, with Ethical Standards ? Funding: This research was entirely funded by the respective institutions of the authors
, ? Conflict of interest: The authors declare that they have no conflict of interest
, ? Neither human participants nor animals are involved in this research. Bibliography [1] Super-Resolution Imaging, Digital Imaging and Computer Vision, 2010.
, A locally adaptive l1-l2 norm for multi-frame super-resolution of images with mixed noise and outliers, Signal Processing, vol.105, pp.156-174, 2014.
Computer vision applied to super resolution, IEEE Signal Processing Magazine, vol.20, issue.3, pp.75-86, 2003. ,
DOI : 10.1109/MSP.2003.1203211
Generalizing the Nonlocal-Means to Super-Resolution Reconstruction, IEEE Transactions on Image Processing, vol.18, issue.1, pp.36-51, 2009. ,
DOI : 10.1109/TIP.2008.2008067
Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images, Signal Processing, vol.103, pp.155-167, 2014. ,
DOI : 10.1016/j.sigpro.2014.01.008
A multi-frame image super-resolution method, Signal Processing, vol.90, issue.2, pp.405-414, 2010. ,
DOI : 10.1016/j.sigpro.2009.05.028
Robust super resolution of images with non-parametric deformations using an elastic registration, Applied Mathematical Sciences, vol.8, issue.179, pp.8897-8907, 2014. ,
DOI : 10.12988/ams.2014.49751
An industrial video surveillance system for quality assurance of a manufactory assembly, Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments, PETRA '10, p.66, 2010. ,
DOI : 10.1145/1839294.1839373
Bayesian filter based behavior recognition in workflows allowing for user feedback, Computer Vision and Image Understanding, vol.116, issue.3, pp.422-434, 2012. ,
DOI : 10.1016/j.cviu.2011.09.006
Deep supervised learning for hyperspectral data classification through convolutional neural networks, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.2015-4959, 2015. ,
DOI : 10.1109/IGARSS.2015.7326945
Super-resolution land cover pattern prediction using a Hopfield neural network, Remote Sensing of Environment, vol.79, issue.1, pp.1-14, 2002. ,
DOI : 10.1016/S0034-4257(01)00229-2
A super-resolution reconstruction algorithm for surveillance images, Signal Processing, vol.90, issue.3, pp.848-859, 2010. ,
DOI : 10.1016/j.sigpro.2009.09.002
Investigation into optical flow super-resolution for surveillance applications ,
Digital imaging for cultural heritage preservation: Analysis, restoration, and reconstruction of ancient artworks, 2011. ,
Ioannides, 5d modelling: An efficient approach for creating spatiotemporal predictive 3d maps of large-scale cultural resources, ISPRS Annals of the Photogrammetry , Remote Sensing and Spatial Information Sciences, p.61, 2015. ,
Image super-resolution: Historical overview and future challenges, Super-resolution imaging, pp.20-34, 2010. ,
Super-resolution target identification from remotely sensed images using a Hopfield neural network, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.4, pp.781-796, 2001. ,
DOI : 10.1109/36.917895
Super-resolution image reconstruction: a technical overview, IEEE Signal Processing Magazine, vol.20, issue.3, pp.21-36, 2003. ,
DOI : 10.1109/MSP.2003.1203207
Multiframe image restoration and registration, In: Advances in Computer Vision and Image Processing ,
Super-resolution from image sequences-a review, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268), p.374, 1998. ,
DOI : 10.1109/MWSCAS.1998.759509
A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur, IEEE Transactions on Image Processing, vol.10, issue.8, pp.1187-1193, 2001. ,
DOI : 10.1109/83.935034
A computationally efficient superresolution image reconstruction algorithm, IEEE Transactions on Image Processing, vol.10, issue.4, pp.573-583, 2001. ,
DOI : 10.1109/83.913592
Bayesian superresolution image reconstruction using an l1 prior, in: Image and Signal Processing and Analysis, Proceedings of 6th International Symposium on, pp.152-157, 2009. ,
Variational Bayesian Super Resolution, IEEE Transactions on Image Processing, vol.20, issue.4, pp.984-999, 2011. ,
DOI : 10.1109/TIP.2010.2080278
URL : http://decsai.ugr.es/vip/files/journals/2011SR.BMK.pdf
Region-based weighted-norm with adaptive regularization for resolution enhancement, Digital Signal Processing, vol.21, issue.4, pp.508-516, 2011. ,
DOI : 10.1016/j.dsp.2011.02.005
A Generalized Detail-Preserving Super-Resolution method, Signal Processing, vol.120, pp.156-173, 2016. ,
DOI : 10.1016/j.sigpro.2015.09.006
Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation, IEEE Transactions on Image Processing, vol.17, issue.3, pp.326-339, 2008. ,
DOI : 10.1109/TIP.2007.916051
URL : http://decsai.ugr.es/vip/files/journals/derin_raf_akk_ip_308.pdf
Regularized super-resolution image reconstruction employing robust error norms, Optical Engineering, vol.17, issue.11, pp.117004-117004, 2009. ,
DOI : 10.1049/el:20000267
A robust iterative multiframe superresolution reconstruction using a huber bayesian approach with hubertikhonov regularization, Intelligent Signal Processing and Communications ISPACS'06. International Symposium on, pp.13-16, 2006. ,
DOI : 10.1109/ispacs.2006.364825
Robust Color Image Superresolution: An Adaptive M-Estimation Framework, EURASIP Journal on Image and Video Processing, vol.2008, 2008. ,
DOI : 10.1109/83.766865
URL : https://doi.org/10.1155/2008/763254
Robust super-resolution by minimizing a gaussian-weighted l2 error norm, Journal of Physics: Conference Series, p.12037, 2008. ,
DOI : 10.1088/1742-6596/124/1/012037
URL : http://iopscience.iop.org/article/10.1088/1742-6596/124/1/012037/pdf
An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization, NeuroImage, vol.118, pp.584-597, 2015. ,
DOI : 10.1016/j.neuroimage.2015.06.018
A Lorentzian Stochastic Estimation for a Robust Iterative Multiframe Super-Resolution Reconstruction with Lorentzian-Tikhonov Regularization, EURASIP Journal on Advances in Signal Processing, vol.7, issue.3, pp.1-21, 2007. ,
DOI : 10.1007/3-540-48236-9_23
URL : https://doi.org/10.1155/2007/34821
Advances and challenges in super-resolution, International Journal of Imaging Systems and Technology, vol.19, issue.2, pp.47-57, 2004. ,
DOI : 10.1002/0471221325
A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization, Digital Signal Processing, vol.23, issue.1, pp.98-109, 2013. ,
DOI : 10.1016/j.dsp.2012.06.013
A combined total variation and bilateral filter approach for image robust super resolution, EURASIP Journal on Image and Video Processing, vol.33, issue.1, pp.1-10, 2015. ,
DOI : 10.1512/iumj.1984.33.33036
URL : https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-015-0075-4?site=jivp-eurasipjournals.springeropen.com
A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction method, Signal Processing, Image Communication, vol.34, pp.1-13, 2015. ,
Anisotropic diffusion in image processing, 1998. ,
Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Transactions on Image Processing, vol.7, issue.3, pp.398-410, 1998. ,
DOI : 10.1109/83.661190
URL : http://www.cvgpr.uni-mannheim.de/weickert/Papers/aos.ps.gz
A theoretical framework for convex regularizers in pde-based computation of image motion, International Journal of Computer Vision, vol.45, issue.3, pp.245-264, 2001. ,
DOI : 10.1023/A:1013614317973
Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990. ,
DOI : 10.1109/34.56205
URL : https://authors.library.caltech.edu/6498/1/PERieeetpami90.pdf
Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992. ,
DOI : 10.1016/0167-2789(92)90242-F
Behavioral analysis of anisotropic diffusion in image processing, IEEE Transactions on Image Processing, vol.5, issue.11, pp.1539-1553, 1996. ,
Coherence-enhancing diffusion of colour images, Image and Vision Computing, vol.17, issue.3-4, pp.201-212, 1999. ,
DOI : 10.1016/S0262-8856(98)00102-4
URL : http://www.cvgpr.uni-mannheim.de/weickert/Papers/nspria97.ps.gz
Mathematical problems in image processing: partial differential equations and the calculus of variations, 2006. ,
Anisotropic Huber-L1 Optical Flow, Procedings of the British Machine Vision Conference 2009, p.3, 2009. ,
DOI : 10.5244/C.23.108
Image Super-Resolution by TV-Regularization and Bregman Iteration, Journal of Scientific Computing, vol.7, issue.6, pp.367-382, 2008. ,
DOI : 10.1007/3-540-47778-0_29
Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures, IEEE Signal Processing Magazine, vol.26, issue.1, pp.98-117, 2009. ,
DOI : 10.1109/MSP.2008.930649
Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004. ,
DOI : 10.1109/TIP.2003.819861
URL : http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf
Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, 2014. ,
DOI : 10.1137/1.9781611973488
Scale-space properties of nonlinear diffusion filtering with a diffusion tensor, Citeseer, 1994. ,
Functional analysis, Sobolev spaces and partial differential equations, 2010. ,
DOI : 10.1007/978-0-387-70914-7
Nonlinear functional analysis, 1969. ,
, Sci. Paris, vol.256, issue.24, pp.5042-5044, 1963.