, Example 1. The three components of the exact solution at the section y = 1/2 (left) and of the approximate one (right) at the section y = 1/2. The computation of the approximate solution is done with a, pp.10-18

, Example 1. The relative L 2 error on the curl (in a logarithmic scale) versus N for a 3N /2?3N /2?N discretization (solid line) and a 3N discretization (dashed line) (left). The relative L 2 error

, the relative L 2 error on curl u, on u and the L 2 norm of div u (the latter is divided by the L 2 norm of curl u) are displayed, respectively, versus a parameter N for 1, pp.5-6

R. Take, R. Beck, P. Deuflhard, R. Hiptmair, R. Hoppe et al., THE HETEROGENEOUS CASE In this second example, we keep the same exact solution as in Example 1, but we use heterogeneous physical parameters and µ. Namely, we Adaptative multilevel methods for edge element discretization of Maxwell's equations, EXAMPLE Surveys Math. Indust, vol.2, issue.8, pp.271-312, 1999.

B. , R. Hiptmair, and R. , Multilevel solution of the time-harmonic Maxwell's equations based on edge elements, Int. J. Numer. Meth. Engng, vol.45, pp.901-920, 1999.

B. , Z. Bernardi, and C. , Resolution of fourth order problems by the mortar element method, Comput. Meth. Appl. Mech. Engng, vol.116, pp.53-58, 1994.

B. Belgacem, F. Buffa, A. Maday, and Y. , The Mortar Finite Element Method for 3D Maxwell Equations: First Results, SIAM Journal on Numerical Analysis, vol.39, issue.3, pp.880-901, 2001.
DOI : 10.1137/S0036142999357968

A. Berger, R. Scott, and G. Strang, Approximate boundary conditions in the finite element method, Symp. Math, vol.10, pp.295-313, 1972.

C. Bernardi, N. Ebit, and Y. Maday, Coupling finite element and spectral methods: first results, Mathematics of Computation, vol.54, issue.189, pp.21-39, 1990.
DOI : 10.1090/S0025-5718-1990-0995205-7

C. Bernardi and Y. Maday, Spectrale deProbì emes aux Limites Elliptiques. Collection Mathématiques et Applications, 1992.

C. Bernardi and Y. Maday, Basic Results on Spectral Methods. Laboratoire d'Analyse Numérique, 1994.

C. Bernardi, Y. Maday, and A. T. Patera, A new nonconforming approach to domain decomposition: the mortar element method. Nonlinear Partial Differential Equations and Their Applications.Colì ege de France seminar, Pitman Res. Notes Math. Ser, vol.299, pp.13-51, 1989.

B. , S. Perrier, and V. , The mortar method in the wavelet context. ESAIM: M2AN, pp.647-673, 2001.

B. , T. Z. El-rhabi, and M. , On time-harmonic Maxwell's equations in Lipschitz and multiplyconnected domains of R 3, Monogr. Semin. Mat. García Galdeano, vol.27, pp.127-134, 2003.

B. , A. Hiptmair, R. Von-petersdorff, T. Schwab, and C. , Boundary elements methods for Maxwell transmission problems in Lipstchitz domains, Numer. Math, vol.95, pp.459-485, 2003.

C. , C. Quarteroni, and A. , Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comput, vol.38, pp.67-86, 1982.

C. and M. , A coercive bilinear form for Maxwell's equations, J. Math. Anal. Appl, vol.157, pp.527-541, 1991.

C. , M. &. Dauge, and M. , Singularities of Maxwell interface problems, Modél. Math. Anal. Numér, vol.33, pp.627-649, 1999.

C. , M. &. Dauge, and M. , Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal, vol.151, pp.221-276, 2000.

D. , R. Lions, and J. , Analyse Mathématique et Calcul numérique, 1988.

D. , P. J. Rabinowitz, P. D. Ebit, N. Maday, and Y. , Methods of Numerical Integration The coupling of spectral and finite element methods for the approximation of the Stokes problem, proceedings of the 8th Joint France?Italy?U.S.S.R. Symposium of Computational Mathematics and Applications, 1985.

. Downloaded-from-https, , p.709236

, by Ecole Nationale des Ponts et Chaussées (ENPC) user on 30 May 2018 610 T

E. Rhabi and M. , Analyse numrique et discrtisation par lments spectraux avec joints des quations tridimensionnelles de l'lectromagntisme, 2002.

F. , P. F. Patera, and A. T. , Parallel spectral element solution of the Stokes problem, J. Comput. Phys, vol.92, pp.380-421, 1991.

H. and R. , Multigrid method for Maxwell's equations, SIAM J. Numer. Anal, vol.36, pp.204-225, 1999.

H. and R. H. , A penalty method for approximate solution of stationary Maxwell equations, Numer. Math, vol.36, pp.389-403, 1981.

H. and R. H. , Crank?Nicolsen?Galerkin approximation for Maxwell's equations, Math. Meth. Appl. Sci, vol.4, pp.123-130, 1982.

L. , R. B. Teubner, . Stuttgart, and P. Monk, Initial Boundary Value Problems in Mathematical Physics A finite element method for approximating the time-harmonic Maxwell's equations, Numer. Math, vol.63, pp.243-261, 1986.

M. and P. , Analysis of a Finite Element Method for Maxwell's Equations, SIAM J. Numer. Anal, vol.29, pp.714-729, 1992.

M. and P. , An analysis of Nédélec method for the spatial discretization of Maxwell's equations, J. Comput. Appl. Math, vol.47, pp.101-121, 1993.

M. and P. , Finite Element Methods for Maxwell's Equations, 2003.

R. and F. , Approximation deséquationsdes´deséquations de la magnétodynamique en domaine tournant par la méthode desélémentsdes´deséléments avec joints, 2000.

S. Szeg¨o and G. , Orthogonal polynomials, 1978.

T. and A. , Overlapping Schwarz methods for Maxwell's equations in three dimensions, Numer. Math, vol.86, pp.733-752, 2000.

T. , A. Widlund, O. B. Wohlmuth, and B. , An iterative substructuring method for Maxwell's equations in two dimensions, Math. Comp, vol.70, pp.935-949, 2001.

W. and B. I. , A mortar finite element method using dual spaces for the lagrange multiplier, SIAM J. Numer. Anal, vol.38, pp.989-1012, 2000.