, A.2. Positive definite operators. A symmetric operator N : C 0 (D) ? M 0 (D) is called positive definite if it satisfies N f, f > 0 for any f ? C 0 (D) \ {0}. A similar definition holds for operators R : M 0 (D) ? C 0 (D)

, Proposition A.2 (On symmetric and positive definite operators)

H. Abou-kandil, G. Freiling, V. Ionescu, and G. Jank, Matrix Riccati equations in control and systems theory, 2012.

D. Aldous, B. Flannery, and J. Palacios, Two applications of urn processes: the fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov chains, Probab. Engrg. Inform. Sci, vol.2, issue.3, pp.293-307, 1988.

A. Asselah, P. A. Ferrari, and P. Groisman, Quasistationary distributions and Fleming-Viot processes in finite spaces, J. Appl. Probab, vol.48, issue.2, pp.322-332, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00795852

M. Bena¨?mbena¨?m and B. Cloez, A stochastic approximation approach to quasi-stationary distributions on finite spaces, Electron. Commun. Probab, vol.20, 2015.

M. Benaim, B. Cloez, and F. Panloup, Stochastic approximation of quasi-stationary distributions on compact spaces and applications, Ann. Appl. Probab, vol.4, issue.28, pp.2370-2416, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01334603

P. Billingsley, Convergence of probability measures, 1999.

K. Burdzy, R. Holyst, D. Ingerman, and P. March, Configurational transition in a Fleming-Viot-type model and probabilistic interpretation of Laplacian eigenfunctions, J. Phys. A, vol.29, issue.11, p.2633, 1996.

, Central Limit Theorem for stationary Fleming-Viot particle systems in finite spaces 19

K. Burdzy, R. Ho-lyst, and P. March, A Fleming-Viot particle representation of the Dirichlet Laplacian, Comm. Math. Phys, vol.214, issue.3, pp.679-703, 2000.

F. Cérou, B. Delyon, A. Guyader, and M. Rousset, A central limit theorem for Fleming-Viot particle systems with soft killing, 2016.

F. Cérou, B. Delyon, A. Guyader, and M. Rousset, A central limit theorem for Fleming-Viot particle systems with hard killing, 2017.

B. Cloez and M. Thai, Fleming-Viot processes: two explicit examples, ALEA Lat. Am. J. Probab. Math. Stat, vol.13, issue.1, pp.337-356, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01278923

B. Cloez and M. Thai, Quantitative results for the Fleming-Viot particle system and quasi-stationary distributions in discrete space, Stochastic Process. Appl, vol.126, pp.680-702, 2016.

P. Collet, S. Martínez, and J. San-martín, Quasi-stationary distributions, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00138521

J. N. Darroch and E. Seneta, On quasi-stationary distributions in absorbing continuous-time finite Markov chains, J. Appl. Probab, vol.4, pp.192-196, 1967.

D. Moral and L. Miclo, Particle approximations of lyapunov exponents connected to schrödinger operators and feynman-kac semigroups, ESAIM Probab. Statist, vol.7, pp.171-208, 2003.

A. Etheridge, An introduction to superprocesses, 2000.

P. Ferrari and N. Maric, Quasi stationary distributions and Fleming-Viot processes in countable spaces, Electron. J. Probab, vol.12, pp.684-702, 2007.

I. Grigorescu and M. Kang, Hydrodynamic limit for a Fleming-Viot type system, Stochastic Process. Appl, vol.110, issue.1, pp.111-143, 2004.

I. Grigorescu and M. Kang, Tagged particle limit for a Fleming-Viot type system, Electron. J. Probab, vol.11, pp.311-331, 2006.

P. Groisman and M. Jonckheere, Simulation of quasi-stationary distributions on countable spaces, Markov Process. Related Fields, vol.19, issue.3, pp.521-542, 2013.

J. Löbus, A stationary Fleming-Viot type Brownian particle system, Math. Z, vol.263, issue.3, pp.541-581, 2009.

W. Oçafrain and D. Villemonais, Non-failable approximation method for conditioned distributions, Stoch. Anal. Appl, vol.4, issue.35, pp.587-603, 2017.

G. Pagès, Sur quelques algorithmes récursifs pour les probabilités numériques, ESAIM Probab. Statist, vol.5, pp.141-170, 2001.

G. A. Pavliotis, Stochastic processes and applications: Diffusion processes, the Fokker-Planck and Langevin equations, 2014.

M. Rousset, On the control of an interacting particle estimation of Schrödinger ground states, SIAM J. Math. Anal, vol.38, issue.3, pp.824-844, 2006.

E. Seneta, Non-negative matrices and Markov chains, 2006.
DOI : 10.1007/0-387-32792-4

A. Sznitman, Topics in propagation of chaos
DOI : 10.1007/bfb0085169

X. Saint-flour, Lecture Notes in Math, vol.1464, pp.165-251, 1989.

D. Villemonais, General approximation method for the distribution of Markov processes conditioned not to be killed, ESAIM Probab. Statist, vol.18, pp.441-467, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00598085