Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Signal Processing Année : 2017

Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas

(1) , (2) , (3) , (4) , (2)
1
2
3
4

Résumé

The paper introduces a new method for Blind Source Separation (BSS) in noisy instantaneous mixtures of both independent or dependent source component signals. This approach is based on the minimization of a regularized criterion. Precisely, it consists in combining the total variation method for denoising with the Kullback–Leibler divergence between copula densities. The latter takes advantage of the copula to model the structure of the dependence between signal components. The obtained algorithm achieves separation in a noisy context where standard BSS methods fail. The efficiency and robustness of the proposed approach are illustrated by numerical simulations.
Fichier principal
Vignette du fichier
2015_07_16_BSS_Ind_Dep_TV.pdf (427.42 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01811736 , version 1 (11-06-2018)

Identifiants

Citer

M. El Rhabi, H. Fenniri, A. Ghazdali, A. Hakim, A. Keziou. Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Processing, 2017, 131, pp.502 - 513. ⟨10.1016/j.sigpro.2016.09.006⟩. ⟨hal-01811736⟩
98 Consultations
296 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More