Superpixel Convolutional Networks Using Bilateral Inceptions - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année :

Superpixel Convolutional Networks Using Bilateral Inceptions

(1) , (2) , (2, 3) , (2) , (2, 3)
1
2
3

Résumé

In this paper we propose a CNN architecture for semantic image segmentation. We introduce a new “bilateral inception” module that can be inserted in existing CNN architectures and performs bilateral filtering, at multiple feature-scales, between superpixels in an image. The feature spaces for bilateral filtering and other parameters of the module are learned end-to-end using standard backpropagation techniques. The bilateral inception module addresses two issues that arise with general CNN segmentation architectures. First, this module propagates information between (super) pixels while respecting image edges, thus using the structured information of the problem for improved results. Second, the layer recovers a full resolution segmentation result from the lower resolution solution of a CNN. In the experiments, we modify several existing CNN architectures by inserting our inception module between the last CNN (1 x 1 convolution) layers. Empirical results on three different datasets show reliable improvements not only in comparison to the baseline networks, but also in comparison to several dense-pixel prediction techniques such as CRFs, while being competitive in time.
Fichier non déposé

Dates et versions

hal-01801019 , version 1 (28-05-2018)

Identifiants

  • HAL Id : hal-01801019 , version 1

Citer

Raghudeep Gadde, Varun Jampani, Martin Kiefel, Daniel Kappler, Peter Gehler. Superpixel Convolutional Networks Using Bilateral Inceptions. European Conference on Computer Vision (ECCV), Oct 2016, Amsterdam, Netherlands. ⟨hal-01801019⟩
546 Consultations
0 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More