S. Choi and C. A. , Adaptive blind separation of speech signals: Cocktail party problem, Proc. Int. Conf. Speech Processing, pp.617-622, 1997.

D. M. and E. B. , Blind source separation with a time-varying mixing matrix, Proc. of the Forty-First Asilomar Conference on Signal, System & Computer, pp.626-630, 2007.

D. Ferreira, A. M. Sá, A. Cerqueira, and J. Seixas, ICA-Based Method for Quantifying EEG Event-Related Desynchronization, Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation ICA'09, pp.403-410, 2009.
DOI : 10.1109/TASSP.1981.1163512

M. Congedo, C. Gouy-pailler, and C. Jutten, On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics, Clinical Neurophysiology, vol.119, issue.12, pp.2677-2686, 2008.
DOI : 10.1016/j.clinph.2008.09.007

URL : https://hal.archives-ouvertes.fr/hal-00343628

P. Comon, Independent component analysis, a new concept ?, Signal Process, pp.287-314, 1994.
DOI : 10.1016/0165-1684(94)90029-9

F. Vrins, D. Pham, and M. Verleysen, Is the General Form of Renyi???s Entropy a Contrast for Source Separation?, Lecture Notes in Computer Science, vol.4666, 2007.
DOI : 10.1007/978-3-540-74494-8_17

URL : http://www.dice.ucl.ac.be/~verleyse/papers/ica07fv.pdf

E. Moreau, J. Pesquet, and N. Thirion-moreau, Convolutive Blind Signal Separation Based on Asymmetrical Contrast Functions, IEEE Transactions on Signal Processing, vol.55, issue.1, pp.356-371, 2007.
DOI : 10.1109/TSP.2006.882068

URL : https://hal.archives-ouvertes.fr/hal-00621821

M. Castella, S. Rhioui, E. Moreau, and J. Pesquet, Quadratic Higher Order Criteria for Iterative Blind Separation of a MIMO Convolutive Mixture of Sources, IEEE Transactions on Signal Processing, vol.55, issue.1, pp.218-232, 2007.
DOI : 10.1109/TSP.2006.882113

URL : https://hal.archives-ouvertes.fr/hal-00621797

D. Pham, Mutual information approach to blind separation of stationary sources, IEEE Trans. Information Theory, vol.48, issue.7

A. Cichocki and S. Amari, Families of Alpha- Beta- and Gamma- Divergences: Flexible and Robust Measures of Similarities, Entropy, vol.45, issue.6, pp.1532-1568, 2010.
DOI : 10.1093/biomet/88.3.865

URL : http://www.mdpi.com/1099-4300/12/6/1532/pdf

A. Basu, C. Park, H. Shioya, and W. Huang, Statistical Inference, The Minimum Distance Approach, 2011.

R. Beran, Minimum Hellinger Distance Estimates for Parametric Models, The Annals of Statistics, vol.5, issue.3, pp.445-463, 1977.
DOI : 10.1214/aos/1176343842

URL : http://doi.org/10.1214/aos/1176343842

B. G. Lindsay, Efficiency Versus Robustness: The Case for Minimum Hellinger Distance and Related Methods, The Annals of Statistics, vol.22, issue.2, pp.1081-1114, 1994.
DOI : 10.1214/aos/1176325512

URL : http://doi.org/10.1214/aos/1176325512

R. Jiménez and Y. Shao, On robustness and efficiency of minimum divergence estimators, Test, vol.1, issue.2, pp.241-248, 2001.
DOI : 10.1007/978-1-4612-4578-0

M. Sahmoudi, H. Snoussi, and M. G. Amin, Robust approach for blind source separation in non-gaussian noise environments, Proccedings of IS- CCSP, 2006.

A. Belouchrani and A. Cichocki, Robust whitening procedure in blind source separation context, Electronics Letters, vol.36, issue.24, pp.24-2050, 2000.
DOI : 10.1049/el:20001436

URL : http://www.bsp.brain.riken.go.jp/publications/2000/belcia_el2000.pdf

R. Aichner, H. Buchner, and W. Kellermann, Convolutive Blind Source Separation for Noisy Mixtures, Topics in Speech and Audio Processing in Adverse Environments, pp.469-524, 2008.
DOI : 10.1007/978-3-540-70602-1_13

URL : http://www.lnt.de/~aichner/publications/aichner_daga2004.pdf

L. Rudin, S. Oshers, and E. Fatemi, Non linear total variation based noise removal algorithm, in: Annual internationnal conference N11,Los Alamos NM, Etats-Unis N 1-4, pp.259-268, 1992.

A. Chambolle, An algorithm for total variation minimization and application, Journal of Mathematical Imaging and vision, vol.20, issue.12, pp.89-97, 2004.

A. Haddad and Y. Meyer, An improvement of Rudin???Osher???Fatemi model, Applied and Computational Harmonic Analysis, vol.22, issue.3, pp.319-334, 2007.
DOI : 10.1016/j.acha.2006.09.001

URL : https://doi.org/10.1016/j.acha.2006.09.001

I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Scientiarum Mathematicarum Hungarica, vol.2, pp.299-318, 1967.

F. Liese and I. Vajda, Convex statistical distances, 1987.

N. Cressie and T. R. Read, Multinomial goodness-of-fit tests, J. Roy. Statist. Soc. Ser. B, vol.46, issue.3, pp.440-464, 1984.

A. Keziou, Dual representation of ??-divergences and applications, Comptes Rendus Mathematique, vol.336, issue.10, pp.857-862, 2003.
DOI : 10.1016/S1631-073X(03)00215-2

M. Broniatowski and A. Keziou, Minimization of ??-divergences on sets of signed measures, Studia Scientiarum Mathematicarum Hungarica, vol.43, issue.4, pp.403-442, 2006.
DOI : 10.1556/SScMath.43.2006.4.2

URL : https://hal.archives-ouvertes.fr/hal-00467649

M. Broniatowski and A. Keziou, Parametric estimation and tests through divergences and the duality technique, Journal of Multivariate Analysis, vol.100, issue.1, pp.16-36, 2009.
DOI : 10.1016/j.jmva.2008.03.011

URL : https://doi.org/10.1016/j.jmva.2008.03.011

B. G. Lindsay, Efficiency Versus Robustness: The Case for Minimum Hellinger Distance and Related Methods, The Annals of Statistics, vol.22, issue.2, pp.1081-1114, 1994.
DOI : 10.1214/aos/1176325512

URL : http://doi.org/10.1214/aos/1176325512

L. Evans and R. Gariepy, Measure theory and fine properties of function, Studies in Advanced Mathematics

A. Cohen, D. Wolfgang, I. Daubechies, and R. Devore, Harmonic Analysis of the space BV, Revista Matem??tica Iberoamericana, vol.19, issue.1, pp.235-263, 2003.
DOI : 10.4171/RMI/345

M. Babaie-zadeh, C. Jutten, and K. Nayebi, Separating Convolutive Mixtures by Mutual Information Minimization, Proceedings of IWANN, Granada, pp.834-842, 2001.
DOI : 10.1007/3-540-45723-2_101

M. E. Rhabi, G. Gelle, H. Fenniri, and G. Delaunay, A penalized mutual information criterion for blind separation of convolutive mixtures, Signal Processing, vol.84, issue.10, pp.1979-1984, 2004.
DOI : 10.1016/j.sigpro.2004.06.015

B. W. Silverman, Density estimation for statistics and data analysis, Monographs on Statistics and Applied Probability, 1986.

B. M. Graham and A. Adler, Objective selection of hyperparameter for EIT, Physiological Measurement, vol.27, issue.5, pp.27-32, 2006.
DOI : 10.1088/0967-3334/27/5/S06

URL : http://www.sce.carleton.ca/faculty/adler/publications/2005/graham-adler-2005-hyperparameter.pdf