P. Argoul and B. Kabalan, Pedestrian Trajectories and Collisions in Crowd Motion, 2017.
DOI : 10.1103/PhysRevLett.107.278001

D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Physical Review E, vol.206, issue.5, pp.4282-4286, 1995.
DOI : 10.1016/0378-4371(94)90312-3

URL : http://arxiv.org/pdf/cond-mat/9805244v1.pdf

D. Helbing, P. Molnár, I. J. Farkas, and K. Bolay, Self-organizing pedestrian movement. Environment and Planning B: Planning and Design, pp.361-383, 0320.
DOI : 10.1068/b2697

R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Research Part B: Methodological, vol.36, issue.6, pp.507-535, 2002.
DOI : 10.1016/S0191-2615(01)00015-7

J. P. Agnelli, F. Colasuonno, and D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains, Mathematical Models and Methods in Applied Sciences, vol.22, issue.01, pp.25109-129, 2015.
DOI : 10.1016/j.plrev.2013.06.004

N. Bellomo, A. Bellouquid, and D. Knopoff, From the Microscale to Collective Crowd Dynamics, Multiscale Modeling & Simulation, vol.11, issue.3, pp.11943-963, 2013.
DOI : 10.1137/130904569

N. Bellomo and A. Bellouquid, On the modeling of crowd dynamics: Looking at the beautiful shapes of swarms. Networks and Heterogeneous Media, pp.383-399, 2011.

N. Bellomo and L. Gibelli, Toward a mathematical theory of behavioral-social dynamics for pedestrian crowds Mathematical Models and Methods in Applied Sciences Bellomo and A. Bellouquid. On multiscale models of pedestrian crowds from mesoscopic to macroscopic, Commun. Math. Sci, vol.25, issue.13, pp.2417-2437, 2015.

N. Bellomo, Modeling complex living systems, Birkhuser Basel, 2008.

V. V. Aristov, P. Barbante, A. Frezzotti, and L. Gibelli, Direct methods for solving the Boltzmann equation and study of nonequilibrium flows A kinetic theory description of liquid menisci at the microscale, Kinetic and Related Models, vol.14, issue.82, pp.335235-254, 2001.

N. Bellomo and A. Bellouquid, Global solution to the Cauchy problem for discrete velocity models of vehicular traffic, Journal of Differential Equations, vol.252, issue.2, pp.1350-1368, 2012.
DOI : 10.1016/j.jde.2011.09.005

URL : https://doi.org/10.1016/j.jde.2011.09.005

A. Bellouquid, E. D. Angelis, and L. Fermo, TOWARDS THE MODELING OF VEHICULAR TRAFFIC AS A COMPLEX SYSTEM: A KINETIC THEORY APPROACH, Mathematical Models and Methods in Applied Sciences, vol.1, issue.supp01, p.221140003, 2012.
DOI : 10.1016/j.mcm.2006.04.007

N. Bellomo and L. Gibelli, Behavioral crowds: Modeling and Monte Carlo simulations toward validation. Computers and Fluids, Advances in Fluid-Structure Interaction, pp.13-21, 2016.
DOI : 10.1016/j.compfluid.2016.04.022

G. Marsan, N. Ajmone, L. Bellomo, and . Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Mathematical Models and Methods in Applied Sciences Higher order operator splitting methods via Zassenhaus product formula: Theory and applications. Computers and Mathematics with Applications, pp.1051-1093, 2000.
DOI : 10.1007/s00191-011-0237-1

M. Kim, E. Park, and J. C. Lopez-marcos, An upwind scheme for a nonlinear model in age-structured population dynamics, Computers and Mathematics with Applications, pp.5-17, 1991.
DOI : 10.1016/0898-1221(95)00132-I

URL : https://doi.org/10.1016/0898-1221(95)00132-i