13) and speci ed in Tab[¢ 2, in order to verify the

main features of the model, compared to the results in ref.| (13), as well as to show the role played by each parameter.

4.1 Uniaxial tests

We rst simulate several pseudoelastic tests on a single 8-node hexahedral element, under force control and prescribed
homogeneous temperature. In particular, we apply a pressure varying cyclically between a maximum and a minimum
value at a xed temperature.

The rst pseudoelastic test involves 50 tension cycles with permanent inelasticity. The total analysis time is 10 s
and each cycle lasts 0.2 s. We adopt material parameters from Set 1 (see Talﬂ}a 2), where both parametérand A
are equal to zero, while is di erent from zero. The applied pressure varies betweer® and 500 MPa and temperature

is set equal t0298K. Figure shows the stress-strain curve, where it can be observed that the non-zero parameter
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Figure 1: First uniaxial pseudoelastic test: 50 tension cycles with permanent inelasticity. (a) Axial stress-axial strain
curve obtained for t =0:001s. (b) Axial strain-analysis time curve for di erent time steps  t. (c) Axial components
of e and q versus analysis time plot for t =0:001s. (d) Axial components of e" and q during the rst loading
cycle.

gives rise to a permanent inelasticity phenomenon. This is also clear by observing Figuré§ Ifc)-{d), representing
the evolution of the internal variables e" and q in time. Figure reports the strain rate over time for di erent
adopted time steps, respectively, 0f0:001and 0:01 s, corresponding t0200 and 20 increments per tension cycle. The
curves demonstrate the robustness of the proposed solution algorithm.

The second pseudoelastic test involveS0 tension cycles with saturating permanent inelasticity. The total analysis
time is 10 s and each cycle lasts 0.2 s. We adopt material parameters from Set 2 (see TaE|e 2), whérds equal to
zero, whileh and are di erent from zero. The applied pressure varies betweer® and 500 MPa and temperature is

set equal to 298 K. Figure Pfa)|shows the stress-strain curve; in such a case, the non-zero parametirgives rise to
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Figure 2: Second uniaxial pseudoelastic tesB0tension cycles with saturating permanent inelasticity. (a) Axial stress-
axial strain curve obtained for t =0:001s. (b) Axial strain-analysis time curve for di erent time steps t. (c) Axial
components ofe” and g versus analysis time plot for t = 0:001s. (d) Axial components of e and q during the
rst loading cycle.

the saturation of permanent inelasticity, for which the permanent strain saturates and does not exceed the threshold.
The evolution of the internal variables e and g in time reported in Figuresis similar to the previous test.
Figure shows again the robustness of the algorithm, by reporting the strain rate over time for time steps of
0:001 and 0:01 s, corresponding to200 and 20 increments per tension cycle.

The third pseudoelastic test involves50tension cycles with saturating permanent inelasticity, including degradation
e ect. The total analysis time is 10 s and each cycle lasts 0.2 s. We adopt material parameters from Set 3 (see
Table @ where all the parameters are di erent from zero. The applied pressure varies betwee@ and 500 MPa and

temperature is set equal to298 K. Figure shows the stress-strain curve; in such a case, the non-zero parameter
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Figure 3: Third uniaxial pseudoelastic test: 50 tension cycles with saturating permanent inelasticity, including degra-
dation e ect. (a) Axial stress-axial strain curve obtained for t =0:001s. (b) Axial strain-analysis time curve for
di erent time steps t. (c) Axial components of " and g versus analysis time plot for t = 0:001s. (d) Axial
components ofe" and q plot during the rst loading cycle.

A couples the two internal variables and results in shifting down the loops. The evolution of the internal variables
e and q in time, reported in Figures is again similar to previous tests. Figure reports the strain rate
over time for time steps of0:001 and 0:01 s, corresponding t0200 and 20 increments per tension cycle.

Set 3 has been used also to perform the fourth pseudoelastic test, simulating0 tension cycles followed by10
compression cycles. Figurg]4 shows the stress-strain curve, where the applied pressure varies betwe&00 and 500
MPa.

It is worth highlighting that all the reported results are in perfect agreement with the results reported in ref. (.
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Figure 4: Fourth uniaxial pseudoelastic test: 10 tension cycles followed byl0 compression cycles with saturating
permanent inelasticity, including degradation e ect. Axial stress-axial strain curve obtained for t =0:001s.

We then simulate two shape-memory tests on a single 8-node hexahedral element. For all these tests we adopt
material parameters from Set 3 (see Tabl{]Z).

The rst shape-memory test consists of25 tension cycles at constant low temperature, each one followed by heating
strain recovery. The total analysis time is 10 s and each cycle lasts 0.4 s. Initially, a pressure 600 MPa is applied
at a low temperature of 200K. Then, the temperature is increased up to400K at zero applied pressure. Figur{@
shows the stress-strain curve. An inelastic e ect is activated, so that we observe only a partial shape recovery (see
Figure . Also for this test, algorithm robustness is veri ed (see Figure).

The second shape-memory test is performed under force control and constant low temperature, followed by cyclic
heating. Initially, a temperature of 200K is prescribed and a pressure 0250 MPa is applied. Then, the temperature
is increased up to500 K at constant applied pressure. The temperature is then varied cyclically betweer200 and
500K. The total analysis time is 186.6 s and each thermal cycle lasts 3.2 s. We adopt material parameters from Set
3 (see Tabld ). Figure[@ shows the strain-temperature curve. It is observed that the saturation is reached at the
rst thermal cycle; therefore, subsequent cycles determine only a shift of the curve due to the presence of permanent
deformation (see Figur). The test has been repeated by adopting di erent time steps, respectively, of 0.001 and
0.01 s, corresponding to 320 and 32 increments per thermal cycle. Only the case with time steps of 0.001 s is shown;

however, also for this test robustness has been veri ed.

4.2 Pseudoelastic stent strut

The use of SMAs to manufacture cardiovascular stents is increasing, since pseudoelasticity enables the essential self-
deployment behavior. Once implanted in the patient, stents are subjected to million of pulsatile cycles and their

fatigue resistance is therefore a topic of wide interesting in the medical, industrial, and scienti c communities. From
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Figure 5: First uniaxial shape-memory test: 25 tension cycles, each one followed by heating strain recovery, with
saturating permanent inelasticity, including degradation e ect. (a) Axial stress-axial strain curve obtained for t =
0:001s. (b) Axial strain-analysis time curve for di erent time steps t. (c) Axial components of " and g during
the rst loading cycle.

the experimental point of view, strain-based testing is generally performed on SMA stents or representative specimens
manufactured as stents, to provide fatigue performance information, constant life diagrams, and data for fatigue
criteria calibration.

We propose here to investigate the behavior of a representative stent strut subjected to cycling loading under two
strain-controlled conditions.

The strut is obtained from the planar CAD representation of a stent geometrically resembling a Bard VIiVEXX

carotid stent (C.R. Bard Angiomed GmbH & Co., Germany). Figure [Z|shows the Bard VIVEXX carotid stent
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Figure 6: Second uniaxial shape-memory test: multiple thermal cycles under constant applied pressure, with saturat-
ing permanent inelasticity, including degradation e ect. (a) Axial strain-temperature curve obtained for t =0:001
s. (b) Axial component of € and of q versus analysis time plot for t=0:001s.

geometry and the adopted mesh of the stent strut, consisting o7872eight-node hexahedral nite elements and11480
nodes. A mesh re nement has been performed to determine the appropriate model.

We adopt material parameters from Set 3 (see Tabl{]Z). We apply a tensile cyclic displacement to one side of
the strut, while the other side is fully constrained (see Figure[’f’). All other surfaces are traction free. A temperature
of 310K is prescribed. The rst loading history consists in applying a displacementu of 1 mm and then in varying
it between 1 and 0:5 mm for 30 cycles. The second history consists in the application of a displacement df5 mm
and then in varying it between 1:25 and 1 mm for 12 cycles. The total analysis time is 25 s. For both the analyses
we adopt an adaptive time step varying between10 © and 0:05 s. Figures show the applied displacement
u versus the total reaction force of the xed side plot for the two loading histories, respectively. As observed, the
non-zero parameterA couples the two internal variables and results in shifting down the loops, up to a saturation
curve. Figures and report, respectively, the loading time increments and the total global iterations during
the analysis for the second loading history. As it can be observed, small time increments and a high number of total
global iterations are required only during the loading phase, which ends at an analysis time df s with a nal applied

displacement of 1:5 mm. Then, the trend repeats during cycling betweenl:25and 1 mm from 2 s to 25s.

4.3 Helical spring

We conclude this section with the simulation of a helical spring, which can be used as thermal actuator and as
element for passive vibration isolation. Therefore, spring components are generally tested in both pseudoelastic and

shape-memory regime.
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Figure 7: SMA cardiovascular stent strut: initial geometry, adopted mesh, and boundary conditions.

(@) (b)

Figure 8: SMA cardiovascular stent strut: applied displacement vs. reaction force of the xed side for two di erent
loading histories: (a) rsta 1 mm displacement is applied and then it varies betweerl and 0:5 mm; (b) rsta 1:5mm
displacement is applied and then it varies betweerl:25 and 1 mm.
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(@) (b)

Figure 9: SMA cardiovascular stent strut. Analysis of the case where a:5 mm displacement is applied and then
varied between1:25 and 1 mm. Trends of (a) the loading time increments and (b) the total global iterations during
the analysis.

The spring under investigation has a wire diameter of1:0 mm, an external coil diameter of 6:0 mm, a pitch of
2:5 mm, 2 active coils, and an initial length of 5:0 mm. The mesh is composed 08712 eight-node hexahedral nite
elements and4486 nodes, as shown in Figur¢ 10; a mesh re nement has been performed to choose the appropriate

mesh.

Figure 10: SMA spring: initial geometry, adopted mesh, and boundary conditions.

We adopt material parameters from Set 3 (see Tablé]2). One end of the spring is xed (see Figufe [10).
For the pseudoelastic tests, we perform multiple tension cycles by applying an axial tensile forcé at one section
of the spring at a constant temperature of 298 K (see Figuré 10). All the nodes of the section where the force is

applied are constrained against the two translations in the directions orthogonal to the axial one. The forcé- varies
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cyclically between zero and a maximum value. Three maximum values are considered 80, 40, and 100 N and for
each of them we perform10, 50, and 50 cycles, respectively. The total analysis time is 20 s. All the simulations are
performed using variable time step increments betwee0 € and 0:05s. Figure show the applied force-axial
displacement output for the three pseudoelastic loading histories.

For the shape-memory tests, we performl9 thermal cycles at constant forceF of 5 N. Temperature varies between
2086 and 298K. The total analysis time is 40 s. All the simulations are performed using variable time step increments
between10 € and 0:5 s. Figure reports the axial displacement versus temperature plot.

In both pseudoelastic and shape-memory tests, the non-zero parametéx couples the two internal variables and

results in shifting down the loops, up to a saturation curve.

(@) (b)

(c) (d)

Figure 11: Pseudoelastic tests on SMA spring: displacement of the free end vs. applied force of (a) 20 N, (b) 40 N,
and (c) 100 N. Shape-memory tests on SMA spring: (d) temperature vs. displacement of the free end.
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To conclude the discussion, Figure) an) report, respectively, the loading time increments and the total
global iterations during the analysis for the pseudoelastic test with applied force varying between 0 and 100 N, while
Figures and report the values for the shape-memory test. As it can be observed, for the pseudoelastic test,
small time increments and a high number of total global iterations are required only during the loading phase, which
ends at an analysis time ofl s with a nal applied force of 100N. For the shape-memory tests larger time increments

are su cient for global convergence. For both tests, the trend repeats during cycling.

(@) (b)

() (d)

Figure 12: SMA spring. Trends of the loading time increments and the total global iterations during the analysis for
the (a)-(b) pseudoelastic test with applied force varying between 0 and 100 N and (c)-(d) the shape-memory test.
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5 Conclusions

This paper has presented a new algorithmic scheme for a three-dimensional model taking into account permanent
inelastic phenomena and degradation e ects due to cyclic loading in SMAs. A variational structure of model equations,
based on an incremental energy minimization approach, has been presented. The resulting algorithm is free from
any kind of regularization, which may a ect the structural response, and is simple to implement. The key feature
of the algorithm is that it relies only on scalar nonlinear equations, thus avoiding to solve simultaneously for 10-12
scalar unknowns as could be expected in a conventional return-mapping algorithm. Such simpli cations are achieved
thanks to the incremental energy minimization structure and ultimately trace back to the isotropic nature of the
considered constitutive model. Several numerical FE simulations have demonstrated the correctness of the scheme
in predicting material response, its ability to solve complex boundary values problems, as well as its robustness.
Although our algorithm is speci ¢ to the choice (@ for the dissipation potential, there is no major di culty in
adapting it to the dissipation potentials ("";q) 7! Ry k("";ak .1 and ("";q) 7! Ryk("";a)k .1 mentioned in
Sect.[2. In such cases, however, the elasticity domain would have corners so additional subcases are expected to
appear in the algorithm. Among other further possible developments, it would also be interesting to extend the

present approach to geometrically nonlinear problems.
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APPENDIX A Derivation of the tangent sti ness operator

This section reports the derivation of the tangent sti ness operator introduced in Section[3.%. Accordingly to previous
results and discussion, the derivation is performed by distinguishing between the cases of unsaturated and saturated

phase transformation.
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A.1 Unsaturated phase transformation
A1l Case €', = 0,41

Let us assume thate}] 6 g,. SettingUo=(1+ ?)q,., e  2q,, dierentiating (42)|gives:
yO
da = (G yq1+ 2))de",,; VU ody

where we recall thaty® = Ry =y. The variation dy can be obtained by di erentiation of the relation y = k(q,;

elt’lr 1O0n+1 CIn)k as:

1 1 1
dy = y((qnﬂ eg) : dqn+1 + 2(qn+1 Qn) : dQ) = yUO . dQn+1 = ;/UO : degﬂ : (Al)
Hence,
y° y°
Xda= | XFUO Ug :degﬂ = K Xy7U0 Uo :de},ﬂl
with X = (G%+ yq1+ ?2)) 1. It can be veried that
Xy© ! yoX
K yTUO Ug =K+ y2 y0kaOk2Uo Uog: (AZ)
Therefore:
deg+1 yOX
= Kt —2 A
da % y2 y°XkU0k2UO Yo (A3)
so that
d ) yoX
= C 46 K 7YX KU o Uo U (Ad)

The expressions|(AB) and [(A4) can be veri ed to remain valid whene! = q,.
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Al2 Case €l',;, 6 Q4

In the case of unsaturated phase transformation withel,; 6 q,.,, di erentiating the optimality conditions (4

yields: 0 1 0 1 1

0 1 0
%dag - M - %deg+1 X dx))(:)%eg+1 On+1 2 dy)f %eg+1 eH g (A5)
0 dc]n+1 Un+1 eg+l y 2(Qn+1 qn)

where M is the linear operator de ned by:

0 1 0 1
M %degﬂ g _ %}(ZGO"' x0+ yo)degﬂ (Xo+ A)dg, 1 g :
dqn+1 (X0+ A)deg+1 (XO+ h+ Zy%dqnﬂ

(AB)

We recall that x = kell,;,  Qn.1 Kk y=k(el,; €":dps  9n)K , x°= y=xandy®= Ry=y. From the de nition
of x, we have by di erentiation:

tr
d= ) g, g ) a7)

which can be rewritten as:

0 1 0 1

detr+ etr+
ax= U BT K withu =B S g (A8)
X tr
dqn+l qn+1 en+1

Similarly, from the de nition of y we have by di erentiation:

0 1 0 1
dy= Ly :%odet“r+l X with v = %egﬂ oG (A9)
y dqp 2@nsr )
Relation thus becomes:
0o 1 0 1
?@daﬁ = (M :—zu U ;’zv V) %)deg” - (A10)

0 dqn +1



Peigney et al 39

The operator M XU U ;’—EV V can beinverted in closed-form. Settingd =M ':U andV =M ':V ,

X2

it can indeed be veri ed that:

p
0 0 0 0
M X0 u Yv v t=m ot Xy ogr Yy ove Yo vev u) (ALl
with o
0 0
-1 Yyv.v: =1 Xou: = "Yy.yu.
y? x? Xy

It can calculated from Eq. that:

0 0 1

1
U 1pVv
3 G v-18 g
(A 2G° yO(eM,; One1) (A+x9(el,;  ef)+ 2(2G%+ x°+ yO(gn.y )

1
o==
D

where U and V are the tensors introduced in Eq. [71), andD is de ned by Eq. (74). Substituting in Eq. (A1I)
and using Eq. ) leads to the expressi0n3) of thele",, =da, from which the tangent sti ness operator directly

follows.
A.2 Saturated phase transformation
In the case of saturated phase transformation, we havéel,, k? = " hence by di erentiation:

del',, :elf,, =0: (A12)

LetP=K (elf,, e%,;)="2 be the projection on the orthogonal toe!,, in the deviatoric space. Eq. ) implies

that

Pdell,; = e, : (AL3)

The property (A13) will proved to be useful in the following.

A.2.1 Case €., = 0,41

Assuming e 6 q,, di erentiating (59) gives:

0
da=( +y(1+ ?)del,, yyuody+e‘n'+ld:
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Note that the value of the Lagrange multiplier _can be obtained from [59) and [61), yielding + y%1+ 2) =

(kak + y%qell + 2q,))="L. Using the expression ) ofdy, we obtain:

0
xda= | x;’—zuo Uo dell,, + Xel',, d

with X = " =(kak + y(e!" + 2q,)). In view of (A13), Eq. (A14) can be rewritten as

0
Xda= | X';/—ZUO UZ dell,, + Xel,, d:

Applying P to both sides of Eq. (A15) gives

0
XPda= P x“%ug U2 del,;:

Eq. (A16) can be inverted in a way similar to (A2), yielding:

!
gt =x P+ — Y% 47 Ul da
y2  yOx'kU § k2
which correspond to Eq. [76).

A.2.2 Case e, 6 Q.1

In the case of saturated phase transformation withel,; 6 q,.; , the optimality conditions read as

8
etr etr etr
Eda: (ZGO+ )egﬂ + m n+1 an+1 Aqn+l + RY n+1y n
etr
-B 0= hQn+1 + ™ Gn+1 X nl Ae$1r+1 + ZRY 7qn+ly 9n

Di erentiating (A17) |yields:

0 1 0 1 0 1 0 1

0 1
B B R oBT g ot f gL ptg
0

0 dqn+1 qn+1 eﬁ+1 2(qn+1 qn)

(A14)

(A15)

(A16)

(A17)

(A18)
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where M™ is the linear operator de ned by:

0 1 0 1
delr, (2G%+ + x%+ y9delr,, (x°+ A)dg,,
MeB R =B n K (AL9)
ddp 1 (x°+ A)del,, (x°+ h+ 2y9dq,.,
Performing similar manipulations to those used in Section] A.1.2, Eq.|(A18) can be rewritten as:
0 1 0 1 0 1
da del’, ell,
B K=N:B "TEk+ad B "MK (A20)
0 dg, .1 0

whereN = M %;U ] %’v V with (U ;V ) are dened as in Egs. )-. Let P be the linear
operator de ned by: 0 1 0 1

p - E’)degﬂ g _ %}Pdegﬂ 2

dqn +1 dqn +1

Using Eq. (A13), Eqg. (A20) is equivalent to:

0 1 0 1 0 1
d d '[r+ '[r+
B g -nNp B R BTK (A21)
0 dqn+l 0
Applying P to Eq. (A21) gives: 0 1 0 1
P:d del,
B CR=Pnp B TR (A22)
0 dg, .1

Note that PNP = PMP )f—EPU P U ;’—ZDPV P V . Relation (A22) can be inverted by a relation similar
to (A11), leading to expression [78) fordef;,; =da.
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