M. Cong and C. Bing, Properties of a foamed concrete with soil as filler, Construction and Building Materials, vol.76, pp.61-69, 2015.
DOI : 10.1016/j.conbuildmat.2014.11.066

A. A. Sayadi, J. V. Tapia, T. R. Neitzert, and G. C. Clifton, Effects of expanded polystyrene (EPS) particles on fire resistance, thermal conductivity and compressive strength of foamed concrete, Construction and Building Materials, vol.112, pp.716-724, 2016.
DOI : 10.1016/j.conbuildmat.2016.02.218

M. L. Gambhir, Lightweight foamed or aerated concrete, pp.617-630

K. Miled, K. Sab, and R. L. Roy, Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling, Mechanics of Materials, vol.39, issue.3, 2007.
DOI : 10.1016/j.mechmat.2006.05.008

W. Tang, Y. Lo, and A. Nadeem, Mechanical and drying shrinkage properties of structural-graded polystyrene aggregate concrete, Cement and Concrete Composites, pp.403-409, 2008.

M. A. Mydin and Y. Wang, Mechanical properties of foamed concrete exposed to high temperatures, Construction and Building Materials, vol.26, issue.1, pp.638-654, 2012.
DOI : 10.1016/j.conbuildmat.2011.06.067

M. Hajek, M. Decky, M. Drusa, L. Orininov?a¡orininov?-orininov?a¡, and W. Scherfel, Elasticity modulus and flexural strength assessment of foam concrete layer of poroflow, IOP Conference Series, 2016) 022021. URL http://stacks.iop.org, pp.1755-1315, 22021.

A. Neville and A. Neville, Properties of Concrete, Pearson, 2011. URL https

R. L. Roy, E. Parant, and C. Boulay, Taking into account the inclusions' size in lightweight concrete compressive strength prediction, Cement and Concrete Research, vol.35, issue.4, pp.770-775, 2005.
DOI : 10.1016/j.cemconres.2004.06.002

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.
DOI : 10.1016/0022-5096(63)90060-7

R. and L. Roy, Déformation instantanées et différées des bétonsbétons`bétonsà hautes performances, Ecole Nationale des Ponts et Chaussées, 1995.

F. De-larrard, Structures granulaires et formulation des b ? A©tons -Concrete Mixture -Proportionning -A scientific approach, Modern technology Series, E & FN SPON, 1999.

R. Mclaughlin, A study of the differential scheme for composite materials, International Journal of Engineering Science, vol.15, issue.4, pp.237-2440020, 1977.
DOI : 10.1016/0020-7225(77)90058-1

K. Miled, K. Sab, and R. L. Roy, Effective elastic properties of porous materials: Homogenization schemes vs experimental data, Mechanics Research Communications, vol.38, issue.2, pp.131-135, 2011.
DOI : 10.1016/j.mechrescom.2011.01.009

URL : https://hal.archives-ouvertes.fr/hal-00686874

L. J. Gibson and M. F. Ashby, The mechanics of foams: basic results Cellular solids : structure and properties, pp.175-234, 2004.

J. Choi and R. Lakes, Analysis of elastic modulus of conventional foams and of re-entrant foam materials with a negative Poisson's ratio, International Journal of Mechanical Sciences, vol.37, issue.1, pp.51-590020, 1995.
DOI : 10.1016/0020-7403(94)00047-N

M. B. Youssef, K. Miled, and J. N. A©ji, Mechanical properties of non-autoclaved foam concrete: analytical models vs. experimental data, European Journal of Environmental and Civil Engineering, vol.0, issue.0, 2017.

G. Povirk, Incorporation of microstructural information into models of two-phase materials, Acta Metallurgica et Materialia, vol.43, issue.8, pp.3199-32060956, 1995.
DOI : 10.1016/0956-7151(94)00487-3

A. A. Gusev, Representative volume element size for elastic composites: A numerical study, Journal of the Mechanics and Physics of Solids, vol.45, issue.9, pp.1449-1459, 1997.
DOI : 10.1016/S0022-5096(97)00016-1

A. Roberts and E. Garboczi, Elastic moduli of model random three-dimensional closed-cell cellular solids, Acta Materialia, vol.49, issue.2, pp.189-197, 1016.
DOI : 10.1016/S1359-6454(00)00314-1

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.20-7683, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

J. Feder, Random sequential adsorption, Journal of Theoretical Biology, vol.87, issue.2, pp.237-2540022, 1980.
DOI : 10.1016/0022-5193(80)90358-6

B. D. Lubachevsky and F. H. Stillinger, Geometric properties of random disk packings, Journal of Statistical Physics, vol.58, issue.1, pp.561-583, 1990.
DOI : 10.1007/BF01025983

F. Lavergne, R. Brenner, and K. Sab, Effects of grain size distribution and stress heterogeneity on yield stress of polycrystals: A numerical approach, Computational Materials Science, vol.77, issue.0, pp.387-398, 2013.
DOI : 10.1016/j.commatsci.2013.04.061

URL : https://hal.archives-ouvertes.fr/hal-00946087

A. R. Kansal, S. Torquato, and F. H. Stillinger, Computer generation of dense polydisperse sphere packings, The Journal of Chemical Physics, vol.117, issue.18, 2002.
DOI : 10.1063/1.1289238

E. Ghossein and M. Lévesque, A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites, International Journal of Solids and Structures, vol.49, issue.11-12, pp.1387-1398, 2012.
DOI : 10.1016/j.ijsolstr.2012.02.021

S. Torquato, T. M. Truskett, and P. G. Debenedetti, Is random close packing of spheres well defined?, Physical review letters, pp.2064-2067, 2000.

Z. Fan, Y. Wu, X. Zhao, and Y. Lu, Simulation of polycrystalline structure with Voronoi diagram in Laguerre geometry based on random closed packing of spheres, Computational Materials Science, vol.29, issue.3, p.301, 2004.
DOI : 10.1016/j.commatsci.2003.10.006

A. Benabbou, H. Borouchaki, P. Laug, and J. Lu, Geometrical modeling of granular structures in two and three dimensions. Application to nanostructures, International Journal for Numerical Methods in Engineering, vol.57, issue.13, pp.425-454, 2009.
DOI : 10.1061/40647(259)19

R. Jafari and M. Kazeminezhad, Microstructure generation of severely deformed materials using Voronoi diagram in Laguerre geometry: Full algorithm, Computational Materials Science, vol.50, issue.9, pp.2698-2705, 2011.
DOI : 10.1016/j.commatsci.2011.04.021

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.61-224, 2012.
DOI : 10.1016/j.commatsci.2012.04.011

URL : https://hal.archives-ouvertes.fr/hal-00699554

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1-2, pp.69-94, 1998.
DOI : 10.1016/S0045-7825(97)00218-1

URL : https://hal.archives-ouvertes.fr/hal-01282728

D. J. Eyre and G. W. Milton, A fast numerical scheme for computing the response of composites using grid refinement, The European Physical Journal Applied Physics, vol.4, issue.1, pp.41-47, 1999.
DOI : 10.1103/PhysRevB.41.2417

H. Moulinec and F. Silva, Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.42, issue.2
DOI : 10.1016/j.ijsolstr.2004.06.048

URL : https://hal.archives-ouvertes.fr/hal-00787089

F. Willot, Fourier-based schemes for computing the mechanical response of composites with accurate local fields, Comptes Rendus M??canique, vol.343, issue.3, pp.232-245, 2015.
DOI : 10.1016/j.crme.2014.12.005

URL : https://hal.archives-ouvertes.fr/hal-01096757

S. Brisard and L. Dormieux, FFT-based methods for the mechanics of composites: A general variational framework, Computational Materials Science, vol.49, issue.3, pp.663-671, 2010.
DOI : 10.1016/j.commatsci.2010.06.009

URL : https://hal.archives-ouvertes.fr/hal-00722339

S. Brisard and L. Dormieux, Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, 2012.
DOI : 10.1016/j.cma.2012.01.003

URL : https://hal.archives-ouvertes.fr/hal-00722361

F. Lavergne, K. Sab, J. Sanahuja, M. Bornert, and C. Toulemonde, Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations, Cement and Concrete Research, vol.71, pp.14-28, 2015.
DOI : 10.1016/j.cemconres.2015.01.003

URL : https://hal.archives-ouvertes.fr/hal-01134837

M. Kabel, D. Merkert, and M. Schneider, Use of composite voxels in FFT-based homogenization, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.168-188, 2015.
DOI : 10.1016/j.cma.2015.06.003

L. Gélébart and F. Ouaki, Filtering material properties to improve FFT-based methods for numerical homogenization, Journal of Computational Physics, vol.294, pp.90-95, 2015.
DOI : 10.1016/j.jcp.2015.03.048

F. Bignonnet, K. Sab, L. Dormieux, S. Brisard, and A. Bisson, Macroscopically consistent non-local modelling of heterogeneous media, Computer Methods in Applied Mechanics and Engineering, vol.278, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01076820

K. Sab, On the homogenization and the simulation of random materials, European Journal of Mechanics. A. Solids, vol.11, issue.5, pp.585-607, 1992.

W. Drugan and J. Willis, A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, Journal of the Mechanics and Physics of Solids, vol.44, issue.4, pp.497-5240022, 1996.
DOI : 10.1016/0022-5096(96)00007-5

J. Zeman and M. , Numerical evaluation of effective elastic properties of graphite fiber tow impregnated by polymer matrix, Journal of the Mechanics and Physics of Solids, vol.49, issue.1, pp.69-90, 2001.
DOI : 10.1016/S0022-5096(00)00027-2

S. Elbir, S. Yilmaz, A. K. Toksoy, M. Guden, and I. W. Hall, Sic-particulate aluminum composite foams produced by powder compacts: Foaming and compression behavior, Journal of Materials Science, vol.38, issue.23, pp.4745-47551027427102837, 2003.
DOI : 10.1023/A:1027427102837

G. Sung and J. H. Kim, Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers, Composites Science and Technology, vol.146, pp.147-154, 2017.
DOI : 10.1016/j.compscitech.2017.04.029

A. Siegmann, S. Kenig, D. Alperstein, and M. Narkis, Mechanical behavior of reinforced polyurethane foams, Polymer Composites, vol.14, issue.2, 1983.
DOI : 10.1002/pc.750040206

N. Louvet, R. Höhler, and O. , Pitois, Capture of particles in soft porous media, Phys. Rev, 2010.

S. Guignot, S. Faure, M. Vignes-adler, and O. Pitois, Liquid and particles retention in foamed suspensions, Chemical Engineering Science, vol.65, issue.8, pp.2579-2585, 2010.
DOI : 10.1016/j.ces.2009.12.039

Y. Khidas, B. Haffner, and O. Pitois, Capture-induced transition in foamy suspensions, Soft Matter, vol.106, issue.18, pp.4137-4141, 2014.
DOI : 10.1103/PhysRevLett.106.068301

URL : https://hal.archives-ouvertes.fr/hal-00969158

J. Wang, A. V. Nguyen, and S. Farrokhpay, A critical review of the growth, drainage and collapse of foams, Advances in Colloid and Interface Science, vol.228, pp.55-70, 2016.
DOI : 10.1016/j.cis.2015.11.009

F. Lavergne, Contribution to the study of the time-dependent strains of viscoelastic composite materials, Theses, 2015.

O. Stamati, E. Roubin, E. And?a²and?-and?a², and Y. Malecot, Phase segmentation of concrete x-ray tomographic images at meso-scale: Validation with neutron tomography, Cement and Concrete Composites, 2018.

H. J. Johnson, M. Mccormick, L. Ibáñez, and T. I. Consortium, The ITK Software Guide, 2013.

J. D. Bass, Elasticity of minerals, glasses, and melts, pp.45-63, 2013.
DOI : 10.1007/BF00203112

P. Heyliger, H. Ledbetter, and S. Kim, Elastic constants of natural quartz, The Journal of the Acoustical Society of America, vol.114, issue.2, pp.644-650, 2003.
DOI : 10.1121/1.1593063

C. Haecker, E. Garboczi, J. Bullard, R. Bohn, Z. Sun et al., Modeling the linear elastic properties of Portland cement paste, Cement and Concrete Research, vol.35, issue.10, 1948.
DOI : 10.1016/j.cemconres.2005.05.001

C. Neubauer, H. Jennings, and E. Garboczi, A three-phase model of the elastic and shrinkage properties of mortar, Advanced Cement Based Materials, vol.4, issue.1, pp.1065-735590058, 1996.
DOI : 10.1016/S1065-7355(96)90058-9

K. L. Scrivener, A. K. Crumbie, and P. Laugesen, The Interfacial Transition Zone (ITZ) Between Cement Paste and Aggregate in Concrete, Interface Science, vol.12, issue.4, pp.411-421, 1023.
DOI : 10.1023/B:INTS.0000042339.92990.4c

F. Grondin and M. Matallah, How to consider the Interfacial Transition Zones in the finite element modelling of concrete?, Cement and Concrete Research, vol.58, issue.0, pp.67-75, 2014.
DOI : 10.1016/j.cemconres.2014.01.009

URL : https://hal.archives-ouvertes.fr/hal-01006934

E. Gal and R. Kryvoruk, Meso-scale analysis of FRC using a two-step homogenization approach, Computers & Structures, vol.89, issue.11-12, pp.921-929, 2011.
DOI : 10.1016/j.compstruc.2011.02.006

B. Bary, C. Bourcier, and T. Helfer, Analytical and 3d numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces Advances in Engineering Software 112 (Supplement C) (2017) 16 ? 30. doi:https

E. Garboczi and J. Berryman, Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations, Mechanics of Materials, vol.33, issue.8, pp.455-470, 2001.
DOI : 10.1016/S0167-6636(01)00067-9