, with Ethical Standards ? Funding: This research was entirely funded by the respective institutions of the authors

, ? Conflict of interest: The authors declare that they have no conflict of interest

, ? Neither human participants nor animals are involved in this research. Bibliography [1] Super-Resolution Imaging, Digital Imaging and Computer Vision, 2010.

, A locally adaptive l1-l2 norm for multi-frame super-resolution of images with mixed noise and outliers, Signal Processing, vol.105, pp.156-174, 2014.

D. Capel and A. Zisserman, Computer vision applied to super resolution, IEEE Signal Processing Magazine, vol.20, issue.3, pp.75-86, 2003.
DOI : 10.1109/MSP.2003.1203211

M. Protter, M. Elad, H. Takeda, and P. Milanfar, Generalizing the Nonlocal-Means to Super-Resolution Reconstruction, IEEE Transactions on Image Processing, vol.18, issue.1, pp.36-51, 2009.
DOI : 10.1109/TIP.2008.2008067

R. M. Bahy, G. I. Salama, and T. A. Mahmoud, Adaptive regularization-based super resolution reconstruction technique for multi-focus low-resolution images, Signal Processing, vol.103, pp.155-167, 2014.
DOI : 10.1016/j.sigpro.2014.01.008

X. Li, Y. Hu, X. Gao, D. Tao, and B. Ning, A multi-frame image super-resolution method, Signal Processing, vol.90, issue.2, pp.405-414, 2010.
DOI : 10.1016/j.sigpro.2009.05.028

A. Laghrib, A. Hakim, S. Raghay, and M. Rhabi, Robust super resolution of images with non-parametric deformations using an elastic registration, Applied Mathematical Sciences, vol.8, issue.179, pp.8897-8907, 2014.
DOI : 10.12988/ams.2014.49751

E. Sardis, A. Voulodimos, V. Anagnostopoulos, C. Lalos, A. Doulamis et al., An industrial video surveillance system for quality assurance of a manufactory assembly, Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments, PETRA '10, p.66, 2010.
DOI : 10.1145/1839294.1839373

D. I. Kosmopoulos, N. D. Doulamis, and A. S. Voulodimos, Bayesian filter based behavior recognition in workflows allowing for user feedback, Computer Vision and Image Understanding, vol.116, issue.3, pp.422-434, 2012.
DOI : 10.1016/j.cviu.2011.09.006

K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, Deep supervised learning for hyperspectral data classification through convolutional neural networks, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.2015-4959, 2015.
DOI : 10.1109/IGARSS.2015.7326945

A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, Super-resolution land cover pattern prediction using a Hopfield neural network, Remote Sensing of Environment, vol.79, issue.1, pp.1-14, 2002.
DOI : 10.1016/S0034-4257(01)00229-2

L. Zhang, H. Zhang, H. Shen, and P. Li, A super-resolution reconstruction algorithm for surveillance images, Signal Processing, vol.90, issue.3, pp.848-859, 2010.
DOI : 10.1016/j.sigpro.2009.09.002

F. C. Lin, C. B. Fookes, V. Chandran, and S. Sridharan, Investigation into optical flow super-resolution for surveillance applications

F. Stanco, S. Battiato, and G. Gallo, Digital imaging for cultural heritage preservation: Analysis, restoration, and reconstruction of ancient artworks, 2011.

A. Doulamis, N. Doulamis, C. Ioannidis, C. Chrysouli, N. Grammalidis et al., Ioannides, 5d modelling: An efficient approach for creating spatiotemporal predictive 3d maps of large-scale cultural resources, ISPRS Annals of the Photogrammetry , Remote Sensing and Spatial Information Sciences, p.61, 2015.

J. Yang and T. Huang, Image super-resolution: Historical overview and future challenges, Super-resolution imaging, pp.20-34, 2010.

A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, Super-resolution target identification from remotely sensed images using a Hopfield neural network, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.4, pp.781-796, 2001.
DOI : 10.1109/36.917895

S. C. Park, M. K. Park, and M. G. Kang, Super-resolution image reconstruction: a technical overview, IEEE Signal Processing Magazine, vol.20, issue.3, pp.21-36, 2003.
DOI : 10.1109/MSP.2003.1203207

R. Y. Tsai and T. S. Huang, Multiframe image restoration and registration, In: Advances in Computer Vision and Image Processing

S. Borman and R. L. Stevenson, Super-resolution from image sequences-a review, 1998 Midwest Symposium on Circuits and Systems (Cat. No. 98CB36268), p.374, 1998.
DOI : 10.1109/MWSCAS.1998.759509

M. Elad and Y. , A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur, IEEE Transactions on Image Processing, vol.10, issue.8, pp.1187-1193, 2001.
DOI : 10.1109/83.935034

N. Nguyen, P. Milanfar, and G. Golub, A computationally efficient superresolution image reconstruction algorithm, IEEE Transactions on Image Processing, vol.10, issue.4, pp.573-583, 2001.
DOI : 10.1109/83.913592

S. Villena, M. Vega, R. Molina, and A. K. Katsaggelos, Bayesian superresolution image reconstruction using an l1 prior, in: Image and Signal Processing and Analysis, Proceedings of 6th International Symposium on, pp.152-157, 2009.

S. D. Babacan, R. Molina, and A. K. Katsaggelos, Variational Bayesian Super Resolution, IEEE Transactions on Image Processing, vol.20, issue.4, pp.984-999, 2011.
DOI : 10.1109/TIP.2010.2080278

URL : http://decsai.ugr.es/vip/files/journals/2011SR.BMK.pdf

O. A. Omer and T. Tanaka, Region-based weighted-norm with adaptive regularization for resolution enhancement, Digital Signal Processing, vol.21, issue.4, pp.508-516, 2011.
DOI : 10.1016/j.dsp.2011.02.005

S. Zhao, H. Liang, and M. Sarem, A Generalized Detail-Preserving Super-Resolution method, Signal Processing, vol.120, pp.156-173, 2016.
DOI : 10.1016/j.sigpro.2015.09.006

S. D. Babacan, R. Molina, and A. K. Katsaggelos, Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation, IEEE Transactions on Image Processing, vol.17, issue.3, pp.326-339, 2008.
DOI : 10.1109/TIP.2007.916051

URL : http://decsai.ugr.es/vip/files/journals/derin_raf_akk_ip_308.pdf

A. Panagiotopoulou and V. Anastassopoulos, Regularized super-resolution image reconstruction employing robust error norms, Optical Engineering, vol.17, issue.11, pp.117004-117004, 2009.
DOI : 10.1049/el:20000267

V. Patanavijit and S. , A robust iterative multiframe superresolution reconstruction using a huber bayesian approach with hubertikhonov regularization, Intelligent Signal Processing and Communications ISPACS'06. International Symposium on, pp.13-16, 2006.
DOI : 10.1109/ispacs.2006.364825

N. A. El-yamany and P. E. Papamichalis, Robust Color Image Superresolution: An Adaptive M-Estimation Framework, EURASIP Journal on Image and Video Processing, vol.2008, 2008.
DOI : 10.1109/83.766865

URL : https://doi.org/10.1155/2008/763254

T. Q. Pham, L. Vliet, and K. Schutte, Robust super-resolution by minimizing a gaussian-weighted l2 error norm, Journal of Physics: Conference Series, p.12037, 2008.
DOI : 10.1088/1742-6596/124/1/012037

URL : http://iopscience.iop.org/article/10.1088/1742-6596/124/1/012037/pdf

S. Tourbier, X. Bresson, P. Hagmann, J. Thiran, R. Meuli et al., An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization, NeuroImage, vol.118, pp.584-597, 2015.
DOI : 10.1016/j.neuroimage.2015.06.018

V. Patanavijit and S. , A Lorentzian Stochastic Estimation for a Robust Iterative Multiframe Super-Resolution Reconstruction with Lorentzian-Tikhonov Regularization, EURASIP Journal on Advances in Signal Processing, vol.7, issue.3, pp.1-21, 2007.
DOI : 10.1007/3-540-48236-9_23

URL : https://doi.org/10.1155/2007/34821

S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Advances and challenges in super-resolution, International Journal of Imaging Systems and Technology, vol.19, issue.2, pp.47-57, 2004.
DOI : 10.1002/0471221325

X. Zeng and L. Yang, A robust multiframe super-resolution algorithm based on half-quadratic estimation with modified BTV regularization, Digital Signal Processing, vol.23, issue.1, pp.98-109, 2013.
DOI : 10.1016/j.dsp.2012.06.013

A. Laghrib, A. Hakim, and S. Raghay, A combined total variation and bilateral filter approach for image robust super resolution, EURASIP Journal on Image and Video Processing, vol.33, issue.1, pp.1-10, 2015.
DOI : 10.1512/iumj.1984.33.33036

URL : https://jivp-eurasipjournals.springeropen.com/track/pdf/10.1186/s13640-015-0075-4?site=jivp-eurasipjournals.springeropen.com

B. J. Maiseli, N. Ally, and H. Gao, A noise-suppressing and edge-preserving multiframe super-resolution image reconstruction method, Signal Processing, Image Communication, vol.34, pp.1-13, 2015.

J. Weickert, Anisotropic diffusion in image processing, 1998.

J. Weickert, B. T. Romeny, and M. Viergever, Efficient and reliable schemes for nonlinear diffusion filtering, IEEE Transactions on Image Processing, vol.7, issue.3, pp.398-410, 1998.
DOI : 10.1109/83.661190

URL : http://www.cvgpr.uni-mannheim.de/weickert/Papers/aos.ps.gz

J. Weickert and C. Schnörr, A theoretical framework for convex regularizers in pde-based computation of image motion, International Journal of Computer Vision, vol.45, issue.3, pp.245-264, 2001.
DOI : 10.1023/A:1013614317973

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.629-639, 1990.
DOI : 10.1109/34.56205

URL : https://authors.library.caltech.edu/6498/1/PERieeetpami90.pdf

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

Y. You, W. Xu, A. Tannenbaum, and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing, IEEE Transactions on Image Processing, vol.5, issue.11, pp.1539-1553, 1996.

J. Weickert, Coherence-enhancing diffusion of colour images, Image and Vision Computing, vol.17, issue.3-4, pp.201-212, 1999.
DOI : 10.1016/S0262-8856(98)00102-4

URL : http://www.cvgpr.uni-mannheim.de/weickert/Papers/nspria97.ps.gz

G. Aubert and P. Kornprobst, Mathematical problems in image processing: partial differential equations and the calculus of variations, 2006.

M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers et al., Anisotropic Huber-L1 Optical Flow, Procedings of the British Machine Vision Conference 2009, p.3, 2009.
DOI : 10.5244/C.23.108

A. Marquina and S. J. Osher, Image Super-Resolution by TV-Regularization and Bregman Iteration, Journal of Scientific Computing, vol.7, issue.6, pp.367-382, 2008.
DOI : 10.1007/3-540-47778-0_29

Z. Wang and A. C. Bovik, Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures, IEEE Signal Processing Magazine, vol.26, issue.1, pp.98-117, 2009.
DOI : 10.1109/MSP.2008.930649

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, Image Quality Assessment: From Error Visibility to Structural Similarity, IEEE Transactions on Image Processing, vol.13, issue.4, pp.600-612, 2004.
DOI : 10.1109/TIP.2003.819861

URL : http://www.cns.nyu.edu/~zwang/files/papers/ssim.pdf

H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, 2014.
DOI : 10.1137/1.9781611973488

J. Weickert, Scale-space properties of nonlinear diffusion filtering with a diffusion tensor, Citeseer, 1994.

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2010.
DOI : 10.1007/978-0-387-70914-7

J. T. Schwartz, Nonlinear functional analysis, 1969.

J. Aubin, U. Théoreme-de-compacité, and C. Acad, Sci. Paris, vol.256, issue.24, pp.5042-5044, 1963.