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Summary

Components based on shape-memory alloys are often subjected to several loading cycles that result in substantial

alteration of material behavior. In such a framework, accurate models as well as robust and e�cient numerical

approaches become essential to allow for the simulation of complex devices. The present paper focuses on the

numerical simulation of quasi-static problems involving shape memory alloy (SMA) structures or components

subjected to multiple loading-unloading cycles. A novel state-update procedure for a three-dimensional

phenomenological model able to describe the saturation of permanent inelasticity, including degradation e�ects, is

here proposed. The algorithm, being of the predictor-corrector type and relying on an incremental energy

minimization approach, is based on elastic checks, closed-form solutions of polynomial equations, and nonlinear

scalar equations solved through a combination of Newton-Raphson and bisection methods. This allows for an easy

implementation of model equations and to avoid the use of regularization parameters for the treatment of

non-smooth functions. Numerical results assess the good performances of the proposed approach in predicting both

pseudoelastic and shape-memory material behavior under cyclic loading as well as algorithm robustness.

Keywords: Shape-memory alloys, incremental energy minimization, permanent inelasticity.

1 Introduction

Shape-memory alloys (SMAs) are metallic alloys possessing the unique properties known as pseudoelasticity (PE) and

shape-memory e�ect (SME). The material is in fact able to recover the original shape through a phase transformation

caused by the imposition of a stress (i.e., PE) and/or temperature (i.e., SME) �eld. Such unique thermo-mechanical
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properties make SMAs an e�ective material for several innovative technological applications in the biomedical up to

the mechanical �eld (1).

Cyclic loading is one important feature of many of these applications, no matter whether they exploit mechanical

or thermal recovery (i.e., PE and one/two-way SME, respectively) (2). Typical examples of cyclic loading are the

pulsatile blood pressure, that is applied to cardiovascular devices as stents or aortic valves, temperature cycling in

actuation components as robotic grippers or thermal valves, or force cycles in damping applications.

A factor that limits the service life of SMA-based applications subjected to cyclic loading is fatigue, both in terms of

material integrity (i.e., structural fatigue) and of the change of functional properties and reversibility (i.e., functional

fatigue) (3). The thermo-mechanical response of SMA materials under cyclic loading is however more complex than

the response of classical metals, due to the occurrence of phase transformation and plastic deformation, which can

lead to di�erent physical situations (4). Experimental evidences (5�11) have reported that thermal cycling in one-way

SME applications su�ers a decrease in the exploitable displacement. On the other hand, mechanical cycling in PE

components determines an increasing level of permanent deformation, that saturates on a stable value after a certain

number of cycles, shifts the hysteresis loop downward, lowers its height and width, and decreases the level of dissipated

energy. Such physical evidences originate from the combination of residual martensitic phase and transformation-

induced plasticity, that is the formation of microscopic plastic deformation during the stress-induced transformation.

Moreover, such e�ects are present not only in the widely-used SMAs based on Nickel-Titanium, but also in other

types of SMAs, and recent studies have also investigated the behavior of additive-manufactured SMAs (12).

For these reasons, both understanding the underlying processes and incorporating them in constitutive modeling

are of utmost importance to e�ectively predict material response and to support the design of SMA components.

Several models taking into account the inelastic strain build-up due to not-completed reverse phase transformation

or/and plasticity, its accumulation during cyclic loads, and degradation e�ects, are available from the literature; see,

e.g., (13�26). Recently, such models have been used in connection with shakedown theorems (27, 28) and fatigue

approaches (29, 30).

We shall here focus on the three-dimensional model by Auricchio et al. (13), later generalized in (15), which is

capable of describing permanent inelastic e�ects in both pseudo-elastic and shape-memory behaviors with a low

number of physical parameters.

In the modeling framework, it is important to provide a robust and e�cient numerical approach to treat model

equations and to allow for the simulation of complex devices. Model equations generally involve numerous tensorial

and scalar internal variables, subjected to constraints, and include evolution equations in order to describe several

physical e�ects and transformations. Therefore, the numerical implementation in this case is particularly challenging.
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In general, the state-update procedures adopted to treat SMA constitutive equations are mostly based on return-

map schemes, e.g., (31, 32), while only in the last years the attention towards incremental energy minimization

approaches (33�36) or algorithms for mathematical programming (37, 38) is being increased.

So far, the solution of the model (13, 15) has been performed by means of an elastic-predictor inelastic-corrector

return map procedure with a � -regularized version to control the smoothness of the norm regularization. Since the

model includes two tensorial internal variables to describe material behavior, i.e., the transformation and permanent

inelastic strains, the return-mapping algorithm involves 10-12 scalar parameters. A standard Newton-Raphson scheme

has been adopted in (13, 15) to solve the nonlinear system of equations in both the unsaturated and saturated cases.

The model has been tested on uniaxial and biaxial tests in the Matlab environment, but its investigation in a three-

dimensional �nite element (FE) framework is lacking. The large number of scalar parameters may in fact increase

computational costs and cause trouble of convergence when using Newton-Raphson procedures.

The aim of the present work is to propose a new time-integration algorithm for the numerical implementation of

the model described in (13, 15). As it will be demonstrated, the proposed algorithm can be readily integrated in a

�nite-element code for solving boundary value problems.

Among the several numerical approaches cited above, the proposed algorithm belongs to the class of variational

methods relying on an incremental energy minimization approach. The idea of applying such an approach to SMAs

stems from previous works, e.g., (33�36), and it is here applied to the model described in (13, 15). The incremental

energy minimization approach has been successfully applied in (36) to the original model (39), in which the transfor-

mation strain is the only internal variable and permanent inelastic strains are not taken into account. The algorithm

developed in (36) is here extended to the model under consideration, taking into account both transformation-induced

strains and permanent inelasticity. In the present case, two tensorial internal variables (i.e., the transformation strain

and the permanent inelastic strain) are introduced and their evolution in a �nite time step incrementally minimizes a

convex functional, given by the sum of the free-energy energy and the dissipation functional. The proposed algorithm

is based on elastic checks, closed-form solutions of polynomial equations, and nonlinear scalar equations solved

through a combination of Newton-Raphson and bisection methods. This allows to avoid the di�culties mentioned

above, when using Newton-Raphson procedures.

This suitable variational structure facilitates the treatment of internal constraints and allows for an e�cient

numerical implementation. Other advantages of the proposed algorithm are its easy implementation and, overall, the

possibility of avoiding regularized terms in both energy/dissipation de�nition and norms, that may a�ect material

response as well as numerical convergence.

To test the performance and robustness of the proposed algorithm several FE analyses are presented. The simu-

lations range from classical uniaxial tests to more complex representative problems, involving both pseudoelasticity
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and shape-memory e�ect. The complex problems involve the three-dimensional analyses of a stent strut and of a

spring actuator, given the importance of such devices under cyclic loading conditions (40, 41). The results show that

the model implemented with the proposed algorithm is able to catch material response for several sets of materials

parameters and di�erent time steps.

The paper is organized as follows. Section 2 brie�y reviews the continuum equations of the model under investiga-

tion. Section 3 presents the equations in the time-discrete framework and describes the proposed algorithmic scheme.

Then, Section 4 presents the results of several numerical simulations. Finally, conclusions are given in Section 5.

2 Model equations

This section brie�y recalls main model continuum equations in the small strain regime, as presented in (13, 15).

The model assumes the total strain" and the absolute temperatureT as control variables, while the transformation

strain etr and the permanent inelastic strainq as internal ones. Bothetr and q are symmetric trace-free second order

tensors. Speci�cally, the transformation strain etr describes the strain associated to the austenite-martensite phase

transformation and the permanent inelastic strain q gives a measure of the part ofetr that cannot be recovered when

unloading to a zero stress state, sinceetr has no fully reversible evolution. The transformation strain etr is required

to satisfy the constraint:

ketr k � "L (1)

"L being a material parameter corresponding to the maximum transformation strain reached at the end of the

transformation during a uniaxial test. The norm k�k in Eq. (1) is the Euclidean norm, as de�ned by ketr k =
p

etr : etr

where : denotes the contraction with respect to the last two indices (e.g.,a : b =
P

ij aij bji ).

The Helmholtz free-energy density function is expressed as

	 = 	 0 + I " L (2)

where

	 0(" ; etr ; q) =
1
2

K � 2 + G ke � etr k2 + � M ketr � qk +
1
2

H ketr k2 +
1
2

hkqk2 � Aetr : q (3)

and

I " L (etr ) =

8
><

>:

0 if ketr k � "L

+ 1 otherwise.
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In (3), � and e are the volumetric and the deviatoric part of " ; K and G are, respectively, the bulk and the shear

modulus; � M = � hT � T0i , where � is a material parameter related to the dependence of the critical stress on the

temperature, T0 is the temperature below which only martensite phase is stable, andh�i is the positive part function;

H , h, and A de�ne, respectively, the hardening of the phase transformation, the saturation of the permanent inelastic

strain evolution, and model degradation. The energy termI " L (etr ) is the indicator function associated with the

constraint (2).

For later reference, we note that the energy in Eq. (2) is strictly convex provided that:

hH � A2 > 0: (4)

In the following, the condition (4) is assumed to be satis�ed.

The dissipation function originally considered in ref. (13) is de�ned as:

�( _" tr ; _q) = RY max(k_" tr k; � k _qk) (5)

where RY and � are non-negative material parameters1. We note that Eq. (5) can be written as follows:

�( _" tr ; _q) = RY k( _" tr ; _q)k� ;1

where:

k(v1; v2)k� ;1 = max( kv1k; � kv2k)

is a weighted supremum norm. As detailed by Barrera et al. (15), other choices of norms can be made, leading to

other expressions of (rate-independent) dissipation functions. In particular, the supremum normk � k� ;1 in Eq. (5)

could be replaced by the weighted taxicab norm:

k(v1; v2)k� ;1 = kv1k + � kv2k

or the weighted Euclidean norm:

k(v1; v2)k� ;2 =
p

kv1k2 + � 2kv2k2:

1Note that our notation � corresponds to 1=� in the paper by Auricchio et al. (13).
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As explained in ref. (15), the normsk � k� ;1 and k � k� ;2 lead to results that are more consistent with experiments

than the norm k � k� ;1 . In the following, we choose the normk � k� ;2 which seems to be the simplest one to handle

for three-dimensional numerical implementation. To alleviate the notations, the norm k � k� ;2 is denoted by k � k�

from now on. The dissipation function is thus assumed to be of the form:

� = RY k( _etr ; _q)k� = RY

q
k_etr k2 + � 2k _qk2: (6)

Following standards arguments, the stress-strain relation is obtained by di�erentiating the free energy function	

with respect to the strain " , yielding:

p =
@	
@�

= K�; s =
@	
@e

= 2G(e � etr ) (7)

where p and s are the hydrostatic and deviatoric part of the stress � , respectively. Similarly, the thermodynamic

forces (X ; Q) associated to the internal variables(etr ; q) are usually de�ned by the relations X = � @	 =@etr and

Q = � @	 =@q. In the present case, however, special care must be taken because	 is only subdi�erentiable in (etr ; q).

In such case, the usual de�nition needs to be amended as� (X ; Q) 2 @	 where@denotes the subdi�erential operator

with respect to (etr ; q). It follows that

� (X ; Q) 2 (� s + H etr � Aq; hq � Aetr ) + � M @ketr � qk + @I " L (etr ): (8)

The reader is referred to, e.g., (42, 43) for an in-depth introduction to subdi�erentials and related tools in convex

analysis. We simply recall here that the subdi�erential of a convex function F (etr ; q) is the multi-valued operator

@Fde�ned by:

@F(etr ; q) = f (a; b) : F (~etr ; ~q) � F (etr ; q) + a : (~etr � etr ) + b : (~q � q) 8(~etr ; ~q)g:

In particular, we have:

@ketr � qk =

8
><

>:

(etr � q; q � etr )
ketr � qk

if etr 6= q
n

(� ; � � ) : tr � = 0 ; k� k � 1
o

if etr = q
(9)
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and

@I " L (etr ) =

8
>>>>><

>>>>>:

(0; 0) if ketr k < " L
n

(
 etr ; 0) : 
 � 0
o

if ketr k = "L

; if ketr k > " L

(10)

Note that @ketr � qk is multi-valued when etr = q. Similarly, @I " L (etr ) is multi-valued when ketr k = "L .

The evolution equation for (etr ; q) is determined by the dissipation function � as:

(X ; Q) 2 @�( _" tr ; _q): (11)

Following the framework of standard generalized materials (44), Eq. (11) respects the second law of thermodynam-

ics for any choice of positive, convex dissipation function that vanishes at the origin. Using expression (6) of the

dissipation function yields:

@�( _" tr ; _q) =

8
>><

>>:

RY

�
_" tr ; � 2 _q

�

k( _" tr ; _q)k�
if ( _" tr ; _q) 6= (0 ; 0)

C if ( _" tr ; _q) = (0 ; 0)

(12)

with:

C = f (� 1; � 2) : tr � 1 = tr � 2 = 0 ; k� 1k2 +
1
� 2 k� 2k2 � R2

Y g: (13)

Relation (11) can be rewritten in a more familiar form by noting that it is equivalent to:

( _" tr ; _q) 2 @� � (X ; Q) (14)

where � � is the Legendre transform of the dissipation function� , as de�ned by � � (X ; Q) = sup
( _" tr

; _q)
X : _" tr + Q :

_q � �( _" tr ; _q). Using expression (6), it can be calculated that� � is the indicator function of the domain C in (13). It

follows that Eq. (14) becomes:

( _" tr ; _q) = �
�

X
kX k

;
1
� 2

Q
kQk

�
(15)

with conditions:

� � 0; kX k2 +
1
� 2 kQk2 � R2

Y � 0; � (kX k2 +
1
� 2 kQk2 � R2

Y ) = 0 : (16)
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Eqs. (15) and (16) correspond to a normality �ow rule for the variables (etr ; q). Correspondingly, the domain C

introduced in Eq. (13) can be interpreted as the elasticity domain of the material. In the space of(X ; Q) variables,

the domain C has an ellipsoidal shape with axisRY and �R Y .

For later reference, we note that Eqs. (8) and (11) can be combined as:

(0; 0) 2 (� s + H etr � Aq; hq � Aetr ) + � M @ketr � qk + @I " L (etr ) + @�( _" tr ; _q): (17)

3 Incremental algorithm

This section discusses the time-discretization of the constitutive laws (7) and (17). Time discretization consists in

introducing a �nite number of time instants t0 < � � � < t N and estimating the state at each time instant tn in

a time-marching approach. Let pn , sn , etr
n , qn be respectively the hydrostatic stress, deviatoric stress, transfor-

mation strain, and permanent inelastic strain at time tn . We focus on the central issue of estimating the state

(pn +1 ; sn +1 ; etr
n +1 ; qn +1 ) at current time tn +1 , assuming that : (i ) the control variables at current time tn +1 (i.e, the

total strain " n +1 and the temperature Tn +1 ) are prescribed,(ii ) the state (etr
n ; qn ) at previous time tn is known and

satis�es the constraint ketr
n k � "L . A natural way of performing the state update is to discretize Eq. (17) using an

implicit Euler scheme as:

(0; 0) 2 (� sn +1 + H etr
n +1 � Aqn +1 ; hqn +1 � Aetr

n +1 )+ � M;n +1 @ketr
n +1 � qn +1 k+ @I " L (etr

n +1 )+ @�(
etr

n +1 � etr
n

tn +1 � tn
;

qn +1 � qn

tn +1 � tn
)

(18)

with

pn +1 = K� n +1 ; sn +1 = 2G(en +1 � etr
n +1 ); � M;n +1 = � hTn +1 � T0i : (19)

In Eq. (19), � n +1 and en +1 are the volumetric and deviatoric part of " n +1 , respectively. To alleviate the notations,

the scalar � M;n +1 will be denoted by � M in the following. Eliminating sn +1 between Eqs. (18) and (19) and noting

that @� is positively homogeneous of degree 0, we obtain the equation:

(0; 0) 2 (2G0etr
n +1 � a; hqn +1 ) + � M @ketr

n +1 � qn +1 k � A(qn +1 ; etr
n +1 ) + @I " L (etr

n +1 ) + @�( etr
n +1 � etr

n ; qn +1 � qn ) (20)

where G0 = G + H=2 and a = 2Gen +1 . In Eq. (20), the unknowns are the two deviatoric tensors(etr
n +1 ; qn +1 ).

In a �nite-element framework, Eq. (20) typically needs to be solved at each Gauss point. A computationally e�cient

algorithm for solving Eq. (20) is thus essential. Aside from nonlinearity, there are two main di�culties in solving Eq.
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(20). The �rst one is that several terms in Eq. (20) are not di�erentiable, meaning that those terms are multi-valued

for certain values of (etr
n +1 ; qn +1 ). The second di�culty lies in the dimensionality of the problem: compared (for

instance) to the Souza-Auricchio model (39, 45), there are now two internal variables(etr ; q) instead of one (namely,

etr ), hence the dimensionality jumps from 5 to 10.

For our purpose, it is important to note that a variational formulation is attached to Eq. (20). Consider indeed

the convex function F (etr ; q) de�ned by

F (etr ; q) = 	( " n +1 ; etr ; q) + �( etr � etr
n ; q � qn )

where 	 is the Helmoltz energy function and� is the dissipation potential, as introduced in (2) and (6) respectively.

Since	 and � are proper, lower-semicontinuous and convex, the functionF is also proper, lower-semicontinuous and

convex (42, 43). Hence the solutions to the minimization problem

inf
(etr ; q)

F (etr ; q) (21)

are characterized by the optimality condition

(0; 0) 2 @F (etr ; q): (22)

Moreover, we have@F (etr ; q) = @	( " n +1 ; etr ; q) + @�( etr � etr
n ; q � qn ) where @	 is the subdi�erential of 	 with

respect to the variables(etr ; q). From expression (2) we �nd

@F (etr ; q) = (2 G0etr � a; hq) + � M @ketr � qk � A(q; etr ) + @I " L (etr ) + @�( etr � etr
n ; q � qn ) (23)

Any (etr
n +1 ; qn +1 ) satisfying Eq. (20) clearly veri�es Eqs (22) and (23), i.e. is a solution to the minimization problem

(21). Conversely, any solution to (21) veri�es Eq. (20). The formulations (20) and (21) are thus equivalent.

Eq. (21) can be interpreted as an incremental energy minimization problem. The state update equation (20) of

the Euler implicit scheme can be interpreted as the optimality condition in the minimization problem (21).

The variational formulation (21) notably allows one to justify the existence and uniqueness of the updated state

(etr
n +1 ; qn +1 ) introduced in Eq. (20). Under the requirement (4), the function F is indeed strictly convex, with in�nite

growth at in�nity, and therefore admits a unique minimizer. The solution (etr
n +1 ; qn +1 ) to (20) is thus uniquely
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de�ned. In the following, we will take advantage of the variational formulation (21) for determining (etr
n +1 ; qn +1 ) in a

robust and consistent manner. The overall strategy that we propose breaks down into three steps. The �rst step (see

Section 3.1) consists in checking whether(etr
n +1 ; qn +1 ) = ( etr

n ; qn ). If not, the second step (see Section 3.2) consists

in solving the minimization problem obtained by ignoring the term I " L (etr ) in Eq. (2). If the state (~etr ; ~q) obtained

in such fashion satis�es the constraint k~etr k � "L , then we have (etr
n +1 ; qn +1 ) = ( ~etr ; ~q). Otherwise, we move to

the third and �nal step (see Section 3.3) which consists in solving Eq. (22) with respect to pairs(etr
n +1 ; qn +1 ) that

saturates the constraint, i.e., such that ketr
n +1 k = "L .

3.1 Elastic evolution

In this section we detail the procedure for checking whether(etr
n +1 ; qn +1 ) = ( etr

n ; qn ) i.e., whether the incremental

evolution is elastic. From Eqs.(12) and (20), the condition for the evolution to be elastic is:

(b; � c) 2 � M @ketr
n � qn k + @I " L (etr ) + C (24)

where:

b = a � 2G0etr
n + Aqn ; c = hqn � Aetr

n :

Detailing condition (24) any further requires to distinguish between di�erent cases, depending on the value of(etr
n ; qn ).

3.1.1 Case etr
n 6= qn with ketr

n k < " L

We �rst consider the situation where etr
n 6= qn and ketr

n k < " L . Using Eqs. (9) and (10), condition (24) becomes:

(u ; v) 2 C (25)

where u and v are de�ned by

u = b � � M
etr

n � qn

ketr
n � qn k

; v = � c + � M
etr

n � qn

ketr
n � qn k

:

From the expression ofC in Eq. (13), condition (25) can be rewritten as:

� 2kuk2 + kvk2 � � 2R2
Y : (26)
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3.1.2 Case etr
n 6= qn with ketr

n k = "L

We now consider the situation whereetr
n 6= qn and ketr

n k = "L . In such case, by Eqs. (9) and (10), condition (24) is

satis�ed if and only if (u � 
 etr
n ; v) 2 C for some
 � 0. This is equivalent to requiring that:

inf

 � 0

� 2ku � 
 etr
n k2 + kvk2 � � 2R2

Y : (27)

Let u ? = u � (u : etr
n )etr

n ="2
L be the projection of u on the orthogonal of etr

n , so that:

ku � 
 etr
n k2 = k(u : etr

n )="L � 
" L k2 + ku ? k2:

It follows that:

inf

 � 0

ku � 
 etr
n k2 = ku �

hu : etr
n i

"2
L

etr
n k2 =

8
><

>:

ku ? k2 if u : etr
n � 0;

kuk2 if u : etr
n � 0:

Substituting in Eq. (27), we obtain that the condition for (etr
n ; qn ) to be the solution to problem (21) reads as:

� 2ku �
hu : etr

n i
"2

L
etr

n k2 + kvk2 � � 2R2
Y : (28)

3.1.3 Case etr
n = qn with ketr

n k < " L

In the caseetr
n = qn with ketr

n k < " L , condition (24) is satis�ed if and only if:

(b � � ; � c + � ) 2 C (29)

for some deviatoric tensor� such that k� k � � M . Condition (29) can be rewritten as :

inf
� :k� k� � M

� 2kb � � k2 + kc � � k2 � � 2R2
Y : (30)

Using expansion:

� 2kb � � k2 + kc � � k2 = ( � 2 + 1) k� k2 � 2� : (� 2b + c) + � 2kbk2 + kck2
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as well as the Cauchy-Schwarz inequality, it can be easily seen that the tensor� reaching the in�mum in problem

(30) is positively collinear to � 2b + c. Condition (30) can thus be simpli�ed as:

F1 � � 2R2
Y (31)

where

F1 = min
0� t � � M

(� 2 + 1) t2 � 2tk� 2b + ck + � 2kbk2 + kck2: (32)

Solving the quadratic minimization problem de�ning F1 leads to the following expressions:

F1 =

8
><

>:

� 2

1 + � 2 kb � ck2 if k� 2b + ck � (� 2 + 1) � M ;

(� 2 + 1) � 2
M � 2� M k� 2b + ck + � 2kbk2 + kck2 otherwise.

3.1.4 Case etr
n = qn with ketr

n k = "L

We �nally consider the situation where etr
n = qn and ketr

n k = "L . In that case, condition (24) is satis�ed if and only if

(b � � � 
 etr
n ; � c + � ) 2 C (33)

for some
 � 0 and some deviatoric tensor� such that k� k � � M . Condition (33) can be rewritten as:

F2 � � 2R2
Y (34)

where

F2 = inf


 � 0;

� : k� k � � M

� 2kb � � � 
 etr
n k2 + kc � � k2:

The quadratic minimization problem de�ning F2 can be solved in closed form, although the expressions are more

involved than those obtained for F1 in Eq. (32). We set:

b== = a :
etr

n

"L
+ ( A � 2G0)"L ; c== = ( h � A)"L ; d== = � M

� 2b== + c==
k� 2b + ck

; B = kak2 �
�

a :
etr

n

"L

� 2
:
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Table 1: Conditions for elastic evolution.

ketr
n k < " L ketr

n k = "L

etr
n 6= qn � 2kuk2 + kvk2 � � 2R2

Y � 2ku �
hu : etr

n i
"2

L
etr

n k2 + kvk2 � � 2R2
Y

etr
n = qn F1 � � 2R2

Y F2 � � 2R2
Y

Omitting the detail of the calculations, F2 is given by the following expressions:

- if k� 2b + ck � (� 2 + 1) � M :

F2 =

8
>>>>><

>>>>>:

(� 2 + 1) � 2
M � 2� M k� 2b + ck + � 2kbk2 + kck2 if b== � d==

� 2

1 + � 2 B if b== � d== and c2
== +

� � 2

1 + � 2

� 2
B � � 2

M

� � 2
M

x2 � 1
�� c2

==

� 2 + x2
�

+ ( c== � x)2 if b== � d== and c2
== +

� � 2

1 + � 2

� 2
B � � 2

M

- if k� 2b + ck � (� 2 + 1) � M :

F2 =

8
>>>>><

>>>>>:

�
1

1 + � 2 k� 2b + ck2 + � 2kbk2 + kck2 if b== � c==
� 2

1 + � 2 B if b== � c== and c2
== +

� � 2

1 + � 2

� 2
B � � 2

M

� � 2
M

x2 � 1
�� c2

==

� 2 + x2
�

+ ( c== � x)2 if b== � c== and c2
== +

� � 2

1 + � 2

� 2
B � � 2

M

The scalar x that appears in the above expressions is obtained by solving the polynomial equation

(x2 � � 2
M )(c== + � 2x)2 + � 4Bx 2 = 0 (35)

on [� � M ; min( � M ; b==)]. Since the polynomial in Eq. (35) is of degree 4, its roots can be obtained in closed form.

3.1.5 Summary

The conditions for the incremental evolution to be elastic are summarized in Table 1. If those conditions are satis�ed,

then the solution (etr
n +1 ; qn +1 ) to problem (20) is simply obtained as (etr

n +1 ; qn +1 ) = ( etr
n ; qn ). We emphasize that

all the calculations needed for checking the conditions in Table 1 can be done in closed form, without resorting to a

nonlinear solver, as in the case of ref. (13). In the most complex case (ketr
n k = "L with etr

n = qn and c2
==+

� � 2

1 + � 2

� 2
B �

� 2
M ), a polynomial equation of degree 4 needs to be solved.
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3.2 Unsaturated phase transformation

If the conditions reported in Table 1 are not satis�ed, then (etr
n +1 ; qn +1 ) 6= ( etr

n ; qn ), i.e., phase transformation occurs.

To carry out the state update in that case, we �rst consider the incremental energy minimization problem obtained

by dropping the term I " L (etr ) in (2). The corresponding minimization problem can be written as

inf
(etr ; q)

F0(etr ; q) (36)

where

F0(etr ; q) = 	 0(" n +1 ; etr ; q) + �( etr � etr
n ; q � qn ) (37)

and 	 0 is de�ned as in Eq. (3). For later reference, we note that problem (36) can be written in a more explicit form

as

inf
(etr ; q)

G0ketr k2 � etr : a + � M ketr � qk +
1
2

hkqk2 � Aetr : q + �( etr � etr
n ; q � qn ): (38)

SinceF0 is strictly convex and grows to in�nity as (etr ; q) tends to in�nity, problem (36) admits a unique solution

that we denote by (~etr ; ~q). The latter is characterized by the optimality condition (0; 0) 2 F 0(~etr ; ~q), i.e.

(0; 0) 2 (2G0~etr � a; h~q) + � M @k~etr � ~qk � A(~q; ~etr ) + @�( ~etr � etr
n ; ~q � qn ): (39)

3.2.1 Case ~etr = ~q

In order to �nd (~etr ; ~q), the strategy that we propose consists in �rst carrying out the optimization with respect to

pairs (etr ; q) such that etr = q. We thus consider the problem

inf
q

F0(q; q): (40)

The minimization problem (41) is easier to solve than problem (36), because it involves only one tensorial unknown,

instead of two. From expression (37) ofF0, (40) can be rewritten as

inf
q

1
2

G00kqk2 � q : a + �( q � etr
n ; q � qn ) (41)
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where G00= 2G0+ h � 2A.

Let q� be the (unique) solution to problem (41). If etr
n 6= qn , then q� is characterized by the optimality condition:

0 = G00q� � a +
RY

y
((1 + � 2)q� � etr

n � � 2qn ) (42)

with

y = k(q� � etr
n ; q� � qn )k� : (43)

From Eq. (42) we obtain :

q� =
ya + RY (etr

n + � 2qn )
yG00+ RY (1 + � 2)

: (44)

Substituting (44) in (43) gives an equation in whichy is the only unknown. After some manipulation, that equation

is found to read as

a0 + a1y + a2y2 + a3y3 + a4y4 = 0 (45)

with:

a0 = � 2R2
Y (1 + � 2)ketr

n � qn k2;

a1 = 2RY G00� 2ketr
n � qn k2;

a2 = k(G00etr
n � a; G00qn � a)k2

� � R2
Y (1 + � 2)2;

a3 = � 2RY (1 + � 2)G00;

a4 = � G002:

Since the polynomial equation (45) is of degree 4, the value ofy can be obtained in closed form. Substituting the

result in Eq. (44) gives the value ofq� .

The solution q� to problem (41) being found, we proceed to check if(~etr ; ~q) = ( q� ; q� ), i.e., if (q� ; q� ) is the

solution to problem (36). Eq. (39) shows that it happens to be the case if:

k(h � A)q� +
RY

y
� 2(q� � qn )k � � M : (46)

Remark: in the caseetr
n = qn , one �rst needs to check whether:

kG00qn � ak � RY

p
1 + � 2: (47)
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If condition (47) is satis�ed, then q� = qn so that (q� ; q� ) = ( etr
n ; qn ). We already know from Section 3.1 that

(etr
n ; qn ) is not the solution to problem (21). It follows that (q� ; q� ) = ( etr

n ; qn ) is not the solution to problem (36)

neither.

If condition (47) is not satis�ed, q� is obtained by expressions (44)-(45), and condition (46) for checking if(~etr ; ~q) =

(q� ; q� ) still applies.

3.2.2 Case ~etr 6= ~q

If (q� ; q� ) does not provide the solution to problem (36), then we necessarily have~etr 6= ~q and the optimality

conditions (39) become: 8
>><

>>:

0 = 2G0~etr � a + � M
~etr � ~q

x
� A~q + RY

~etr � etr
n

y

0 = h~q + � M
~q � ~etr

x
� A~etr + � 2RY

~q � qn

y

(48)

where x = k~etr � ~qk and y = k(~etr � etr
n ; ~q � qn )k� . For given x and y, Eq. (48) can be viewed as a linear system in

(~etr ; ~q) and put in matrix form:

0

B
@

2G0+ x0+ y0 � x0 � A

� x0 � A x 0+ h + � 2y0

1

C
A

0

B
@

~etr

~q

1

C
A =

0

B
@

a + y0etr
n

� 2y0qn

1

C
A (49)

where x0 = � M =x and y0 = RY =y. Let M be the 2� 2 matrix that appears in the left-hand side of system (49). We

have:

det M = 2G0h � A2 + x0G00+ x0y0(1 + � 2) + y0(2� 2G0+ h) + � 2y02: (50)

Using condition (4), it can easily be checked that2G0h � A2 > 0 so that det M > 0 for any positive (x; y). System

(49) can be thus inverted to give:

0

B
@

~etr

~q

1

C
A =

1
det M

0

B
@

x0+ h + � 2y0 x0+ A

x0+ A 2G0+ x0+ y0

1

C
A

0

B
@

a + y0etr
n

� 2y0qn

1

C
A : (51)

Through relations (51), (~etr ; ~q) are expressed as explicit functions of the two unknown scalars(x; y). It remains to

�nd the value of (x; y). To do so, we note from system (51) that:

~etr � ~q =
1

det M
d (52)
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with

d = ( h + � 2y0 � A)(a + y0etr
n ) + ( A � 2G0 � y0)� 2y0qn :

A crucial observation is that tensor d is independent onx. We can thus use Eq. (52) to obtainx as a function of y.

More precisely, taking the norm of Eq. (52) gives:

x det M = kdk:

Using Eq. (50), we �nd:

x =
kdk � � M (G00+ y0(1 + � 2))

2G0h � A2 + y0(2� 2G0+ h) + � 2y02 (53)

and substituting in system (51) yields:

0

B
@

~etr

~q

1

C
A =

1
Y

0

B
B
@

(h + � 2y0) �
� M

kdk
(h � A + � 2y0)2 A +

� M

kdk
(A � h � � 2y0)(A � 2G0 � y0)

A +
� M

kdk
(A � h � � 2y0)(A � 2G0 � y0) (2G0+ y0) �

� M

kdk
(A � 2G0 � y0)2

1

C
C
A

0

B
@

a + y0etr
n

� 2y0qn

1

C
A

(54)

where Y = 2G0h � A2 + y0(2� 2G0+ h) + � 2y02.

We are now left with the issue of �nding the scalar y. This is accomplished by solving the equation:

f (y) = 0 (55)

where:

f (y) = k(~etr � etr
n ; ~q � qn )k� � y

in which (~etr ; ~q) are expressed as functions ofy via system (54). Since(~etr ; ~q) is uniquely de�ned, the equation

f (y) = 0 has a unique solution in ]0; + 1 [. In practice, the nonlinear equation (55) needs to be solved numerically.

It can be veri�ed that f (y) ! �1 as y ! + 1 and that f (y) converges towards a non negative value asy ! 0. In

practical computations, those properties can be useful for initializing a bisection algorithm.
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3.3 Saturated phase transformation

If the values (~etr ; ~q) found in Section 3.2 are such thatk~etr k � "L , then (~etr ; ~q) satis�es the optimality condition

(20) so that (etr
n +1 ; qn +1 ) = ( ~etr ; ~q). Otherwise, the solution (etr

n +1 ; qn +1 ) to problem (21) necessarily saturates the

constraint, i.e., veri�es ketr
n +1 k = "L .

3.3.1 Case etr
n +1 = qn +1

As in Section 3.2.1, we �rst carry out the optimization with respect to pairs (etr ; q) such that etr = q. The strategy

consists in determining the (unique) solution q� to the minimization problem

inf
q

F (q; q) (56)

and check whether(etr
n +1 ; qn +1 ) = ( q� ; q� ). Problem (56) can equivalently be rewritten as

inf
q:kqk� "L

1
2

G00kqk2 � q : a + �( q � etr
n ; q � qn ): (57)

Observe that if the value q� introduced in Section 3.2.1 satis�eskq� k � "L , then q� = q� . In that case, we already

know from Section 3.2 that (etr
n +1 ; qn +1 ) 6= ( q� ; q� ). In the following, we examine the situation wherekq� k > " L . In

that case, q� necessarily saturates the constraint in (57) , i.e.

kq� k = "L :

In the special case whereetr
n = qn with ketr

n k = "L , it is possible that q� = qn . This occurs if:

p
B � RY

p
1 + � 2: (58)

In that case, as we know from Section 3.1 that(etr
n ; qn ) is not the solution to problem (21), we have again

(etr
n +1 ; qn +1 ) 6= ( q� ; q� ).

Except in the very special case whereetr
n = qn , ketr

n k = "L , and inequality (58) are satis�ed, the optimality

condition in (57) becomes

0 = � a +
RY

y
((1 + � 2)q� � etr

n � � 2qn ) + 
 � q� (59)
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with 
 � � 0 and

y = k(q� � etr
n ; q� � qn )k� : (60)

It follows that:

q� = "L
ya + RY (etr

n + � 2qn )
kya + RY (etr

n + � 2qn )k
: (61)

Subsituting (61) in (60) leads to the equation

g(y) = 0 (62)

where

g(y) = y2 + 2"L
ya : u 0 + RY ku 0k2

kya + RY u 0k
� "2

L (1 + � 2) � k etr
n k2 � � 2kqn k2

and u 0 = etr
n + � 2qn .

In practice, Eq. (62) needs to be solved numerically. Substituting the obtained value fory in (61) gives q� . Having

found the solution q� to problem (56), we check whether(q� ; q� ) happens to be the solution to problem (21). Using

Eqs. (10)-(20), we obtain that (q� ; q� ) is the solution to problem (21) if:

k(h � A)q� +
RY

y
� 2(q� � qn )k � � M ;

ka +
RY

y
u 0k � (G00+

RY

y
(1 + � 2)) "L :

(63)

If condition (63) is satis�ed, then (etr
n +1 ; qn +1 ) = ( q� ; q� ).

3.3.2 Case etr
n +1 6= qn +1

If the procedure described in Section 3.3.1 does not the provide the solution to problem (21), thenetr
n +1 6= qn +1 and

ketr
n +1 k = "L . Hence the optimality condition (20) becomes:

8
>><

>>:

0 = 2G0etr
n +1 � a + � M

etr
n +1 � qn +1

x
� Aqn +1 + RY

etr
n +1 � etr

n

y
+ 
 etr

n +1

0 = hqn +1 + � M
qn +1 � etr

n +1

x
� Aetr

n +1 + � 2RY
qn +1 � qn

y

(64)

with

x = ketr
n +1 � qn +1 k; y = k(etr

n +1 � etr
n ; qn +1 � qn )k� ; 
 � 0:
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The solution to problem (21) can be obtained by solving the nonlinear problem:

h(
 ) = 0 (65)

where:

h(
 ) = ketr (
 )k � "L

and (etr (
 ); q(
 )) denotes the solution to the unconstrained problem (parameterized by
 ).

inf
(e tr ;q)

1
2


 ketr k2 + G0ketr k2 � etr : a + � M ketr � qk +
1
2

hkqk2 � Aetr : q + �( etr � etr
n ; q � qn ): (66)

Problem (66) is formally identical to problem (38), the only di�erence being that the term G0ketr k2 in Eq. (38) is

replaced by ( 1
2 
 + G0)ketr k2. Consequently, the method presented in Section 3.2 can be directly used for solving

problem (66). The updated state is obtained as(etr
n +1 ; qn +1 ) = ( etr (
 ); q(
 )) , where
 is the solution to problem (65).

3.4 Summary

The pseudocode of the proposed algorithm in summarized below in Algorithm 1. The input variables are the internal

variables (etr
n ; qn ) at time tn and the control variables (en +1 ; Tn +1 ) at current time tn +1 . The output is the state

variables (etr
n +1 ; qn +1 ) at time tn +1 , from which the stress can be deduced using Eq. (19). The proposed algorithm

results from a careful analysis of the incremental energy minimization problem (21) and delivers the solution of the

time-discretized problem (20) in all cases. The presented algorithm can be readily implemented in a FE code for

solving three-dimensional boundary value problems, as will be demonstrated in Section 4.

The overall structure of the algorithm is of the predictor-corrector type. One �rst checks (through the conditions

in Table 1) whether the elastic guess happens to give the solution. If not, the value of(etr
n +1 ; qn +1 ) is updated so as

to satisfy the optimality condition (20). That updating procedure proceeds in a two-step fashion by distinguishing

between the cases of unsaturated phase transformation and saturated phase transformation. In general, iterative

solvers are needed for solving the nonlinear equations (55), (62), (65) that arise in the updating procedure. We

emphasize that all those nonlinear equations are scalar and can thus be solved in a very robust fashion by using (for

instance) a combination of bisection and Newton methods (see, e.g., ref. (46, 47)).

We recall that the idea, the structure, and the formalism of elastic/unsaturated/saturated evolution stem from

previous works, see, e.g., (33�36). The present algorithm can be in fact interpreted as an extension of a radial return

algorithm proposed in ref. (36) for the original Souza-Auricchio model in whichetr is the only internal variable.
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The algorithm in ref. (36) involves a single scalar parameter, whereas more conventional return-mapping algorithms

(see, e.g., (45)) involve 5-7 parameters (namely, the components ofetr , the plastic multiplier, and a Lagrange

multiplier associated with the constraint ketr k � "L ). For the model considered in this paper � which includes the

permanent inelastic strain q as an additional internal variable � it can be expected that conventional return-mapping

algorithms would involve 10-12 scalar parameters, as reported in ref. (13). This may increase computational costs and

cause trouble of convergence when using Newton-Raphson procedures. Such di�culties are avoided by the presented

algorithm, since it has the distinctive property of involving only scalar nonlinear equations.

Algorithm 1 Pseudocode of the proposed algorithm

1: a  2Gen +1 , u 0  etr
n + � 2qn

2: if the conditions in Table 1 are veri�ed then
3: (etr

n +1 ; qn +1 )  (etr
n ; qn ) . Elastic evolution

4: else
5: if etr

n = qn and kG00qn � ak � RY
p

1 + � 2 then
6: q�  etr

n

7: go to line 16
8: else
9: Calculate y by solving the polynomial equation (45)

10: q�  
ya + RY u 0

yG00+ RY (1 + � 2)

11: if k(h � A)q� +
RY

y
� 2(q� � qn )k � � M then

12: (~etr ; ~q)  (q� ; q� )
13: go to line 18
14: end if
15: end if
16: Calculate y by solving f (y) = 0 in Eq. (55)
17: Calculate (~etr ; ~q) by Eq. (54)
18: if k~etr k � "L then
19: (etr

n +1 ; qn +1 )  (~etr ; ~q) . Unsaturated phase transformation
20: else
21: if (kq� k � "L ) or (etr

n = qn and ketr
n k = "L and

p
B � RY

p
1 + � 2) then

22: go to line 30
23: else
24: Calculate y by solving g(y) = 0 in Eq. (62)

25: q�  "L
ya + RY u 0

kya + RY u 0k

26: if k(h � A)q� +
RY

y
� 2(q� � qn )k � � M and ka +

RY

y
u 0k � (G00+

RY

y
(1 + � 2)) "L then

27: (etr
n +1 ; qn +1 )  (q� ; q� )

28: go to line 35
29: end if
30: Calculate 
 by solving h(
 ) = 0 in Eq. (65)
31: (etr

n +1 ; qn +1 )  (etr (
 ); q(
 )) . Saturated phase transformation
32: end if
33: end if
34: end if
35: return (etr

n +1 ; qn +1 )
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3.5 Tangent sti�ness operator

The tangent sti�ness operator d� =d" can be obtained in a fully explicit form. Let 1 and I be the second-order and

fourth order identity tensors, respectively. Setting J = ( 1 
 1)=3 and K = I � J, we have from Eq. (7):

d�
d"

= C � 4G2 detr
n +1

da
K (67)

where C = 3K I + 2G K is the elasticity tensor. In the case of an elastic evolution, we obviously havedetr
n +1 =da = 0 ,

so that d� =d" = C. In the following, we give the expression ofdetr
n +1 =da = 0 and d� =d" in the case where phase

transformation occurs. In accordance with previous developments, di�erent expressions are obtained depending on

the values of (etr
n +1 ; qn +1 ). We refer to APPENDIX A for the derivation of the results presented next.

3.5.1 Unsaturated phase transformation ( ketr
n +1 k < " L )

Let us �rst consider the situation where etr
n +1 = qn +1 . As detailed in APPENDIX A, we have :

detr
n +1

da
= X

�
K +

y0X
y2 � y0X kU 0k2 U 0 
 U 0

�
(68)

where:

U 0 = (1 + � 2)qn +1 � etr
n � � 2qn ; X = ( G00+ y0(1 + � 2)) � 1: (69)

We recall that y = k(qn +1 � etr
n ; qn +1 � qn )k� and y0 = RY =y. Substituting Eq. (68) into Eq. (67) gives:

d�
d"

= C � 4G2X
�

K +
y0X

y2 � y0X kU 0k2 U 0 
 U 0

�
: (70)

The expression of the operatordetr
n +1 =da gets more involved in the situation whereetr

n +1 6= qn +1 . Introducing the

tensors

U = ( h + � 2y0 � A)(etr
n +1 � qn +1 );

V = ( x0+ h + � 2y0)(etr
n +1 � etr

n ) + � 2(x0+ A)(qn +1 � qn );

V 0 = ( x0+ A)(etr
n +1 � etr

n ) + � 2(2G0+ x0+ y0)(qn +1 � qn );

(71)
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and the scalar quantities

X 11 =
y0

y2

�
V : (etr

n +1 � etr
n ) + � 2V 0 : (qn +1 � qn )

�
;

X 22 = x0(G00+ (1 + � 2)y0);

X 12 =
p

x0y0

xy
(V � V 0) : (etr

n +1 � qn +1 );

(72)

it can be calculated (see APPENDIX A) that:

detr
n +1

da
=

x0+ h + � 2y0

D
K + Y11U 
 U + Y22V 
 V + Y12(U 
 V + V 
 U ) (73)

where:

Y11 =
1
Z

x0

x2 (1 �
X 11

D
) ; Y22 =

1
Z

y0

y2 (1 �
X 22

D
) ; Y12 =

1
Z

p
x0y0

xy
X 12

D

and

D = (2 G0+ x0+ y0)(x0+ h + � 2y0) � (x0+ A)2; Z = ( D � X 22)(D � X 11) � X 2
12: (74)

Expression (73) holds ifketr
n +1 k < " L and etr

n +1 6= qn +1 . In such case, we obtain from Eq. (67) that:

d�
d"

= C � 4G2
�

x0+ h + � 2y0

D
K + Y11U 
 U + Y22V 
 V + Y12(U 
 V + V 
 U )

�
: (75)

3.5.2 Saturated phase transformation ( ketr
n +1 k = "L )

In the caseetr
n +1 = qn +1 with ketr

n +1 k = "L , we obtain:

detr
n +1

da
= ~X

 

P +
y0 ~X

y2 � y0 ~X kU ?
0 k2

U ?
0 
 U ?

0

!

(76)

where ~X = "L =(kak + y0(etr
n + � 2qn )) , P = K � (etr

n +1 
 etr
n +1 )="2

L and U ?
0 = PU 0. In Eq. (76), U 0 is de�ned as in

Eq. (69). The operator P can be interpreted as the projector on the orthogonal toetr
n +1 in the deviatoric space. It

follows from Eq. (76) that:

d�
d"

= C � 4G2X

 

P +
y0 ~X

y2 � y0 ~X kU ?
0 k2

U ?
0 
 U ?

0

!

: (77)
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In the caseetr
n +1 6= qn +1 with ketr

n +1 k = "L , the operator detr
n +1 =da takes the form:

detr
n +1

da
=

x0+ h + � 2y0

~D
P + ~Y11U ? 
 U ? + ~Y22V ? 
 V ? + ~Y12(U ? 
 V ? + V ? 
 U ? ) (78)

where U ? = PU , V ? = PV and (U ; V ) are de�ned as in Eq. (71). The scalar ~Y11, ~Y22, ~Y12 in (78) are de�ned by:

~Y11 =
1
~Z

x0

x2 (1 �
~X 11

~D
) ; ~Y22 =

1
~Z

y0

y2 (1 �
~X 22

~D
) ; ~Y12 =

1
~Z

p
x0y0

xy

~X 12

~D

where

~D = (2 G0+ 
 + x0+ y0)(x0+ h + � 2y0) � (x0+ A)2; ~Z = ( ~D � ~X 22)( ~D � ~X 11) � ~X 2
12

and
~X 11 =

y0

y2

�
V ? : (etr

n +1 � etr
n ) + � 2W : (qn +1 � qn )

�
;

~X 22 =
x0

x2

 

(G00+ 
 + ( � 2 + 1) y0)kPqn +1 k2 +
~D

x0+ k + � 2y0

(etr
n +1 : (qn +1 � etr

n +1 ))2

"2
L

!

;

~X 12 =
p

x0y0

xy
(V ? � W ) : (etr

n +1 � qn +1 ):

(79)

The tensor W that appears in Eq. (79) is given by:

W = PV 0+
~D

x0+ h + � 2y0

� 2

"2
L

(etr
n +1 : (qn +1 � qn ))etr

n +1 :

From Eqs. (67) and (78) we �nally obtain:

d�
d"

= C � 4G2
�

x0+ h + � 2y0

~D
P + ~Y11U ? 
 U ? + ~Y22V ? 
 V ? + ~Y12(U ? 
 V ? + V ? 
 U ? )

�
: (80)

To close this section, we emphasize that the various expressions obtained for the tangent sti�ness operator are fully

explicit and do not involve any matrix inversion, thus making for an e�cient and accurate numerical evaluation of

d� =d" .

4 Numerical results

This section presents the results obtained by the numerical implementation of the proposed algorithm in a FE

framework.
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Table 2: Adopted model parameters taken from ref. (13).

Parameter Set 1 Set 2 Set 3 Unit

E 50000 50000 50000 MPa
� 0.35 0.35 0.35 -
� 2 2 2 MPa/K
T0 223 223 223 K
H 1000 1000 1000 MPa
RY 50 50 50 MPa
"L 0.04 0.04 0.04 -
h 0 15000 15000 MPa
A 0 0 2000 MPa
� 10 10 10 -

We implemented the algorithm within a user-de�ned material subroutine (UMAT) of the FE software ABAQUS/-

Standard (48). Following the methodology proposed in ref. (49), we exploited the capabilities of the package AceGen

(50) of the symbolic software Mathematica to generate the UMAT.

In the pseudocode of the algorithm as presented in Sect. 3.4, there appear several equality conditions of the form

u = v, whereu and v are two scalar quantities. In the numerical implementation, such equality conditions have been

replaced by inequality conditions of the form ju � vj � � tol where � tol is an absolute tolerance parameter set to10� 6.

Indeed, round-o� errors in practical computations almost always prevent �oating-point variables to be exactly equal.

Since the solution(etr
n +1 ; qn +1 ) to the minimization problem (21) depends continuously on the data(en +1 ; etr

n ; qn ),

the exact value of the tolerance parameter� tol is expected not to impact the robustness of the algorithm.

Numerical experiments aim to verify model implementation as well as to evaluate algorithm performances and

robustness. We perform several tests involving both PE and SME, of increasing complexity, starting from simple

uniaxial tests to more complex three-dimensional boundary-value problems on real devices.

We consider the three sets of material properties proposed in ref. (13) and speci�ed in Table 2, in order to verify the

main features of the model, compared to the results in ref. (13), as well as to show the role played by each parameter.

4.1 Uniaxial tests

We �rst simulate several pseudoelastic tests on a single 8-node hexahedral element, under force control and prescribed

homogeneous temperature. In particular, we apply a pressure varying cyclically between a maximum and a minimum

value at a �xed temperature.

The �rst pseudoelastic test involves 50 tension cycles with permanent inelasticity. The total analysis time is 10 s

and each cycle lasts 0.2 s. We adopt material parameters from Set 1 (see Table 2), where both parametersh and A

are equal to zero, while� is di�erent from zero. The applied pressure varies between0 and 500MPa and temperature

is set equal to298K. Figure 1(a) shows the stress-strain curve, where it can be observed that the non-zero parameter
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Figure 1: First uniaxial pseudoelastic test:50 tension cycles with permanent inelasticity. (a) Axial stress-axial strain
curve obtained for � t = 0 :001s. (b) Axial strain-analysis time curve for di�erent time steps � t. (c) Axial components
of etr and q versus analysis time plot for � t = 0 :001 s. (d) Axial components of etr and q during the �rst loading
cycle.

� gives rise to a permanent inelasticity phenomenon. This is also clear by observing Figures 1(c)-(d), representing

the evolution of the internal variables etr and q in time. Figure 1(b) reports the strain rate over time for di�erent

adopted time steps, respectively, of0:001 and 0:01 s, corresponding to200 and 20 increments per tension cycle. The

curves demonstrate the robustness of the proposed solution algorithm.

The second pseudoelastic test involves50 tension cycles with saturating permanent inelasticity. The total analysis

time is 10 s and each cycle lasts 0.2 s. We adopt material parameters from Set 2 (see Table 2), whereA is equal to

zero, while h and � are di�erent from zero. The applied pressure varies between0 and 500 MPa and temperature is

set equal to 298 K. Figure 2(a) shows the stress-strain curve; in such a case, the non-zero parameterh gives rise to
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Figure 2: Second uniaxial pseudoelastic test:50 tension cycles with saturating permanent inelasticity. (a) Axial stress-
axial strain curve obtained for � t = 0 :001s. (b) Axial strain-analysis time curve for di�erent time steps � t. (c) Axial
components ofetr and q versus analysis time plot for � t = 0 :001 s. (d) Axial components of etr and q during the
�rst loading cycle.

the saturation of permanent inelasticity, for which the permanent strain saturates and does not exceed the threshold.

The evolution of the internal variables etr and q in time reported in Figures 2(c)-(d) is similar to the previous test.

Figure 2(b) shows again the robustness of the algorithm, by reporting the strain rate over time for time steps of

0:001 and 0:01 s, corresponding to200 and 20 increments per tension cycle.

The third pseudoelastic test involves50 tension cycles with saturating permanent inelasticity, including degradation

e�ect. The total analysis time is 10 s and each cycle lasts 0.2 s. We adopt material parameters from Set 3 (see

Table 2), where all the parameters are di�erent from zero. The applied pressure varies between0 and 500 MPa and

temperature is set equal to298 K. Figure 3(a) shows the stress-strain curve; in such a case, the non-zero parameter
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Figure 3: Third uniaxial pseudoelastic test: 50 tension cycles with saturating permanent inelasticity, including degra-
dation e�ect. (a) Axial stress-axial strain curve obtained for � t = 0 :001 s. (b) Axial strain-analysis time curve for
di�erent time steps � t. (c) Axial components of etr and q versus analysis time plot for � t = 0 :001 s. (d) Axial
components ofetr and q plot during the �rst loading cycle.

A couples the two internal variables and results in shifting down the loops. The evolution of the internal variables

etr and q in time, reported in Figures 3(c)-(d), is again similar to previous tests. Figure 3(b) reports the strain rate

over time for time steps of 0:001 and 0:01 s, corresponding to200 and 20 increments per tension cycle.

Set 3 has been used also to perform the fourth pseudoelastic test, simulating10 tension cycles followed by10

compression cycles. Figure 4 shows the stress-strain curve, where the applied pressure varies between� 500 and 500

MPa.

It is worth highlighting that all the reported results are in perfect agreement with the results reported in ref. (13).
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Figure 4: Fourth uniaxial pseudoelastic test: 10 tension cycles followed by10 compression cycles with saturating
permanent inelasticity, including degradation e�ect. Axial stress-axial strain curve obtained for � t = 0 :001 s.

We then simulate two shape-memory tests on a single 8-node hexahedral element. For all these tests we adopt

material parameters from Set 3 (see Table 2).

The �rst shape-memory test consists of25 tension cycles at constant low temperature, each one followed by heating

strain recovery. The total analysis time is 10 s and each cycle lasts 0.4 s. Initially, a pressure of500 MPa is applied

at a low temperature of 200K. Then, the temperature is increased up to400K at zero applied pressure. Figure 5(a)

shows the stress-strain curve. An inelastic e�ect is activated, so that we observe only a partial shape recovery (see

Figure 5(c)). Also for this test, algorithm robustness is veri�ed (see Figure 5(b)).

The second shape-memory test is performed under force control and constant low temperature, followed by cyclic

heating. Initially, a temperature of 200 K is prescribed and a pressure of250 MPa is applied. Then, the temperature

is increased up to500 K at constant applied pressure. The temperature is then varied cyclically between200 and

500 K. The total analysis time is 186.6 s and each thermal cycle lasts 3.2 s. We adopt material parameters from Set

3 (see Table 2). Figure 6(a) shows the strain-temperature curve. It is observed that the saturation is reached at the

�rst thermal cycle; therefore, subsequent cycles determine only a shift of the curve due to the presence of permanent

deformation (see Figure 6(b)). The test has been repeated by adopting di�erent time steps, respectively, of 0.001 and

0.01 s, corresponding to 320 and 32 increments per thermal cycle. Only the case with time steps of 0.001 s is shown;

however, also for this test robustness has been veri�ed.

4.2 Pseudoelastic stent strut

The use of SMAs to manufacture cardiovascular stents is increasing, since pseudoelasticity enables the essential self-

deployment behavior. Once implanted in the patient, stents are subjected to million of pulsatile cycles and their

fatigue resistance is therefore a topic of wide interesting in the medical, industrial, and scienti�c communities. From
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Figure 5: First uniaxial shape-memory test: 25 tension cycles, each one followed by heating strain recovery, with
saturating permanent inelasticity, including degradation e�ect. (a) Axial stress-axial strain curve obtained for � t =
0:001 s. (b) Axial strain-analysis time curve for di�erent time steps � t. (c) Axial components of etr and q during
the �rst loading cycle.

the experimental point of view, strain-based testing is generally performed on SMA stents or representative specimens

manufactured as stents, to provide fatigue performance information, constant life diagrams, and data for fatigue

criteria calibration.

We propose here to investigate the behavior of a representative stent strut subjected to cycling loading under two

strain-controlled conditions.

The strut is obtained from the planar CAD representation of a stent geometrically resembling a Bard ViVEXX

carotid stent (C.R. Bard Angiomed GmbH & Co., Germany). Figure 7 shows the Bard ViVEXX carotid stent



Peigney et al 31

200 250 300 350 400
Temperature T [K]

0

0.01

0.02

0.03

0.04

0.05
S

tr
ai

n 
11

 [-
]

 = 250 MPa

(a) (b)

Figure 6: Second uniaxial shape-memory test: multiple thermal cycles under constant applied pressure, with saturat-
ing permanent inelasticity, including degradation e�ect. (a) Axial strain-temperature curve obtained for � t = 0 :001
s. (b) Axial component of etr and of q versus analysis time plot for � t = 0 :001 s.

geometry and the adopted mesh of the stent strut, consisting of7872eight-node hexahedral �nite elements and11480

nodes. A mesh re�nement has been performed to determine the appropriate model.

We adopt material parameters from Set 3 (see Table 2). We apply a tensile cyclic displacementu to one side of

the strut, while the other side is fully constrained (see Figure 7). All other surfaces are traction free. A temperature

of 310 K is prescribed. The �rst loading history consists in applying a displacementu of 1 mm and then in varying

it between 1 and 0:5 mm for 30 cycles. The second history consists in the application of a displacement of1:5 mm

and then in varying it between 1:25 and 1 mm for 12 cycles. The total analysis time is 25 s. For both the analyses

we adopt an adaptive time step varying between10� 6 and 0:05 s. Figures 8(a)-(b) show the applied displacement

u versus the total reaction force of the �xed side plot for the two loading histories, respectively. As observed, the

non-zero parameterA couples the two internal variables and results in shifting down the loops, up to a saturation

curve. Figures 9(a) and (b) report, respectively, the loading time increments and the total global iterations during

the analysis for the second loading history. As it can be observed, small time increments and a high number of total

global iterations are required only during the loading phase, which ends at an analysis time of1 s with a �nal applied

displacement of1:5 mm. Then, the trend repeats during cycling between1:25 and 1 mm from 2 s to 25 s.

4.3 Helical spring

We conclude this section with the simulation of a helical spring, which can be used as thermal actuator and as

element for passive vibration isolation. Therefore, spring components are generally tested in both pseudoelastic and

shape-memory regime.
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Figure 7: SMA cardiovascular stent strut: initial geometry, adopted mesh, and boundary conditions.

(a) (b)

Figure 8: SMA cardiovascular stent strut: applied displacement vs. reaction force of the �xed side for two di�erent
loading histories: (a) �rst a 1 mm displacement is applied and then it varies between1 and 0:5 mm; (b) �rst a 1:5 mm
displacement is applied and then it varies between1:25 and 1 mm.
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(a) (b)

Figure 9: SMA cardiovascular stent strut. Analysis of the case where a1:5 mm displacement is applied and then
varied between1:25 and 1 mm. Trends of (a) the loading time increments and (b) the total global iterations during
the analysis.

The spring under investigation has a wire diameter of1:0 mm, an external coil diameter of 6:0 mm, a pitch of

2:5 mm, 2 active coils, and an initial length of 5:0 mm. The mesh is composed of3712eight-node hexahedral �nite

elements and4486nodes, as shown in Figure 10; a mesh re�nement has been performed to choose the appropriate

mesh.

Figure 10: SMA spring: initial geometry, adopted mesh, and boundary conditions.

We adopt material parameters from Set 3 (see Table 2). One end of the spring is �xed (see Figure 10).

For the pseudoelastic tests, we perform multiple tension cycles by applying an axial tensile forceF at one section

of the spring at a constant temperature of 298 K (see Figure 10). All the nodes of the section where the force is

applied are constrained against the two translations in the directions orthogonal to the axial one. The forceF varies
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cyclically between zero and a maximum value. Three maximum values are considered of20, 40, and 100 N and for

each of them we perform10, 50, and 50 cycles, respectively. The total analysis time is 20 s. All the simulations are

performed using variable time step increments between10� 6 and 0:05 s. Figures 11(a)-(c) show the applied force-axial

displacement output for the three pseudoelastic loading histories.

For the shape-memory tests, we perform19 thermal cycles at constant forceF of 5 N. Temperature varies between

208:6 and 298K. The total analysis time is 40 s. All the simulations are performed using variable time step increments

between10� 6 and 0:5 s. Figure 11(d) reports the axial displacement versus temperature plot.

In both pseudoelastic and shape-memory tests, the non-zero parameterA couples the two internal variables and

results in shifting down the loops, up to a saturation curve.

(a) (b)

(c) (d)

Figure 11: Pseudoelastic tests on SMA spring: displacement of the free end vs. applied force of (a) 20 N, (b) 40 N,
and (c) 100 N. Shape-memory tests on SMA spring: (d) temperature vs. displacement of the free end.
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To conclude the discussion, Figures 12(a) and (b) report, respectively, the loading time increments and the total

global iterations during the analysis for the pseudoelastic test with applied force varying between 0 and 100 N, while

Figures 12(c) and (d) report the values for the shape-memory test. As it can be observed, for the pseudoelastic test,

small time increments and a high number of total global iterations are required only during the loading phase, which

ends at an analysis time of1 s with a �nal applied force of 100N. For the shape-memory tests larger time increments

are su�cient for global convergence. For both tests, the trend repeats during cycling.

(a) (b)

(c) (d)

Figure 12: SMA spring. Trends of the loading time increments and the total global iterations during the analysis for
the (a)-(b) pseudoelastic test with applied force varying between 0 and 100 N and (c)-(d) the shape-memory test.
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5 Conclusions

This paper has presented a new algorithmic scheme for a three-dimensional model taking into account permanent

inelastic phenomena and degradation e�ects due to cyclic loading in SMAs. A variational structure of model equations,

based on an incremental energy minimization approach, has been presented. The resulting algorithm is free from

any kind of regularization, which may a�ect the structural response, and is simple to implement. The key feature

of the algorithm is that it relies only on scalar nonlinear equations, thus avoiding to solve simultaneously for 10-12

scalar unknowns as could be expected in a conventional return-mapping algorithm. Such simpli�cations are achieved

thanks to the incremental energy minimization structure and ultimately trace back to the isotropic nature of the

considered constitutive model. Several numerical FE simulations have demonstrated the correctness of the scheme

in predicting material response, its ability to solve complex boundary values problems, as well as its robustness.

Although our algorithm is speci�c to the choice (6) for the dissipation potential, there is no major di�culty in

adapting it to the dissipation potentials ( _" tr ; _q) 7! RY k( _" tr ; _q)k� ;1 and ( _" tr ; _q) 7! RY k( _" tr ; _q)k� ;1 mentioned in

Sect. 2. In such cases, however, the elasticity domain would have corners so additional subcases are expected to

appear in the algorithm. Among other further possible developments, it would also be interesting to extend the

present approach to geometrically nonlinear problems.
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APPENDIX A Derivation of the tangent sti�ness operator

This section reports the derivation of the tangent sti�ness operator introduced in Section 3.5. Accordingly to previous

results and discussion, the derivation is performed by distinguishing between the cases of unsaturated and saturated

phase transformation.
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A.1 Unsaturated phase transformation

A.1.1 Case etr
n +1 = qn +1

Let us assume thatetr
n 6= qn . Setting U 0 = (1 + � 2)qn +1 � etr

n � � 2qn , di�erentiating (42) gives:

da = ( G00+ y0(1 + � 2))detr
n +1 �

y0

y
U 0dy

where we recall that y0 = RY =y. The variation dy can be obtained by di�erentiation of the relation y = k(qn +1 �

etr
n ; qn +1 � qn )k� as:

dy =
1
y

((qn +1 � etr
n ) : dqn +1 + � 2(qn +1 � qn ) : dq) =

1
y

U 0 : dqn +1 =
1
y

U 0 : detr
n +1 : (A1)

Hence,

Xda =
�

I � X
y0

y2 U 0 
 U 0

�
: detr

n +1 =
�

K � X
y0

y2 U 0 
 U 0

�
: detr

n +1

with X = ( G00+ y0(1 + � 2)) � 1. It can be veri�ed that

�
K �

Xy 0

y2 U 0 
 U 0

� � 1

= K +
y0X

y2 � y0X kU 0k2 U 0 
 U 0: (A2)

Therefore:

detr
n +1

da
= X

�
K +

y0X
y2 � y0X kU 0k2 U 0 
 U 0

�
(A3)

so that

d�
d"

= C � 4G2X
�

K +
y0X

y2 � y0X kU 0k2 U 0 
 U 0

�
: (A4)

The expressions (A3) and (A4) can be veri�ed to remain valid whenetr
n = qn .
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A.1.2 Case etr
n +1 6= qn +1

In the case of unsaturated phase transformation withetr
n +1 6= qn +1 , di�erentiating the optimality conditions (48)

yields: 0

B
@

da

0

1

C
A = M :

0

B
@

detr
n +1

dqn +1

1

C
A � dx

x0

x

0

B
@

etr
n +1 � qn +1

qn +1 � etr
n +1

1

C
A � dy

y0

y

0

B
@

etr
n +1 � etr

n

� 2(qn +1 � qn )

1

C
A (A5)

where M is the linear operator de�ned by:

M :

0

B
@

detr
n +1

dqn +1

1

C
A =

0

B
@

(2G0+ x0+ y0)detr
n +1 � (x0+ A)dqn +1

� (x0+ A)detr
n +1 (x0+ h + � 2y0)dqn +1

1

C
A : (A6)

We recall that x = ketr
n +1 � qn +1 k, y = k(etr

n +1 � etr
n ; qn +1 � qn )k� , x0 = � M =x and y0 = RY =y. From the de�nition

of x, we have by di�erentiation:

dx =
(etr

n +1 � qn +1 )
x

: (detr
n +1 � dqn +1 ) (A7)

which can be rewritten as:

dx =
1
x

U � :

0

B
@

detr
n +1

dqn +1

1

C
A with U � =

0

B
@

etr
n +1 � qn +1

qn +1 � etr
n +1

1

C
A : (A8)

Similarly, from the de�nition of y we have by di�erentiation:

dy =
1
y

V � :

0

B
@

detr
n +1

dqn +1

1

C
A with V � =

0

B
@

etr
n +1 � etr

n

� 2(qn +1 � qn )

1

C
A : (A9)

Relation (A5) thus becomes:

0

B
@

da

0

1

C
A = ( M �

x0

x2 U � 
 U � �
y0

y2 V � 
 V � ) :

0

B
@

detr
n +1

dqn +1

1

C
A : (A10)
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The operator M� x 0

x 2 U � 
 U � � y0

y2 V � 
 V � can be inverted in closed-form. Setting~U = M � 1 : U � and ~V = M � 1 : V � ,

it can indeed be veri�ed that:

�
M �

x0

x2 U � 
 U � �
y0

y2 V � 
 V � � � 1
= M � 1 +

1
�� � 
 2

�
�

x0

x2
~U 
 ~U + �

y0

y2
~V 
 ~V + 


p
x0y0

xy
( ~U 
 ~V + ~V 
 ~U )

�
(A11)

with

� = 1 �
y0

y2
~V : V � ; � = 1 �

x0

x2
~U : U � ; 
 =

p
x0y0

xy
~V : U � :

It can calculated from Eq. (A6) that:

~U =
1
D

0

B
@

U

(A � 2G0 � y0)(etr
n +1 � qn +1 )

1

C
A ; ~V =

1
D

0

B
@

V

(A + x0)(etr
n +1 � etr

n ) + � 2(2G0+ x0+ y0)(qn +1 � qn )

1

C
A

where U and V are the tensors introduced in Eq. (71), andD is de�ned by Eq. (74). Substituting in Eq. (A11)

and using Eq. (A10) leads to the expression (73) of thedetr
n +1 =da, from which the tangent sti�ness operator directly

follows.

A.2 Saturated phase transformation

In the case of saturated phase transformation, we haveketr
n +1 k2 = "L hence by di�erentiation:

detr
n +1 : etr

n +1 = 0 : (A12)

Let P = K � (etr
n +1 
 etr

n +1 )="2
L be the projection on the orthogonal to etr

n +1 in the deviatoric space. Eq. (A12) implies

that

Pdetr
n +1 = etr

n +1 : (A13)

The property (A13) will proved to be useful in the following.

A.2.1 Case etr
n +1 = qn +1

Assuming etr
n 6= qn , di�erentiating (59) gives:

da = ( 
 + y0(1 + � 2))detr
n +1 �

y0

y
U 0dy + etr

n +1 d
:
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Note that the value of the Lagrange multiplier 
 can be obtained from (59) and (61), yielding 
 + y0(1 + � 2) =

(kak + y0(etr
n + � 2qn ))="L . Using the expression (A1) ofdy, we obtain:

~Xda =
�

I � ~X
y0

y2 U 0 
 U 0

�
detr

n +1 + ~X etr
n +1 d
 (A14)

with ~X = "L =(kak + y0(etr
n + � 2qn )) . In view of (A13), Eq. (A14) can be rewritten as

~Xda =
�

I � ~X
y0

y2 U 0 
 U ?
0

�
detr

n +1 + ~X etr
n +1 d
: (A15)

Applying P to both sides of Eq. (A15) gives

~X Pda =
�

P � ~X
y0

y2 U ?
0 
 U ?

0

�
detr

n +1 : (A16)

Eq. (A16) can be inverted in a way similar to (A2), yielding:

detr
n +1 = ~X

 

P +
y0 ~X

y2 � y0 ~X kU ?
0 k2

U ?
0 
 U ?

0

!

da:

which correspond to Eq. (76).

A.2.2 Case etr
n +1 6= qn +1

In the case of saturated phase transformation withetr
n +1 6= qn +1 , the optimality conditions read as

8
>><

>>:

da = (2 G0+ 
 )etr
n +1 + � M

etr
n +1 � qn +1

x
� Aqn +1 + RY

etr
n +1 � etr

n

y

0 = hqn +1 + � M
qn +1 � etr

n +1

x
� Aetr

n +1 + � 2RY
qn +1 � qn

y

(A17)

Di�erentiating (A17) yields:

0

B
@

da

0

1

C
A = ~M :

0

B
@

detr
n +1

dqn +1

1

C
A � dx

x0

x

0

B
@

etr
n +1 � qn +1

qn +1 � etr
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1

C
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y0

y

0

B
@

etr
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n

� 2(qn +1 � qn )

1

C
A + d


0

B
@

etr
n +1

0

1

C
A (A18)
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where ~M is the linear operator de�ned by:

~M :

0

B
@

detr
n +1

dqn +1

1

C
A =

0

B
@

(2G0+ 
 + x0+ y0)detr
n +1 � (x0+ A)dqn +1

� (x0+ A)detr
n +1 (x0+ h + � 2y0)dqn +1

1

C
A (A19)

Performing similar manipulations to those used in Section A.1.2, Eq. (A18) can be rewritten as:

0

B
@

da

0

1

C
A = N :

0

B
@

detr
n +1

dqn +1

1

C
A + d


0

B
@

etr
n +1

0

1

C
A (A20)

where N = ~M � x 0

x 2 U � 
 U � � y0

y2 V � 
 V � with (U � ; V � ) are de�ned as in Eqs. (A8)-(A9). Let P be the linear

operator de�ned by:

P :

0

B
@

detr
n +1

dqn +1

1

C
A =

0

B
@

Pdetr
n +1

dqn +1

1

C
A

Using Eq. (A13), Eq. (A20) is equivalent to:

0

B
@

da

0

1

C
A = N P :

0

B
@

detr
n +1

dqn +1

1

C
A + d


0

B
@

etr
n +1

0

1

C
A : (A21)

Applying P to Eq. (A21) gives: 0

B
@

P : da

0

1

C
A = PN P

0

B
@

detr
n +1

dqn +1

1

C
A : (A22)

Note that PN P = P ~MP � x 0

x 2 PU � 
 P U � � y0

y2 PV � 
 P V � . Relation (A22) can be inverted by a relation similar

to (A11), leading to expression (78) fordetr
n +1 =da.
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