
HAL Id: hal-01813484
https://enpc.hal.science/hal-01813484

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A mortar spectral element method for 3D Maxwell’s
equations

Tahar Z Boulmezaoud, Mohammed El Rhabi

To cite this version:
Tahar Z Boulmezaoud, Mohammed El Rhabi. A mortar spectral element method for 3D Maxwell’s
equations. IMA Journal of Numerical Analysis, 2005, 25 (3), pp.577 - 610. �10.1093/imanum/dri010�.
�hal-01813484�

https://enpc.hal.science/hal-01813484
https://hal.archives-ouvertes.fr


HAL Id: hal-01812923
https://hal-enpc.archives-ouvertes.fr/hal-01812923

Submitted on 12 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A mortar spectral element method for 3D Maxwell’s
equations

Tahar Boulmezaoud, Mohammed El Rhabi

To cite this version:
Tahar Boulmezaoud, Mohammed El Rhabi. A mortar spectral element method for 3D Maxwell’s
equations. IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2005, 25 (3), pp.577
- 610. <10.1093/imanum/dri010>. <hal-01812923>

https://hal-enpc.archives-ouvertes.fr/hal-01812923
https://hal.archives-ouvertes.fr


IMA Journal of Numerical Analysis (2005) 25, 577–610
doi:10.1093/imanum/dri010
Advance Access publication on February 7, 2005

A mortar spectral element method for 3D Maxwell’s equations
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In this paper we propose a mortar spectral element method for solving Maxwell’s equations in 3D
bounded cavities. The method is based on a non-conforming decomposition of the domain into the union
of non-overlapping parallelepipeds. After proving an error estimate, we present some 3D computational
results which confirm the performance of the method.

Keywords: Maxwell’s equations; mortar method; spectral elements, Galerkin approximations.

1. Introduction

The last two decades have seen a rapid development of numerical methods for solving Maxwell’s equa-
tions in 2D and in 3D bounded regions of space. Let us recall e.g. the works of Hoppe (1981, 1982),
Monk (1992a,b, 1993, 2003), Beck et al. (1999), Beck & Hiptmair (1999), Hiptmair (1999), Costabel
(1991), Costabel & Dauge (1999, 2000), Buffa et al. (2003), Toselli (2000) and Toselli et al. (2001).
Among the existing methods, domain decomposition techniques turned out to be very efficient since
they bring a serious flexibility in the discretization of the original problem.

Our goal in this paper is to use a mortar spectral element method for approximating time-dependent
and time-harmonic Maxwell’s equations in a 3D bounded cavity.

The mortar method was introduced in Bernardi et al. (1990a,b) for coupling spectral and finite
element approximations. It has mainly two advantages. Firstly, it allows the coupling of different,
independent and non-matching numerical discretizations inside the domain of interest. Secondly, it is
naturally predisposed to parallel computation (see, e.g. Fisher & Patera, 1991).

Mortar method with finite elements, spectral elements or wavelets were successfully applied to
second-order elliptic problems (see, e.g. Bernardi et al., 1990b; Wohlmuth, 2000; Bertoluzza & Perrier,
2001). It was also applied to several other problems including fourth-order equations (see Belhachmi &
Bernardi, 1994), Stokes equation (Débit & Maday, 1987) and 2D and 3D Maxwell’s equations (with
finite elements) (see Rapetti, 2000; Ben Belgacem et al., 2001).

Let us describe the Maxwell’s equations we deal with in this paper. Let Ω be a bounded open set
of R3, with Lipschitz boundary ∂Ω and a unit outward normal n. Assume also that Ω is occupied by a
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578 T. Z. BOULMEZAOUD AND M. EL RHABI

heterogeneous, linear and isotropic material and that its boundary ∂Ω is a perfect conductor. If E(x, t)
and H(x, t) denote, respectively, the electric and magnetic fields in Ω , then Maxwell’s equations state
that

µ∂t H + curl E = 0,

ε∂t E − curl H = −j,

div (µH) = 0,

div (εE) = ρ,

(1.1)

with
∂ρ

∂t
+ div j = 0. (1.2)

The boundary conditions we consider here are of the form

E × n = 0 on ∂Ω, µH · n = 0 on ∂Ω. (1.3)

Here and below ρ and j denote, respectively, the charge and the electric current densities. The coef-
ficient µ(x) is the magnetic permeability of the material in Ω and ε(x) is its electric permittivity. We
suppose that ε(x) and µ(x) are real, bounded and positive functions depending on the space variable x,
i.e. there exist four constants ε0, ε∞, µ0 and µ∞ such that

0 < ε0 � ε(x) � ε∞ and 0 < µ0 � µ(x) � µ∞ a.e. in Ω. (1.4)

In a time-dependent regime, the evolution equations (1.1) are completed with the initial conditions

E(x, t = 0) = E0(x), H(x, t = 0) = H0(x). (1.5)

It is usual to rewrite system (1.1) in terms of one unknown, say the magnetic field H or the electric
field E. Here, we choose the formulation in terms of H. Eliminating E from the equations above
gives

µ∂2
t H + curl(ε−1curl H) = curl(ε−1j), div (µH) = 0. (1.6)

The magnetic field is subject to the boundary conditions

µH · n = 0 on ∂Ω,

ε−1(curl H − j) × n = 0 on ∂Ω,
(1.7)

and to initial conditions (1.5). In a time-harmonic regime the magnetic field satisfies

curl(ε−1curl H) − ω2µH = curl(ε−1j). (1.8)

The space discretizations of (1.6) and (1.8) are often distinguished in the literature. Indeed, an implicit
time-stepping of (1.6) leads usually to a system of the form (see, e.g. Hoppe, 1982)

curl(ε−1curl u) + τµu = curl(ε−1j) + u0 in Ω,
µu · n = 0 on ∂Ω,

curl u × n = j × n on ∂Ω,
(1.9)

where τ is a positive parameter. The weak formulation of this problem rests on the bilinear form
(ε−1curl u, curl v) + (τµu, v) which is coercive on H(curl; Ω).
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MORTAR SPECTRAL ELEMENT METHOD 579

In contrast, the time-harmonic equation (1.8), written in a weak form, involves the bilinear form (ε−1

curl u, curl v)−ω2(µu, v) which is not coercive either on H(curl; Ω) or on H0(div ; µ,Ω)∩H(curl; Ω)
even if ω > 0. Two techniques might be used to deal with this problem. One of these is to penalize the
weak problem by adding the term (div (µu), div (µv)) (actually, this term is 0 when u = H) (see, e.g.
Hoppe, 1981, or Costabel, 1991). In this case, the bilinear form

(ε−1curl u, curl v) + (div (µu), div (µv))

is coercive on the space H0(div u, µ,Ω) ∩ H(curl; Ω). Unfortunately, as will be noted in Remark 1
below, this penalty method employed with mortar spectral elements induces some complications which
are still unresolved. The second technique, which we expose in Section 2.2, consists of finding the
solution of (1.8) as the limit of a quickly converging sequence of solutions of positive definite problems
of form (1.9). A considerable advantage of such a technique is the possibility of using in practice a
common method for solving time-dependent and time-harmonic Maxwell’s equations. Thus, we choose
to use the second technique in this paper.

Let us notice that if Ω is a non-convex polyhedron, then the magnetic field can have some singulari-
ties which are due to reentrant corners and edges. The reader can refer to Costabel & Dauge (2000) and
references therein for a characterization of these singularities. In that case, it is well known that H 1 elem-
ents are not sufficient to approximate the singular part of the solution (see for instance Costabel, 1991,
or Costabel & Dauge, 2000). Similarly, singularities could appear also at interfaces if the parameters
ε and µ are discontinuous (see, e.g. Costabel & Dauge, 1999). The analysis and the approximation
of these singularities are beyond the scope of this paper. Here, we shall suppose that the solution we
look for is piecewise smooth (see the subsequent Theorem 1), and we do not make for the moment any
other assumption, either on the domain Ω or on the coefficients ε and µ. Of course, this smoothness
assumption is plausible if Ω is convex or if it has a regular boundary and if the coefficients ε and µ are
constant or globally smooth (see, e.g. Lemma 2.3 in Monk, 1992a). In other situations, the method we
expose here could be used only for computing the smooth part of the solution. The singular part must
be treated separately.

An outline of this paper is as follows. In Section 2, we recall and state briefly some definitions
and properties of the function spaces used as a framework. Then, we prove that each solution of the
time-harmonic Maxwell’s equations can be obtained as the limit of a rapidly converging sequence of
solutions of a coercive problem.

Section 3 is devoted to the presentation of a mortar method with spectral elements for Maxwell’s
equations and to the proof of its numerical convergence.

The purpose of Section 4 is twofold. Firstly, we show that in practice the implementation of the
mortar spectral element could be simplified by means of a theoretical treatment of the transmission
conditions. Secondly, we display some 3D computational results which confirm the convergence of the
method in several cases.

2. Preliminaries

2.1 Notations

In the sequel, for any integer d � 1, any open set O of Rd (d = 1, 2, 3) and any positive integers
N1, . . . , Nd , PN1,...,Nd (O), stands for the space of all the polynomial functions onO whose degree with
respect to the variable xi , 1 � i � d, is less than or equal to Ni . If N1 = · · · = Nd = N , then we
write PN (O) instead of PN1,...,Nd (O). As usual, L2(O) refers to the space of square integrable functions
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580 T. Z. BOULMEZAOUD AND M. EL RHABI

on O. This space is equipped with the inner product

(u, v)O =
∫
O

u(x)v(x) dx,

and with the associated norm ‖u‖0,O = (u, u)
1/2
O . The subscript O will be dropped in these notations

when the domain is Ω .
In what follows Hs(O), s being real, will be the usual Sobolev space of order s and ‖·‖s,O its norm.

When O is an open set of R3 we write

H(curl; O) = {v ∈ L2(O)3, curl v ∈ L2(O)3}.
This is a Hilbert space equipped with the inner product

(u, v)curl,O = (curl u, curl v)0,O + (u, v)0,O,

and with the norm
‖u‖H(curl;O) = (‖v‖2

0,O + ‖curl v‖2
0,O)1/2.

Recall that ifO is bounded and has a Lipschitzian boundary, then the tangential trace operator u �→ u×n
is well defined and is continuous from H(curl; O) into H−1/2(∂O)3. Moreover, the following Green’s
formula holds

∀ v ∈ H(curl; O), ∀ w ∈ H1(O)3, (curl v, w) = (v, curl w) + 〈v × n, w〉∂O. (2.1)

Let H0(curl; O) refer to the subspace of vector fields in H(curl; O) with a vanishing tangential com-
ponent on ∂O.

Finally, we introduce the space

H(div ; µ,Ω) = {v ∈ L2(Ω)3, div (µv) ∈ L2(Ω)},
equipped with the norm

‖u‖H(div ;µ,Ω) = (‖v‖2
0,Ω + ‖div (µv)‖2

0,Ω)1/2,

and its subspace

XT (µ; Ω) = {u ∈ H(curl; Ω) ∩ H(div ; µ,Ω) | µu · n = 0 on ∂Ω} ,

endowed with the norm

‖u‖XT (µ;Ω) = {‖u‖2
0,Ω + ‖curl u‖2

0,Ω + ‖div (µu)‖2
0,Ω}1/2. (2.2)

The following semi-norm on XT (µ; Ω) will be useful subsequently

|u|XT (µ;Ω) = {‖curl u‖2
0,Ω + ‖div (µu)‖2

0,Ω }1/2. (2.3)

Actually, this semi-norm is a norm on XT (µ; Ω) equivalent to the norm (2.2) (see Monk, 2003, and
Costabel, 1991, see also El Rhabi, 2002, for a detailed proof).

Consequently, we set

ω0 = inf
v∈XT (µ;Ω);div (µv)=0; v�=0

‖ε−1/2curl v‖0,Ω

‖µ1/2v‖0,Ω
. (2.4)

This constant is strictly positive and depends only on Ω and on the parameters ε and µ.
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MORTAR SPECTRAL ELEMENT METHOD 581

2.2 A relaxation method for time-harmonic Maxwell’s equations

As mentioned in the introduction, the solution of the time-harmonic problem (2.5) can be obtained as
the limit of a sequence of solutions of problems of the form (1.9). The main goal of such a procedure is
to prove that the numerical solution of both time-dependent and time-harmonic Maxwell’s systems can
be obtained in practice by solving a positive definite elliptic problem. In this preliminary section, we
construct such a sequence and we prove its convergence.

Let us consider the time-harmonic Maxwell’s system

curl
(
ε−1curl u

)− ω2µu = curl(ε−1j) in Ω,
div (µu) = 0 in Ω,

ε−1(curl u − j) × n = 0 on ∂Ω.

(2.5)

It is well known that this problem satisfies the Fredholm alternative (see Leis, 1986, see also Dautray &
Lions, 1988, and Boulmezaoud & El Rhabi, 2003).

Now, let us consider the following iteration procedure; given u0 = 0, for any k � 0 find uk+1 as the
solution of the weak problem

∀ v ∈ XT (µ; Ω)(ε−1curl uk+1, curl v) + τ(µuk+1, v) = (ω2 + τ)(uk, µv) + (ε−1j, curl v), (2.6)

where τ is a fixed real parameter not depending on k and which will be chosen to ensure convergence.
Observe that the bilinear form on the left-hand side of (2.6) is coercive if τ > −ω2

0. It follows from the
Lax–Milgram theorem that the sequence (uk)k�0 is well defined. The convergence of that sequence is
stated as follows.

PROPOSITION 1 Suppose that

ω < ω0 and τ > −ω2 + ω2
0

2
. (2.7)

Then, the sequence (uk)k�0 converges strongly in XT (µ; Ω) to the unique solution of (2.5) in XT (µ; Ω).
Furthermore, one has

‖uk − u‖XT (µ;Ω) � ε
1
2∞(ω2

0 + |τ |) 1
2 κk+1‖u‖YT (Ω,µ,ε),

where

κ = |ω2 + τ |
ω2

0 + τ
< 1.

Proof. Consider the sequence Φk = uk − u, where u ∈ XT (µ; Ω) is the solution of (2.5). Then,
div (µΦk) = 0 and

(ε−1curl Φk+1, curl v) + τ(Φk+1, µv) = (ω2 + τ)(Φk, µv), (2.8)

for all v ∈ XT (µ; Ω). It follows that

(ω2
0 + τ)‖√µΦk+1‖0,Ω � |ω2 + τ |‖√µΦk‖0,Ω .

Thus, if τ > −ω2
0 one gets

‖√µΦk+1‖0,Ω � κ‖√µΦk‖0,Ω .
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582 T. Z. BOULMEZAOUD AND M. EL RHABI

Hence,
‖√µΦk+1‖0,Ω � κk+1‖√µu‖0,Ω .

Moreover, from (2.8) then

ε−1∞ |Φk+1|2XT (µ;Ω) � (− inf(τ, 0)‖√µΦk+1‖0,Ω + |ω2 + τ |‖√µΦn‖0,Ω)‖√µΦk+1‖0,Ω

� [− inf(τ, 0)κk+1 + |ω2 + τ |κk]κk+1‖√µu‖2
0,Ω

� (ω2
0 + |τ |)κ2k+2‖√µu‖2

0,Ω .

If ω < ω0 and 2τ > −(ω2
0 + ω2), then κ < 1. In that case the sequence {uk} converges strongly to u in

XT (µ; Ω). �
Of course, the definition of κ in Proposition 1 suggests that the best choice for τ would be τ =

−ω2 < 0. With this choice, one is back to the original problem and the relaxation procedure is useless.
However, in order to get a positive definite bilinear form in the weak formulation, it is better to choose
τ > 0 in which case one is led at each iteration to solving a coercive problem.

In the remainder of this paper we deal only with problem (1.9).

3. The mortar method

3.1 The discrete space

In what follows, for each integer n � 0, Ln(x) stands for the Legendre polynomial of one variable and
of degree equal to n. Recall that Legendre polynomials form an orthogonal system in L2(] − 1, 1[) and
satisfy the following basic properties:

Ln(1) = 1,

∫ 1

−1
Ln(x)2 dx = 2

2n + 1
,

∫ 1

−1
L ′

n(x)2 dx = n(n + 1), (3.1)

for each integer n � 0.
Given an integer N � 2, the Gauss–Lobatto grid on ] − 1, 1[ of order N is formed by the zeros

ξN ,0 = −1 < ξN ,1 < · · · < ξN ,N = 1 of the polynomial (1 − x2)L ′
N (x) (see, e.g. Davis & Rabinowitz,

1985; Szegö, 1978; Bernardi & Maday, 1992). Moreover, there exist positive weights ρN ,0, . . . , ρN ,N

such that

∀ p ∈ P2N−1(] − 1, 1[),
∫ 1

−1
p(x) dx =

N∑
i=0

ρN ,i p(ξN ,i ). (3.2)

Suppose now that Ω has a non-overlapping partition of the form

�Ω =
K⋃

k=1

�Ωk,

where Ω1, . . . ,ΩK are K disjoint axiparallel rectangular parallelepipeds of R3. Assume that the inter-
section of two sub-domains is either empty or a point or a segment or a rectangle.

The skeleton S of this decomposition is defined by

S =
⎛⎝ K⋃

k=1

K⋃
j=1

∂Ωk ∩ ∂Ωj

⎞⎠ .
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MORTAR SPECTRAL ELEMENT METHOD 583

FIG. 1. A 2D example of a conforming decomposition (left). A 2D illustration of a non-conforming decomposition (centre).
A 2D illustration of an excluded domain decomposition since some mortars cannot be chosen as the whole edges of sub-domains
(right).

Suppose that this skeleton admits a partition of the form

S =
m⋂

s=1

F−
s ,

where, for each s � m, F−
s is a whole face of Ωk(s) for some k(s) � K . Let us underline that this

last assumption is not restrictive since it allows conforming and non-conforming geometrical decompo-
sitions (see 2D illustrations in Fig. 1). However, it excludes some domain decompositions for which
some of the faces F−

s could not be chosen as complete faces of sub-domains (see the 2D illustration in
Fig. 1).

The faces F−
s , s = 1, . . . , m, are called mortar faces.

In the sequel, given an integer s � m, we write

E(s) = {
 � K | ∂Ω
 ∩ F−
s �= ∅},

Ẽ(s) = E(s) − {k(s)}.
We call the slave side of F−

s the face F−
s itself considered as a part of the boundary of Ωk(s). By its

master side we mean F−
s considered as a part of the boundary of

⋃

∈Ẽ(s) Ω
. If u is a function on Ω ,

then u+ refers to its value on the master side of the skeleton, while u− refers to its value on the slave
side. The jump of u across the skeleton is given by [u] = u+ − u−. Consequently, the restriction of
any vector field in H(curl; Ω) to a sub-domain Ωk is in H(curl; Ωk) and satisfies the transmission
condition

[u × nk] = 0 (3.3)

at each interface ∂Ωk ∩ ∂Ω
. Notice that for almost every x ∈ F−
s there exists a unique 
 ∈ Ẽ(s) such

that x ∈ ∂Ωk(s) ∩ ∂Ω
.
Now, consider K integers N1, . . . , NK such that Nk � 2 for all k � K and define the global

discretization parameter
δ = (N1, . . . , NK ) ∈ NK . (3.4)

For any positive integer j � Nmin, δ − j will be the multi-index (N1 − j, . . . , NK − j). We set

Nmax = max
1�k�K

Nk,

Nmin = min
1�k�K

Nk,

Ms = Nk(s),

ηδ = max
1�s�m

max
∈E(s) N


min
∈E(s) N

� Nmax

Nmin
.
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584 T. Z. BOULMEZAOUD AND M. EL RHABI

FIG. 2. An example of the mortar decomposition in a 3D configuration.

Observe that
∀ s � m, ∀ 
 ∈ E(s), η−1

δ N
 � Ms � ηδ N
.

Now, to each sub-domain Ωk , k = 1, . . . , K , we associate a Gauss–Lobatto grid

Ξ k = {ξk
α = (ξ k

Nk ,i , ξ
k
Nk , j , ξ

k
Nk ,


); α = (i, j, 
) with |α| = sup(i, j, 
) � Nk},
obtained by translation and homothety in each direction of the nodes ξNk ,0, ξNk ,1, . . . , ξNk ,Nk .

The corresponding weights ρ
(k)
α , |α| � Nk , are given by

ρ(k)
α = ρNk ,iρNk , jρNk ,


|Ωk |
8

, with α = (i, j, 
).

Define also the discrete product on the space of continuous functions on Ωk by

(u, v)Ωk ,Nk =
∑

|α|�Nk

ρ(k)
α u(ξk

α)v(ξk
α).

Thus, if u and v are such that
uv|Ωk ∈ P2Nk−1(Ωk),

then

(u, v)Ωk ,Nk =
∫

Ωk

u(x)v(x) dx. (3.5)

Similarly, for any continuous vector functions u and v, define the scalar product

(u, v)Ωk ,Nk =
3∑

i=1

(ui , vi )Ωk ,Nk .
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MORTAR SPECTRAL ELEMENT METHOD 585

It is well known that there exists a constant C such that (see Canuto & Quarteroni, 1982, see also Remark
13.3 in Bernardi & Maday, 1994)

∀ ϕ ∈ PNk (Ωk), ‖ϕ‖2
0,Ωk
� (ϕ, ϕ)Ωk ,Nk � C‖ϕ‖2

0,Ωk
. (3.6)

Now, for any multi-index η = (n1, . . . , nK ) ∈ NK define Wη(Ω) as the space of all the functions
v ∈ L2(Ω) satisfying

v|Ωk ∈ Pnk (Ωk).

The global Lagrange interpolation operator Iδ associated with the grids Ξ k , k = 1, . . . , K , is defined
as follows: given a function v , continuous in each Ωk , Iδv is the only element of Wδ(Ω) satisfying

∀ k � K and ∀ ξ ∈ Ξ k, Iδv(ξ) = v(ξ).

The following estimate holds (see Bernardi & Maday, 1994, Theorem 14.2):

‖v − Iδv‖L2(Ω) � c
K∑

k=1

N−sk
k ‖v‖Hsk (Ωk ), (3.7)

and is valid for all v ∈ L2(Ω) such that for each k � K , v|Ωk ∈ Hsk (Ωk) for some sk > 3/2.
Now, we are in a position to construct the space Hδ(curl; Ω), the discrete counterpart of H(curl; Ω).

Namely, Hδ(curl; Ω) is defined as the space of all the vector functions v ∈ Wδ(Ω)3 satisfying∫
F−

s

(v+ × ns − v− × ns) ·ψ dλ2 = 0 ∀ψ ∈ Ms
δ(F−

s ), (3.8)

at each slave face F−
s , s � m. Here Ms

δ(F−
s ) denotes a suitable space of Lagrange multipliers. More

precisely, we choose
∀ 1 � s � m, Ms

δ(F−
s ) = PNk (s)−2(F−

s )2. (3.9)

Another adequate choice could be the following

∀ 1 � s � m, Ms
δ(F−

s ) = PNk(s)−2,Nk(s) (F−
s ) × PNk(s),Nk(s)−2(F−

s ). (3.10)

The forthcoming analysis remains valid for both the choices.
Notice that the condition (3.8) is a weaker version of the transmission condition (3.3). Consequently,
the inclusion Hδ(curl; Ω)↪→H(curl; Ω) does not hold in general.
Finally, define the broken norm ‖ · ‖H∗(curl,Ω) as follows

‖v‖2
H∗(curl,Ω) =

K∑
k=1

{(curl v, curl v)Ωk + (v, v)Ωk }.

3.2 The discrete problem

Here we wish to approximate the magnetic field H that satisfies the second-order equation

curl(ε−1curl u) + τµu = curl(ε−1j) + u0 in Ω,

curl u × n = j × n on ∂Ω,
(3.11)
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586 T. Z. BOULMEZAOUD AND M. EL RHABI

where τ > 0 is a given parameter, j is the imposed current source and u0 is a data field which comes
from time-stepping in the case of time-dependent equations, or from the iteration procedure in the case
of time-harmonic regime.

This problem can be written in the weak form: find u ∈ H(curl; Ω) such that

a(u, v) = 
(v), (3.12)

where

a(u, v) =
K∑

k=1

{∫
Ωk

ε−1curl u · curl v dx + τ

∫
Ωk

µu · v dx
}
,


(v) =
K∑

k=1

{∫
Ωk

ε−1j · curl v dx +
∫

Ωk

u0 · v dx
}
.

The corresponding discrete problem is to find uδ ∈ Hδ(curl; Ω) such that

aδ(uδ, vδ) = 
δ(vδ) ∀ v ∈ Hδ(curl; Ω), (3.13)

with

aδ(uδ, vδ) =
K∑

k=1

(ε−1curl uδ, curl vδ)Ωk ,Nk + τ(µuδ, vδ)Ωk ,Nk

and


δ(vδ) =
K∑

m=1

(ε−1j, curl vδ)Ωk ,Nk +
K∑

m=1

(u0, vδ)Ωk ,Nk .

Here we supposed that ε−1j and u0 are continuous in each Ωk . Observe that there exist two constants
α∗(τ, µ0, ε∞) and β∗(τ, µ0, ε∞), independent of δ, such that

∀ uδ ∈ Hδ(curl; Ω), aδ(uδ, uδ) � α∗‖uδ‖2
H∗(curl,Ω),

∀ uδ, vδ ∈ Hδ(curl; Ω), |aδ(uδ, vδ)| � β∗‖uδ‖H∗(curl,Ω)‖vδ‖H∗(curl,Ω),
(3.14)

thanks to (1.4) and (3.6).

REMARK 1 In the case of time-harmonic equations, one could be tempted to consider directly the
penalized discrete problem: find u ∈ XT,δ(µ; Ω) such that

a2,δ(u, v) = 
2,δ(v), (3.15)

where

a2,δ(u, v) =
K∑

k=1

{(ε−1curl u, curl v)Ωk ,Nk + (div (µu), div (µv))Ωk ,Nk − ω2(u, v)Ωk ,Nk }

and


2,δ(v) =
K∑

k=1

(ε−1j, curl v)Ωk ,Nk .
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Here XT,δ(µ; Ω) denotes the discrete space corresponding to XT (µ; Ω) which is constructed similarly
to Hδ(curl; Ω) by adding a matching condition on the normal component at the mortars. With such an
approach, a natural question arises, whether the semi-norm induced by the semi-inner-product

K∑
k=1

{∫
Ωk

ε−1curl u · curl v dx +
∫

Ωk

div (µu) · div (µv) dx
}

may be a uniformly elliptic norm on the discrete space XT,δ(µ; Ω) (as is the semi-norm (2.3) in the
continuous case). The difficulty of this unresolved question and the uncertainty about its affirmative
answer are circumvented here by the use of the iterative algorithm proposed in Section 2.2.

3.3 Error estimate

The main theoretical result of this paper is the following.

THEOREM 1 Let u ∈ H(curl; Ω) be the solution of (3.12) and uδ the solution of (3.13). We set

λ = ε−1(curl u − j). (3.16)

Suppose that, for each k ∈ {1, . . . , K },
u ∈ Hsk+1(Ωk)

3, λ ∈ Hσk+1(Ωk)
3

for some real numbers sk > 1/2, σk > 1/2. Suppose also that there exists a uniform constant η0 such
that

ηδ � η0. (3.17)

Then

‖u − uδ‖H∗(curl,Ω) � C

( K∑
k=1

N 1/4−sk
k ‖u‖H δk+1(Ωk )

+ (log Nk)
1/2 N−σk

k ‖λ‖Hσk+1(Ωk )

)
. (3.18)

REMARK 2 The condition (3.17) can be dropped provided that the right-hand side of (3.18) is replaced
by

C

(
(η

1/4
δ + η

3/4
δ )

K∑
k=1

N 1/4−sk
k ‖u‖H δk+1(Ωk )

+
K∑

k=1

η
σk
δ (log Nk)

1/2 N−σk
k ‖λ‖Hσk+1(Ωk )

)
.

The proof is based on the following lemma.

LEMMA 1 We have

‖u − uδ‖H∗(curl,Ω) � C

(
‖u − Iδu‖H∗(curl,Ω) + inf

vδ∈Hδ(curl;Ω)
‖u − vδ‖H∗(curl,Ω)

+ sup
wδ∈Hδ(curl;Ω),w�=0

b(u, wδ) − bδ(u, wδ)

‖wδ‖H∗(curl,Ω)

+ sup
wδ∈Hδ(curl;Ω),w�=0

a(u, wδ) − 
(wδ)

‖wδ‖H∗(curl,Ω)

)
, (3.19)

where
b(u, wδ) = a(u, wδ) − 
(wδ), bδ(u, wδ) = aδ(Iδu, wδ) − 
δ(wδ).
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588 T. Z. BOULMEZAOUD AND M. EL RHABI

Note that the last three terms on the right-hand side correspond, respectively, to the best approximation
error, the consistency error and the numerical integration error.
Proof. This lemma is a slight modification of the standard Berger–Scott–Strang lemma (see Berger
et al., 1972). Indeed, for any vδ ∈ Hδ(curl; Ω) one has

α∗‖uδ − vδ‖2
H∗(curl,Ω) � aδ(uδ − vδ, uδ − vδ) = 
δ(uδ − vδ) − aδ(vδ, uδ − vδ)

� 
δ(uδ − vδ) + aδ(Iδu − vδ, uδ − vδ) − aδ(Iδu, uδ − vδ)

+ a(u, uδ − vδ) − a(u, uδ − vδ) − 
(uδ − vδ) + 
(uδ − vδ).

Hence,

α∗‖uδ − vδ‖H∗(curl,Ω) � β∗‖Iδu − vδ‖H∗(curl,Ω)

+ sup
wδ∈Hδ(curl;Ω), wδ �=0

|b(u, wδ) − bδ(u, wδ)|
‖wδ‖H∗(curl,Ω)

+ sup
wδ∈Hδ(curl;Ω), wδ �=0

|a(u, wδ) − 
(wδ)|
‖wδ‖H∗(curl,Ω)

.

Finally, using the inequalities

‖u − uδ‖H∗(curl,Ω) � ‖u − vδ‖H∗(curl,Ω) + ‖uδ − vδ‖H∗(curl,Ω),

‖Iδu − vδ‖H∗(curl,Ω) � ‖u − Iδu‖H∗(curl,Ω) + ‖u − vδ‖H∗(curl,Ω),

completes the proof of (3.19). �
The rest of this section is devoted to the analysis of each term on the right-hand side of (3.18).

3.3.1 The interpolation and the best approximation error. The estimate of the best approximation
error consists of finding a good interpolant of u in the discrete space Hδ(curl; Ω). The construction of
such an approximation constitutes one of the main difficulties in the numerical analysis of the mortar
method.

PROPOSITION 2 Suppose that

u|Ωk ∈ Hsk+1(Ωk)

for some real numbers sk > 3/2 (k = 1, . . . , K ). Suppose also that the assumption (3.17) is satisfied.
Then

‖u − Iδu‖H∗(curl,Ω) + inf
vδ∈Hδ(curl;Ω)

‖u − vδ‖H∗(curl,Ω) � c
K∑

k=1

N 1/4−sk
k ‖u‖Hsk+1(Ωk )

, (3.20)

where c is not depending either on δ or on u.

The proof of Proposition 2 is divided into several steps. Let us start by introducing some useful
notations. Let Λ =] − 1, 1[3 be the unit cube and F =] − 1, 1[2×{1} its upper face. Let e1 = (1, 0, 0),
e2 = (0, 1, 0) and e3 = (0, 0, 1) be the canonical basis of R3. Consider a collection of non-trivial open
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rectangles G1, . . . , Gr such that

• Gi ∩ Gj = ∅ for any i, j such that i �= j ,

• F =
⋃r

i=1
Gi .

• The edges of each Gk are parallel to the co-ordinate axes.

Denote by H̃1(F) the space of all the functions u ∈ L2(F) such that

u|Gi ∈ H1(Gi ) for all i ∈ {1, . . . , r}.
Step 1: some discrete operators

For any integers N and M , πN ,M stands for the L2 projector from L2(F) onto PN ,M (F). We denote
by P∗,x

N ,M (F) (resp. P∗,y
N ,M (F)) the space of all the polynomial functions v ∈ PN ,M (F) satisfying v = 0

at x = ±1 (resp. at y = ±1). Define also the operator π∗,x
N ,M as follows: for all u ∈ L2(Ω), π∗,x

N ,M u is
the unique element of P∗,x

N ,M (F) satisfying∫
F
(u − π∗,x

N ,M u) · ψ dx dy = 0, for any ψ ∈ PN−2,M (F). (3.21)

Similarly, let us introduce the operator π
∗,y
N ,M defined as: for all u ∈ L2(Ω), π

∗,y
N ,M u is the unique

element of P∗,y
N ,M (F) such that∫

F
(u − π

∗,y
N ,M u) · ψ dx dy = 0, for any ψ ∈ PN ,M−2(F). (3.22)

We state the following result.

PROPOSITION 3 Let N � 1 and M � 1 be two integers. There exist two constants c1, c2, depending
neither on N nor on M , such that

‖π∗,x
N ,M u‖L2(F) � c1 N−1

r∑
k=1

(‖u‖H1(Gk )
+ N‖u‖L2(Gk )

)
, (3.23)

∥∥∥∥∥∂(π∗,x
N ,M u)

∂x

∥∥∥∥∥
L2(F)

� c2 N 1/2
r∑

k=1

(‖u‖H1(Gk )
+ N‖u‖L2(Gk )

)
, (3.24)

for each u ∈ H̃1(F). Similar estimates hold for the operator π
∗,y
N ,M with N replaced by M and x replaced

by y.

Proof. The following lemma is a first step towards the proof of Proposition 3.

LEMMA 2 Let N � 1 and M � 1 be two integers. There exists a constant c not depending either on N
or on M such that for any function u ∈ H̃1(F) one has

‖(πN ,M u)(±1, ·)‖L2(]−1,1[) � c1 N−1/2
r∑

k=1

(‖u‖H1(Gk )
+ N‖u‖L2(Gk )

). (3.25)
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590 T. Z. BOULMEZAOUD AND M. EL RHABI

Proof. Let u ∈ H̃1(F). We set w = πN ,M u ∈ PN ,M (F) and

qN (x, y) = (L N (x) + L N+1(x))w(1, y) ∈ PN+1,M (F).

We have on the one hand ∫ 1

−1
w(x, y)

∂qN

∂x
(x, y) dx = 2w(1, y)2,

since qN is orthogonal to the space PN−1,M (F). On the other hand, we can write∫
F

w(x, y)
∂qN

∂x
(x, y) dx dy =

∫
F

u(x, y)
∂qN

∂x
(x, y) dx dy.

Hence,

2
∫ 1

−1
w2(1, y) dy =

r∑
k=1

∫
Gk

u(x, y)
∂qN

∂x
(x, y) dx dy

=
r∑

k=1

(
−
∫

Gk

∂u

∂x
(x, y)qN (x, y) dx dy +

∫
∂Gk

u(x, y)qN (x, y)n · e1dσ

)
� c

r∑
k=1

(
N−1/2

∥∥∥∥∂u

∂x

∥∥∥∥
L2(Gk )

+ ‖u‖L2(∂Gk )

)
‖w(1, ·)‖L2(]−1,1[),

where we used the Cauchy–Schwarz inequality combined with the estimates

‖qN ‖2
L2(F)

= (‖L N ‖2
L2(]−1,1[) + ‖L N+1‖2

L2(]−1,1[)

)‖w(1, ·)‖2
L2(]−1,1[)

� C N−1‖w(1, ·)‖2
L2(]−1,1[)

|q(x, y)| �
(

max
−1�x�1

|L N−1(x)| + max
−1�x�1

|L N−2(x)|
)

|w(1, y)|
� 2|w(1, y)| ∀ (x, y) ∈ F.

Recall that there exists a constant C such that for any ε > 0 the inequality

‖v‖L2(∂Gk )
� c(ε‖v‖H1(Gk )

+ ε−1‖v‖L2(Gk )
)

holds for any v ∈ H1(Gk). Taking v = u and ε = N−1/2 gives (3.25). �
We need also the following lemma.

LEMMA 3 There exists a constant c such that for any integers N and M and any polynomial function p
in PN ,M (] − 1, 1[2), the following inequality holds

‖p‖L2(T ) � C N‖p‖L2(]−1,1[2), (3.26)

where T = ({−1}×] − 1, 1[) ∪ ({1}×] − 1, 1[).

Proof. Let p be in PN ,M (] − 1, 1[2). We write its expansion in the basis of Legendre polynomials

p(x, y) =
N∑

k=0

M∑
j=0

ak, j Lk(x)L j (y),
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so that

‖p‖2
L2(]−1,1[2)

=
N∑

k=0

M∑
j=0

4a2
k, j

(2k + 1)(2 j + 1)
.

On the other hand, we have

‖p‖2
L2(T )

=
∥∥∥∥∥∥

M∑
j=0

(
N∑

k=0

(−1)kak, j

)
L j (·)

∥∥∥∥∥∥
2

L2(]−1,1[)

+
∥∥∥∥∥∥

M∑
j=0

(
N∑

k=0

ak, j

)
L j (·)

∥∥∥∥∥∥
2

L2(]−1,1[)

=
M∑

j=0

2
(∑N

k=0(−1)kak, j

)2

2 j + 1
+

M∑
j=0

2
(∑N

k=0 ak, j

)2

2 j + 1
.

Then, using the Cauchy–Schwarz inequality leads to

‖p‖2
L2(T )

= 4

(
N∑

k=0

(2k + 1)

)
M∑

j=0

N∑
k=0

a2
k, j

(2k + 1)(2 j + 1)

� C N 2‖p‖2
L2(]−1,1[2)

.

This completes the proof of Lemma 3. �
Now, we are in position to prove Proposition 3. Let u ∈ H̃1(F) and set w = πN−2,M u ∈ PN ,M (F)

and v = π∗,x
N ,M u. We prove easily that

v(x, y) = w(x, y) − 1

2
(L N−1(x) + L N (x))w(1, y) − 1

2
(L N−1(−x) + L N (−x))w(−1, y).

Thus,

‖v‖L2(F) � ‖w‖L2(F) + C

N 1/2

(‖w(1, ·)‖L2(]−1,1[) + ‖w(−1, ·)‖L2(]−1,1[)

)
.

Using (3.25) yields (3.23).
On the other hand, one has∫

F

(
∂v

∂x

)2

dx dy = −
∫

F
v
∂2v

∂x2
dx dy

= −
∫

F
u

∂2v

∂x2
dx dy

=
r∑

k=1

∫
Gk

∂u

∂x

∂v

∂x
dx dy −

∫
∂Gk

u
∂v

∂x
n · ex dσ

�
r∑

k=1

(‖u‖H1(Gk )
+ N‖u‖L2(∂Gk )

)

∥∥∥∥∂v

∂x

∥∥∥∥
L2(Gk )

,

where we used the inverse inequality∥∥∥∥∂v

∂x
n · ex

∥∥∥∥
L2(∂Gk )

� C N

∥∥∥∥∂v

∂x

∥∥∥∥
L2(Gk )

,

which follows from Lemma 3. This ends the proof of Proposition 3. �
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Step 2: a lifting operator

LEMMA 4 Let N � 1 and M � 1 be two integers. Then, for all v ∈ P∗,x
N ,M (F) there exists a function

ψ ≡ Ry
N ,Mv ∈ PN ,M,N (Λ) such that

ψ = v, on F,

ψe2 × n = 0, on ∂Λ − F.
(3.27)

Moreover, there exists a constant c not depending either on N or on M such that

‖ψe2‖2
H(curl;Λ) � c‖v‖L2(F)

∥∥∥∥∂v

∂x

∥∥∥∥
L2(F)

. (3.28)

Proof. In the following, c and C denote two generic constants not depending on N and M . We set

ψ(x, y, z) = ϕN (z)v(x, y),

where ϕN ∈ PN (] − 1, 1[) is a function which satisfies

ϕN (1) = 1, ϕN (−1) = 0,

and which will be chosen later. It is quite clear that ψ fulfills (3.27). On the other hand, we have

‖ψ‖2
L2(Λ)

= ‖ϕN ‖2
L2(]−1,1[)‖v‖2

L2(F)
,

‖curl(ψe2)‖2
L2(Λ)

= ‖ϕN ‖2
L2(]−1,1[)

∥∥∥∥∂v

∂x

∥∥∥∥2

L2(F)

+ ‖v‖2
L2(F)

‖ϕ′
N ‖2

L2(]−1,1[).
(3.29)

Thus, if v �= 0

‖curl(ψe2)‖2
L2(Λ)

= (‖ϕN ‖2
L2(]−1,1[)ω

2
v + ‖ϕ′

N ‖2
L2(]−1,1[)

)‖v‖2
L2(F)

,

where

ωv =
∥∥ ∂v

∂x

∥∥
L2(F)

‖v‖L2(F)

.

Note that
c � ωv � C N 2, (3.30)

thanks to the inverse inequality ∥∥∥∥∂v

∂x

∥∥∥∥
L2(F)

� C N 2‖v‖L2(F), (3.31)

and the Poincaré inequality ∥∥∥∥∂v

∂x

∥∥∥∥
L2(F)

� c‖v‖L2(F). (3.32)

Now, we choose
ϕN (z) = αpN (z) + βpN+1(z),
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where for any m ∈ {N , N + 1}, pm(z) is defined as

pm(z) =
∑
k�0

1

ω
2(k+1)
v

L(2k+1)
m (z),

while α and β are given by

α = 1

2pN (1)
, β = 1

2pN+1(1)
.

Observe that
|α| � cωv, |β| � cωv,

since

pm(1) � L ′
m(1)

ω2
v

� cm2

ω2
v

� c

ωv
,

for m = N or m = N + 1 (thanks to (3.30)). Observe also that ϕN satisfies

ϕN (1) = 1, ϕN (−1) = 0

and
ω2

vϕN (z) − ϕ′′
N (z) = αL ′

N (z) + βL ′
N+1(z). (3.33)

Multiplying the latter by ϕN (z) and integrating by parts on ] − 1, 1[ gives

ω2
v‖ϕN ‖2

L2(]−1,1[) + ‖ϕ′
N ‖2

L2(]−1,1[) = λN ,

where λN = ϕ′
N (1) + α + β.

On the other hand, multiplying (3.33) by 2(z + 1)ϕ′
N (z) and integrating by parts again yields

ω2
v‖ϕN ‖2

L2(]−1,1[) − ‖ϕ′
N ‖2

L2(]−1,1[) = 2ω2
v − 2ϕ′

N (1)2 − 4(α + β)ϕ ′
N (1) = 2ω2

v − 2λ2
N + 2(α + β)2.

Hence,
2ω2

v‖ϕN ‖2
L2(]−1,1[) = −2λ2

N + λN + 2ω2
v + 2(α + β)2 � 0

and
2‖ϕ′

N ‖2
L2(]−1,1[) = 2λ2

N + λN − 2ω2
v − 2(α + β)2 � 0.

It follows that

−1 +√1 + 16ω2
v + 16(α + β)2

4
� λN �

1 +√1 + 16ω2
v + 16(α + β)2

4
� Cωv.

Finally, we get after substitution into (3.29)

‖curl(ψe2)‖2
L2(Λ)

� c

∥∥∥∥∂v

∂x

∥∥∥∥
L2(F)

‖v‖L2(F),

‖ψ‖2
L2(Λ)

� c

ωv
‖v‖2

L2(F)
,

�
‖v‖3

L2(F)∥∥ ∂v
∂x

∥∥
L2(F)

� c‖v‖L2(F)

∥∥∥∥∂v

∂x

∥∥∥∥
L2(F)

,

where we used Poincaré’s inequality (3.32). Inequality (3.28) follows immediately. �
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REMARK 3 The choice of the polynomial ϕN is not as arbitrary as it seems. Indeed it minimizes the
functional

ω2
v‖ϕN ‖2

L2(]−1,1[) + ‖ϕ′
N ‖2

L2(]−1,1[),

on the set of all the polynomial functions p ∈ PN (] − 1, 1[) satisfying the conditions p(1) = 1 and
p(−1) = 0.

PROPOSITION 4 Let N � 1 and M � 1 be two integers. Then, there exists an operator RN ,M from
L2(Λ)3 onto PN ,M,M (Λ) × PN ,M,N (Λ) × {0} such that for all u ∈ L2(F)3,RN ,Mu satisfies∫

F
(RN ,Mu × n) ·ψ dx dy =

∫
F
(u × n) ·ψ dx dy, for any ψ ∈ PN−2,M (F) × PN ,M−2(F),

RN ,Mu × n = 0, on ∂Λ − F.
(3.34)

Moreover, there exists a constant c, independent of N and M , such that for all u = (u1, u2, u3) ∈
H̃(F)2 × L2(F), we have

‖RN ,Mu‖H(curl;Λ) � c

{
M−1/4

r∑
k=1

(‖u1‖H1(Gk )
+ M‖u1‖L2(Gk )

)
+N−1/4

r∑
k=1

(‖u2‖H1(Gk )
+ N‖u2‖L2(Gk )

)}
. (3.35)

Proof. Let u = (u1, u2, u3) ∈ L2(F)3 and set

RN ,Mu = w1e1 + w2e2,

where w1 = (Rx
N ,M ◦ π

∗,y
N ,M )u1 and w2 = (Ry

N ,M ◦ π∗,x
N ,M )u2. Here Ry

N ,M denotes the lifting operator

of Lemma 4, while Rx
N ,M is the operator obtained from Ry

N ,M by exchanging x and y. It is quite clear
thatRN ,Mu satisfies (3.34). Furthermore, we have

‖RN ,Mu‖2
H(curl;Λ) � c

⎛⎝‖π∗,y
N ,M u1‖L2(F)

∥∥∥∥∥∂(π
∗,y
N ,M u1)

∂y

∥∥∥∥∥
L2(F)

+ ‖π∗,x
N ,M u2‖L2(F)

∥∥∥∥∥∂(π∗,x
N ,M u2)

∂x

∥∥∥∥∥
L2(F)

⎞⎠
� c

⎛⎝M−1/2

{
r∑

k=1

(‖u1‖H1(Gk )
+ M‖u1‖L2(Gk )

)}2

+ N−1/2

{
r∑

k=1

(‖u2‖H1(Gk )
+ N‖u2‖L2(Gk )

)}2
⎞⎠,

which is the desired result. �
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Step 3: proof of Proposition 2

Let us now find an element ũδ in the discrete space Hδ(curl; Ω) which is a good interpolant of u.
Firstly, we put

ũδ = Iδu + wδ,

where wδ will be chosen subsequently. Let z be the function defined on the skeleton S as follows

z = [Iδu − u] = [Iδu] on F−
s , for s = 1, . . . , m.

Let F−
s , s � m, be a mortar face. For any 
 ∈ E(s) we set Γs,
 = F−

s ∩∂Ω
 and we define the following
extension of z

Rsz =
{
RMs z, in Ωk(s),

0, elsewhere,

where RMs is the lifting operator in Ωk(s) constructed from the operator RMs ,Ms of Proposition 4 by
translation, homothety and rotation.

It follows from Proposition 4 that

‖Rsz‖H∗(curl,Ω) � cM−1/4
s

∑

∈Ẽ(s)

(‖z × ns‖H1(F−
s ∩∂Ω
)

+ Ms‖z × ns‖L2(F−
s ∩∂Ω
)

)

� cM−1/4
s

∑

∈E(s)

(‖(Iδu − u) × ns‖H1(F−
s ∩∂Ω
)

+ Ms‖(Iδu − u) × ns‖L2(F−
s ∩∂Ω
)

)

� cM−1/4
s

∑

∈E(s)

(N 1/2−s


 + Ms N−1/2−s



 )‖u × n‖H1/2+s
 (∂Ω
)
)

� c(η1/4
δ + η

3/4
δ )

K∑
k=1

N 1/4−sk
k ‖u‖Hsk+1(Ωk )

.

Finally, we choose

wδ =
m∑

s=1

Rsz.

Then,

‖u − ũδ‖H∗(curl,Ω) � ‖u − Iδu‖ +
m∑

s=1

‖Rsz‖H∗(curl,Ω)

� C(η
1/4
δ + η

3/4
δ )

K∑
k=1

N 1/4−sk
k ‖u‖Hsk+1(Ωk )

.

Using (3.17) ends the proof of (3.20). �

3.3.2 The consistency error. Let λ be the vector field defined by (3.16). Note that λ ∈ H0(curl; Ω)
since

curlλ = −τµu + u0 in Ω, λ× n = 0 on ∂Ω.

An estimate of the consistency error in terms of the vector field λ is given in the following.
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596 T. Z. BOULMEZAOUD AND M. EL RHABI

PROPOSITION 5 Assume that for each k ∈ {1, . . . , K }, λ|Ωk ∈ Hσk+1(Ωk) for some real σk > 1/2.
Then

sup
wδ∈Hδ(curl;Ω),wδ �=0

a(u, wδ) − 
(wδ)

‖wδ‖H∗(curl,Ω)
� c

K∑
k=0

η
σk
δ (log Nk)

1/2 N−σk
k ‖λ‖Hσk+1(Ωk )

. (3.36)

Proof. Observe that

a(u, wδ) − 
(wδ) =
K∑

k=1

{
(ε−1curl u, curl wδ)Ωk + τ(µu, wδ)Ωk − (ε−1j, curl wδ)Ωk − (u0, wδ)Ωk

}

=
K∑

k=1

(λ, curl wδ)Ωk − (curlλ, wδ)Ωk .

Suppose now that λ ∈ H1(Ωk) for any k � K . Then, after an integration by parts we get

a(u, wδ) − 
(wδ) =
K∑

k=0

∫
∂Ωk

(wδ × n) · λ dσ

=
m∑

s=0

∫
F−

s

[w+
δ × ns − w−

δ × ns] · λ dσ

=
m∑

s=0

∫
F−

s

[w+
δ × ns − w−

δ × ns] · (λ−ψ) dσ,

where ψ is an arbitrary function defined on the skeleton S and is such that ψ ∈ PMs (F−
s )3 for any

s � M . It follows that for any positive and sufficiently small parameters ρk , k = 1, . . . , K , one has

|a(u, wδ) − 
(wδ)| � c
m∑

s=1

∑
k∈E(s)

∣∣∣∣∫
∂Ωk

(wδ × n) · ˜(λ−ψ) dσ

∣∣∣∣
� c

m∑
s=1

∑
k∈E(s)

‖wδ × n‖H−1/2+ρk (∂Ωk )
· ‖ ˜(λ−ψ)‖H1/2−ρk (∂Ωk )

� c
m∑

s=1

⎛⎝ ∑
k∈E(s)

ρ
−1/2
k ‖wδ × n‖H−1/2+ρk (∂Ωk )

‖λ−ψ‖H1/2−ρk (F−
s )

⎞⎠ ,

where ˜(λ−ψ) denotes the extension by zero of λ − ψ to ∂Ωk . The term ρ
−1/2
k is due to the norm of

this extension considered as a mapping from H1/2−ρk (F−
s ) into H1/2−ρk (∂Ωk).

On the other hand, we have

‖wδ × n‖H−1/2+ρk (∂Ωk )
� ‖wδ‖Hρk (Ωk ) + ‖curl wδ‖L2(Ωk )

,
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MORTAR SPECTRAL ELEMENT METHOD 597

thanks to the formula (2.1). Then

‖wδ × n‖H−1/2+ρk (∂Ωk )
� cN 2ρk

k ‖wδ‖H(curl;Ωk ).

Finally, choosing ρk = (log Nk)
−1 gives

|a(u, wδ) − 
(wδ)| � c
m∑

s=1

⎛⎝ ∑
k∈E(s)

ρ
−1/2
k N 2ρk

k M−σk−ρk
s ‖wδ‖H(curl;Ωk )‖λ‖Hσk+1/2(F−

s )

⎞⎠
� c

K∑
k=0

⎛⎝ ∑
k∈E(s)

η
σk
δ (log Nk)

1/2 N−σk
k ‖wδ‖H(curl;Ωk )‖λ‖Hσk+1/2(F−

s )

⎞⎠
� c

K∑
k=0

η
σk
δ (log Nk)

1/2 N−σk
k ‖λ‖Hσk+1(Ωk )

‖wδ‖Hδ(curl;Ω).

�

3.3.3 The numerical integration error. Our task here is to give an estimate of the error due to the
use of quadrature formulas for computing the integrals appearing in the discrete problem. We state the
following.

LEMMA 5 Suppose that the vector field λ, defined by (3.16), satisfies the assumptions of Proposition 5.
Then, there exists a constant c not depending either on δ or on u such that

sup
wδ∈Hδ(curl;Ω),w�=0

b(u, wδ) − bδ(u, wδ)

‖wδ‖Hδ(curl;Ω)
� c

K∑
k=1

N−σk
k ‖λ‖Hσk+1(Ωk )

, (3.37)

where
b(u, wδ) = a(u, wδ) − 
(wδ), bδ(u, wδ) = aδ(u, wδ) − 
δ(wδ).

Proof. The estimate of the numerical integration is a classical exercise. In fact, consider two functions
z1 ∈ Wδ−1(Ω)3, z2 ∈ Wδ−1(Ω)3. One has

|b(u, wδ) − bδ(u, wδ)| �
∣∣∣∣∣

K∑
k=1

(λ− z1, curl wδ)Ωk + (τµu − u0 + z2, wδ)Ωk

+
K∑

k=1

(z1 − λ, curl wδ)Ωk ,Nk + (z2 − τµu + u0, wδ)Ωk ,Nk

∣∣∣∣∣
�
∣∣∣∣∣

K∑
k=1

(λ− z1, curl wδ)Ωk + (z2 − curlλ, wδ)Ωk

+
K∑

k=1

(z1 − λ, curl wδ)Ωk ,Nk + (curlλ− z2, wδ)Ωk ,Nk

∣∣∣∣∣.
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598 T. Z. BOULMEZAOUD AND M. EL RHABI

It follows that

sup
wδ∈Hδ(curl;Ω), wδ �=0

|b(u, wδ) − bδ(u, wδ)|
‖wδ‖Hδ(curl;Ω)

� c
{‖λ− z1‖L2(Ω) + ‖curlλ− z2‖L2(Ω)

+ ‖Iδλ− z1‖L2(Ω) + ‖Iδ(curlλ) − z2‖L2(Ω)

}
� c

{‖λ− z1‖L2(Ω) + ‖curlλ− z2‖L2(Ω)

+ ‖Iδλ− λ‖L2(Ω) + ‖Iδ(curlλ) − curlλ‖L2(Ω)

}
.

Choosing z1 = Iδ−1λ, z2 = Iδ−1λ and using (3.7) completes the proof of (3.37). �

4. Numerical implementation

The goal of this section is twofold. Firstly, we give some details about the numerical implementation of
the system (3.13). More precisely, we prove that the matching conditions (3.8) can be written explicitly
without having to resort to numerical inversion of the resulting linear system. This calculus induces the
construction of an explicit basis of the discrete space Hδ(curl; Ω).

Secondly, we present some computational results obtained with a 3D code. These results confirm
the good convergence of the method and the relaxation algorithm exposed in Section 2.2.

4.1 A basis of Hδ(curl; Ω). The treatment of the matching conditions

The definition of the space Hδ(curl; Ω) introduced in Section 3.1 depends on the choice of the Lagrange
multiplier spacesMs

δ(Fs). Here we consider the spacesMs
δ(Fs) defined by (3.9). The other choice given

by (3.10) can be treated exactly by the same method.
Let ξk , 1 � k � G, be the nodes of the grid Ξ . For each s ∈ {1, . . . , m} we set

Λint = {k | ξk �∈ S} (nodes outside the skeleton),

Λ+
s = {k | ξk ∈ Ξ
 ∩ S for some 
 ∈ Ẽ(s)} (nodes on the master side of the skeleton),

Λ−
s = {k | ξk ∈ Ξ k(s) ∩ S} (nodes on the slave side of the skeleton),

Λ̃−
s = {k ∈ Λ−

s | ξk �∈ ∂ F−
s },

Λ̂−
s = {k ∈ Λ−

s | ξk ∈ ∂ F−
s }.

Notice that
card(Λ−

s ) = (Nk(s) + 1)2, card(Λ̃−
s ) = (Nk(s) − 1)2 = dim(PNk(s)−2).

The grid Ξ can be partitioned as follows

Ξ = {ξk, k ∈ Λint} ∪
(

m⋃
s=1

({ξk, k ∈ Λ−
s } ∪ {ξk, k ∈ Λ+

s })) .

Now, consider an arbitrary node ξk . There exists an integer j � K and a multi-index α such that
ξk = ξ( j)

α . The basis function of Wδ(Ω), associated with the node ξk , is defined as

ϕk(x) =
{


( j)
α (x), if x ∈ Ωj ,

0, elsewhere,

where 

( j)
α is the Lagrange polynomial associated with the node ξ( j)

α in the Gauss–Lobatto grid Ξ j .
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MORTAR SPECTRAL ELEMENT METHOD 599

Observe that the jump [ϕk] across the skeleton S vanishes if k ∈ Λint.
Now, any vector function uδ ∈ Wδ(Ω)3 can be written in the form

uδ =
∑

k∈Λint

uint
k ϕk(x) +

m∑
s=1

⎛⎝ ∑
k∈Λ+

s ∪Λ−
s

(unor
k ns + u�

k )ϕk(x)

⎞⎠ , (4.1)

where u�
k · ns = 0 for any k ∈ ∪m

s=1(Λ
+
s ∪ Λ−

s ). Moreover, uδ belongs to Hδ(curl; Ω) if and only if
its tangential components satisfy the matching conditions (3.8). These conditions can be interpreted as
follows; at each face F−

s of the skeleton S, the tangential degrees of freedom u�
k , k ∈ ∪m

s=1(Λ
+
s ∪ Λ−

s ),
satisfy

∀ s ∈ {1, . . . , m}, ∀ p ∈ PNs−2(F−
s ),

∑
k∈Λ+

s ∪Λ−
s

(∫
F−

s

[ϕk] · p(x) dσ

)
u�

k = 0.

Hence, for any s ∈ {1, . . . , m} and any p ∈ PNs−2(F−
s )∑

k∈Λ̃−
s

(∫
F−

s

[ϕk] · p(x) dσ

)
u�

k = −
∑

k∈Λ+
s

(∫
F−

s

[ϕk] · p(x) dσ

)
u�

k −
∑

k∈Λ̂−
s

(∫
F−

s

[ϕk] · p(x) dσ

)
u�

k .

(4.2)

Let U+
s , Ũ−

s and Û−
s be the vectors containing the values u�

k when k describes Λ+
s , Λ̃−

s and Λ̂+
s ,

respectively. The linear system (4.2) can be written in the form

Q̃−
s Ũ−

s = Q+
s U+

s + Q̂−
s Û−

s , (4.3)

where Q̃−
s , Q+

s and Q̂−
s are known matrices. Let U be the vector containing all the values uint

k
(k ∈ Λint), unor

k for k ∈ ∪m
s=1(Λ

−
s ∪ Λ+

s ) and u�
k for k ∈ ∪m

s=1Λ̂
−
s ∪ Λ+

s . The vector field con-
taining all the unknowns uδ at all nodes of the grid Ξ is denoted by Ũ . Notice that Ũ contains both the
real unknowns already stored in U and the apparent unknowns, u�

m , m ∈ ∪m
s=1Λ̃

−
s . The vectors U and

Ũ are linked by a relation of the form
Ũ = QU,

where Q is a rectangular matrix the rows of which are mostly those of the identity except those coming
from the matrices (Q̃−

s )−1 Q+
s and (Q̃−

s )−1 Q̂−
s . Finally, the discrete problem (3.13) can be written in

the form
Q� AQU = B, (4.4)

where A is the block matrix corresponding to the bilinear form aδ(·, ·) given by

A =

⎛⎜⎜⎜⎝
A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 AK

⎞⎟⎟⎟⎠ .

Here Ak , k = 1, . . . , K , is the stiffness matrix associated with the local bilinear form

ak(u, v) = (ε−1curl u, curl v)Ωk ,Nk + τ(µu, v)Ωk ,Nk .
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600 T. Z. BOULMEZAOUD AND M. EL RHABI

Since the final matrix Â = Q� AQ is positive definite and symmetric, one can use a usual iterative
method, e.g. Conjugate Gradient, for solving the linear system (4.4).

Let us prove now that the matching linear systems (4.3) can be inverted manually without resort
to numerical inversion. We provide by this way a basis of the space Hδ(curl; Ω). We suppose for
simplicity that F−

s =] − 1, 1[2×{0}. We can write

uδ =
∑

k∈Λint

uint
k ϕk +

m∑
s=1

⎛⎝ ∑
k∈Λ+

s ∪Λ−
s

unor
k ϕkns +

∑
k∈Λ+

s ∪Λ̂−
s

u�
k ϕ̃k

⎞⎠ . (4.5)

Here the basis functions ϕ̃k are defined by

ϕ̃k = ϕk −
∑

j∈Λ̃−
s

qk, j ϕj , 1 � s � m, k ∈ Λ+
s ∪ Λ̂−

s ,

where the coefficients qk, j are chosen so that∫
F−

s

[ϕ̃k] · q dσ = 0, ∀ q ∈ PNs−2(F−
s ). (4.6)

It is worth noting that for any s � m and k ∈ Λ+
s we have

ϕ̃k =
{

ϕk, on the master side of F−
s ,

−∑j∈Λ̃−
s

qk, jϕj , on the slave side of F−
s .

It follows that the vector Vk = (qk,1, . . . , qk,θ ), θ = card(Λ̃−
s ), is a solution of a linear system of the

form Q̃Vk = Bk .
For any k ∈ Λ+

s ∪ Λ̂−
s , define on F−

s the functions

ψk =
∑

j∈Λ̃−
s

qk, j ϕ−
j , ψ̃k =

{
ϕ−

k , if k ∈ Λ̂−
s ,

πNs ϕ
+
k , if k ∈ Λ+

k ,

where ϕ+
k (resp. ϕ−

k ) denotes the value of ϕk on the master (resp. the slave) side of F−
s and πNs is the

orthogonal projector from L2(F−
s ) onto PNs (F−

s ). Notice that for each k ∈ Λ+
s one has

ψ̃k =
Ns∑


, j=1

(2
 + 1)(2 j + 1)

4

(∫
F−

s

ϕ+
k (x, y) · L
(x)L j (y) dx dy

)
L
(x)L j (y) dx dy. (4.7)

The matching condition (4.6) can be rewritten in the form

ψk − ψ̃k ∈ P⊥
Ns−2(F−

s ),

where P⊥
Ns−2(F−

s ) is the orthogonal projector of PNs−2(F−
s ) in PNs (F−

s ). Since

P⊥
Ns−2(F−

s ) = {p(x)L j (y) + q(y)Lk(x), p ∈ PNs (] − 1, 1[x ), q ∈ PNs (] − 1, 1[y),

Ns − 1 � j, k � Ns} ,
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one gets easily to the formula

ψk = ψ̃k − 1

2
ψ̃k(x, 1)(L Ns (y) + L Ns−1(y)) − (−1)Ns

2
ψ̃k(x, −1)(L Ns (y) − L Ns−1(y))

− 1

2
ψ̃k(1, y)(L Ns (x) + L Ns−1(x)) − (−1)Ns

2
ψ̃k(−1, y)(L Ns (x) − L Ns−1(x))

−
(

δ

2
L Ns−1(x) + β

2
L Ns (x)

)
L Ns−1(y) −

(
γ

2
L Ns−1(x) + λ

2
L Ns (x)

)
L Ns−1(y), (4.8)

where

2λ = ψ̃k(1, 1) + (−1)Ns (ψ̃k(−1, 1) + ψ̃k(1, −1)) + ψ̃k(−1, −1),

2β = ψ̃k(1, 1) + (−1)Ns (ψ̃k(−1, 1) − ψ̃k(1, −1)) − ψ̃k(−1, −1),

2γ = ψ̃k(1, 1) + (−1)Ns (ψ̃k(−1, 1) + ψ̃k(1, −1)) − ψ̃k(−1, −1),

2δ = ψ̃k(1, 1) + (−1)Ns (ψ̃k(−1, 1) − ψ̃k(1, −1)) + ψ̃k(−1, −1).

Finally, observe that

∀ k ∈ Λ+
s ∪ Λ̂−

s , ∀ j ∈ Λ̃−
s , qk, j = ψk

(
ξ

k(s)
α( j)

)
,

where ξk(s)
α( j) ∈ F−

s is the node associated with the function ϕj . This ends the inversion of (4.3) and the
construction of a basis of Hδ(curl; Ω).

4.2 Computational tests

Our purpose here is to show some numerical experiments obtained with a 3D code for solving the
discrete system (3.13). The aim of these tests is to compare the computational results with the numerical
analysis given above. The domain of computation is the cube Ω = ] − 1, 1[3 decomposed into three
sub-domains

Ω1 =] − 1, 1[2 × ] − 1, 0[, Ω2 =] − 1, 0[ × ] − 1, 1[ × ]0, 1[, Ω3 =]0, 1[ × ] − 1, 1[ × ]0, 1[.

This decomposition is clearly non-conforming. The mortar faces are

F1 = ] − 1, 0[×] − 1, 1[×{0}, k(1) = 2,

F2 = ]0, 1[×] − 1, 1[×{0}, k(2) = 3,

F3 = {0}×] − 1, 1[×] − 1, 0[, k(3) = 3.

Figure 3 shows a vertical section of the domain Ω = Ω1 ∪ Ω2 ∪ Ω3.
The tests we make here are gathered into two parts. The first tests concern the approximation of the

problem (3.11) by the mortar spectral method exposed above (Examples 1 and 2). The second tests are
devoted to approximating the harmonic problem (2.5) by means of the relaxation scheme exposed in
Section 2.2. The mortar method is used at each iteration of that scheme.
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602 T. Z. BOULMEZAOUD AND M. EL RHABI

FIG. 3. A vertical section of the 3D domain used for the numerical tests with a 15–15–10 Gauss–Lobatto grid.

4.2.1 Tests on the convergence of the mortar method. In all the examples here, the parameters ε and
µ are piecewise constant, namely

µ(x) = µk, ε(x) = εk in Ωk, k = 1, 2, 3.

For simplicity we say that a discretization is m − n − k, where m, n, k are three integers if N1 = m,
N2 = n and N3 = k.

EXAMPLE 1: THE HOMOGENEOUS CASE The analytical example we use is given by

u = µ−1v, j = µ−1curl v + τεw,

where

v(x, y, z) =
⎛⎝ f (x) f ′(y) f ′(z)

4 f ′(x) f (y) f ′(z)
−5 f ′(x) f ′(y) f (z)

⎞⎠ , w =
⎛⎝ 3 f ′(x) f (y) f (z)

−2 f (x) f ′(y) f (z)
− f (x) f (y) f ′(z)

⎞⎠ (4.9)

and f (t) = (sinh 2) sinh t − (sinh 1) sinh(2t). Here we choose εk = µk = 1 for k ∈ {1, 2, 3}.
In Fig. 4 the three components of the vector field u at the section y = 1/2 are displayed. The same

components are shown in the same figure after a computation by the mortar method with a 10–8–8 grid.
These figures show, on the one hand, the continuity of the tangential trace across the mortars which is
ensured by the matching conditions (3.8). On the other hand, they display the continuity of the normal
trace which is implicit to the original equation.

Figure 5 shows the space distribution of the error when a 10–8–6 discretization is used. One can
observe that the interface between sub-domains 1 and 2 is quasi-transparent since the error in its neigh-
bourhood is very small. However, the error at interfaces between the sub-domain 3 and the sub-domains
1 and 2 is more significant. This is not due to the mortar matching conditions but to the diffusion of
errors coming from sub-domain 3 where the grid is rough.
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MORTAR SPECTRAL ELEMENT METHOD 603

FIG. 4. Example 1. The three components of the exact solution at the section y = 1/2 (left) and of the approximate one (right) at
the section y = 1/2. The computation of the approximate solution is done with a 10–8–8 mortar method.
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FIG. 5. Example 1. The distribution at y = 1/2 of the numerical error when a 10–8–6 mortar method is used for computing the
approximate solution.
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MORTAR SPECTRAL ELEMENT METHOD 605

FIG. 6. Example 1. The relative L2 error on the curl (in a logarithmic scale) versus N for a 3N /2–3N /2–N discretization (solid
line) and a 3N /2–N–3N /2 discretization (dashed line) (left). The relative L2 error (in a logarithmic scale) versus N for the same
discretizations (right).

In Figs 6 and 7 the relative L2 error on curl u, on u and the L2 norm of div u (the latter is divided
by the L2 norm of curl u) are displayed, respectively, versus a parameter N for 1.5N–1.5N–N and
1.5N–N–1.5N discretizations.

EXAMPLE 2: THE HETEROGENEOUS CASE In this second example, we keep the same exact solution
as in Example 1, but we use heterogeneous physical parameters ε and µ. Namely, we take

ε1 = 1.0, ε2 = ε3 = 1.5,

µ1 = 1.0, µ2 = 2.0, µ3 = 0.5.
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FIG. 7. Example 1. The relative L2 norm of the divergence (in a logarithmic scale) versus N for a 3N/2–3N/2–N discretization
(solid line) and a 3N/2–N–3N/2 discretization (dashed line) (left). Example 2. The relative H(curl) norm of the error (solid
line) and the L2 norm of the divergence (dashed line) (in a logarithmic scale) versus N for a 3N/2–3N/2–N discretization (right).

The three components of this heterogeneous solution are displayed in Fig. 8 (on the left) at the section
y = 1/2. The distribution of the error in each component is also displayed at the same section (on the
right).

Figure 7 shows the behaviour of the H(curl) norm of the error and the L2 norm of the divergence
versus N when a 1.5N–1.5N–N discretization is used. The decay of these errors confirms the con-
vergence of the method in the case of heterogenous media, provided that the solution is sufficiently
smooth.

4.2.2 Tests on the convergence of the iterative scheme for a harmonic system. Our task here is to
confirm numerically the convergence of the iterative procedure proposed in Section 2.2 for solving the
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FIG. 8. Example 2. The three components of the exact heterogeneous solution (left). The distribution of the numerical error when
a 9–5–6 mortar spectral method is used (right).
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FIG. 9. The rate of convergence ‖un+1 − un‖XT (µ;Ω)/‖un‖XT (µ;Ω) versus the number of iterations for several values of the
parameter τ (ω is fixed: ω = 0.1π ) (left). The rate of convergence versus the number of iterations for several values of ω (τ is
fixed: τ = 10) (right). A 7–5–5 discretization is used for all the tests.

harmonic problem (2.5). In all the tests, the parameters ε and µ are supposed constant. The current
density j is given by

j = µ−1curl v − ω2εw, (4.10)

where v and w are given by (4.9). The corresponding solution of (2.5) is u = µ−1v.
The discretization parameters are also fixed; N1 = 7, N2 = 5, N3 = 5. Figure 9 shows the rate of

convergence
‖un+1 − un‖XT (µ;Ω)

‖un‖XT (µ;Ω)
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MORTAR SPECTRAL ELEMENT METHOD 609

versus the iteration number n for several values of τ (with ω = 0.1π ) and for several values of ω
(τ = 10). It is quite clear that the smaller τ and ω are, the faster is the convergence. Furthermore, there
exists a value ωδ ≈ 0.4π such that the algorithm does not converge if ω > ωδ . All these observations
confirm the predictions of Proposition 1. It is worth noting that the error does not vary significantly with
the parameter τ . However, this parameter has a significant influence on the spectral properties of the
matrix A, Â = Q� AQ. More precisely, for small (but positive) values of τ , the convergence of the CG
algorithm used for inverting the linear system becomes slow. Nevertheless, in such a situation one can
use preconditioners to get rapid convergence.
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