Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Canonical Tensor Decomposition for Knowledge Base Completion

Abstract : The problem of Knowledge Base Completion can be framed as a 3rd-order binary tensor completion problem. In this light, the Canonical Tensor Decomposition (CP) (Hitchcock, 1927) seems like a natural solution; however, current implementations of CP on standard Knowledge Base Completion benchmarks are lagging behind their competitors. In this work, we attempt to understand the limits of CP for knowledge base completion. First, we motivate and test a novel regularizer, based on tensor nuclear p-norms. Then, we present a refor-mulation of the problem that makes it invariant to arbitrary choices in the inclusion of predicates or their reciprocals in the dataset. These two methods combined allow us to beat the current state of the art on several datasets with a CP decomposition , and obtain even better results using the more advanced ComplEx model.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Timothee Lacroix <>
Soumis le : lundi 18 juin 2018 - 10:38:21
Dernière modification le : mercredi 3 février 2021 - 07:54:27
Archivage à long terme le : : mercredi 26 septembre 2018 - 18:28:22


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01817595, version 1


Timothée Lacroix, Nicolas Usunier, Guillaume Obozinski. Canonical Tensor Decomposition for Knowledge Base Completion. Proceedings of the 35th International Conference on Machine Learning, In press. ⟨hal-01817595⟩



Consultations de la notice


Téléchargements de fichiers