Y. Agnon, P. A. Madsen, and H. A. Schäffer, A new approach to high-order Boussinesq models, Journal of Fluid Mechanics, vol.399, pp.319-333, 1999.
DOI : 10.1017/S0022112099006394

P. R. Amestoy, I. S. Duff, J. Koster, and J. L-'excellent, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.1, pp.15-41, 2001.
DOI : 10.1137/S0895479899358194

URL : https://hal.archives-ouvertes.fr/hal-00808293

P. R. Amestoy, A. Guermouche, J. L-'excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing, vol.32, issue.2, pp.136-156, 2006.
DOI : 10.1016/j.parco.2005.07.004

URL : https://hal.archives-ouvertes.fr/inria-00070599

F. Becq-girard, P. Forget, and M. Benoit, Non-linear propagation of unidirectional wave fields over varying topography, Coastal Engineering, vol.38, issue.2, pp.91-113, 1999.
DOI : 10.1016/S0378-3839(99)00043-5

S. Beji and J. A. Battjes, Experimental investigation of wave propagation over a bar, Coastal Engineering, vol.19, issue.1-2, pp.151-162, 1993.
DOI : 10.1016/0378-3839(93)90022-Z

K. A. Belibassakis and G. A. Athanassoulis, A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions, Coastal Engineering, vol.58, issue.4, pp.337-350, 2011.
DOI : 10.1016/j.coastaleng.2010.11.007

H. B. Bingham and H. Zhang, On the accuracy of finite-difference solutions for nonlinear water waves, Journal of Engineering Mathematics, vol.19, issue.3, pp.211-228, 2007.
DOI : 10.1007/s10665-006-9108-4

J. P. Boyd, Chebyshev and Fourier Spectral Methods: Second Edition, Revised, 2001.
DOI : 10.1007/978-3-642-83876-7

G. Chapalain, R. Cointe, and A. Temperville, Observed and modeled resonantly interacting progressive water-waves, Coastal Engineering, vol.16, issue.3, pp.267-300, 1992.
DOI : 10.1016/0378-3839(92)90045-V

F. Chazel, M. Benoit, A. Ern, and S. Piperno, A double-layer Boussinesqtype model for highly nonlinear and dispersive waves, Proc. R. Soc. A 465, pp.2319-2346, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00371036

M. J. Chern, A. G. Borthwick, E. Taylor, and R. , A PSEUDOSPECTRAL ?? -TRANSFORMATION MODEL OF 2-D NONLINEAR WAVES, Journal of Fluids and Structures, vol.13, issue.5, pp.607-630, 1999.
DOI : 10.1006/jfls.1999.0221

T. B. Christiansen, A. P. Engsig-karup, and H. B. Bingham, Hybridspectral model for fully nonlinear numerical wave tank, Proceedings of the 28th International Workshop on Water Waves and Floating Bodies. L'Isle-sur-la, p.4, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01160630

D. Clamond and J. Grue, A fast method for fully nonlinear water-wave computations, Journal of Fluid Mechanics, vol.447, pp.337-355, 2001.
DOI : 10.1017/S0022112001006000

R. A. Dalrymple, A. Herault, G. Bilotta, and R. Farahani, GPU-ACCELERATED SPH MODEL FOR WATER WAVES AND FREE SURFACE FLOWS, Coastal Engineering Proceedings, vol.1, issue.32, 2011.
DOI : 10.9753/icce.v32.waves.9

R. A. Dalrymple and B. D. Rogers, Numerical modeling of water waves with the SPH method, Coastal Engineering, vol.53, issue.2-3, pp.141-147, 2006.
DOI : 10.1016/j.coastaleng.2005.10.004

M. Dingemans, Comparison of computations with Boussinesq-like models and laboratory measurements, 1994.

E. Dombre, M. Benoit, D. Violeau, and C. Peyrard, Simulation of floating structure dynamics in waves by implicit coupling of a fully non-linear potential flow model and a rigid body motion approach, Journal of Ocean Engineering and Marine Energy, vol.70, issue.2, pp.55-76, 2015.
DOI : 10.1016/j.oceaneng.2013.04.019

D. G. Dommermuth and D. K. Yue, A high-order spectral method for the study of nonlinear gravity waves, Journal of Fluid Mechanics, vol.22, issue.-1, pp.267-288, 1987.
DOI : 10.1063/1.1694844

G. Ducrozet, H. B. Bingham, A. P. Engsig-karup, F. Bonnefoy, and P. Ferrant, A comparative study of two fast nonlinear free-surface water wave models, International Journal for Numerical Methods in Fluids, vol.205, issue.1, p.18181834, 2012.
DOI : 10.1016/j.jcp.2004.11.027

URL : https://hal.archives-ouvertes.fr/hal-01145120

A. P. Engsig-karup, H. B. Bingham, and O. Lindberg, An efficient flexible-order model for 3D nonlinear water waves, Journal of Computational Physics, vol.228, issue.6, pp.2100-2118, 2009.
DOI : 10.1016/j.jcp.2008.11.028

A. P. Engsig-karup, J. S. Hesthaven, H. B. Bingham, and P. A. Madsen, Nodal DG-FEM solution of high-order Boussinesq-type equations, Journal of Engineering Mathematics, vol.342, issue.1, pp.351-370, 2006.
DOI : 10.1016/S0764-4442(00)01763-8

C. Fochesato, S. T. Grilli, and F. Dias, Numerical modeling of extreme rogue waves generated by directional energy focusing, Wave Motion, vol.44, issue.5, pp.395-416, 2007.
DOI : 10.1016/j.wavemoti.2007.01.003

B. Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Mathematics of Computation, vol.51, issue.184, pp.699-706, 1988.
DOI : 10.1090/S0025-5718-1988-0935077-0

D. Fructus, D. Clamond, J. Grue, and Ø. Kristiansen, An efficient model for three-dimensional surface wave simulations, Journal of Computational Physics, vol.205, issue.2, pp.665-685, 2005.
DOI : 10.1016/j.jcp.2004.11.027

D. Fructus and J. Grue, An explicit method for the nonlinear interaction between water waves and variable and moving bottom topography, Journal of Computational Physics, vol.222, issue.2, pp.720-739, 2007.
DOI : 10.1016/j.jcp.2006.08.014

D. R. Fuhrman and H. B. Bingham, Numerical solutions of fully non-linear and highly dispersive Boussinesq equations in two horizontal dimensions, International Journal for Numerical Methods in Fluids, vol.44, issue.3, pp.231-255, 2004.
DOI : 10.1002/fld.628

M. Gou¨?ngou¨?n, G. Ducrozet, and P. Ferrant, Validation of a nonlinear spectral model for water waves over a variable bathymetry, 30th International Workshop on Water Waves and Floating Bodies, 2015.

S. T. Grilli, J. Skourup, and I. A. Svendsen, An efficient boundary element method for nonlinear water waves, Engineering Analysis with Boundary Elements, vol.6, issue.2, pp.97-107, 1989.
DOI : 10.1016/0955-7997(89)90005-2

P. Guyenne and D. P. Nicholls, A High-Order Spectral Method for Nonlinear Water Waves over Moving Bottom Topography, SIAM Journal on Scientific Computing, vol.30, issue.1, pp.81-101, 2007.
DOI : 10.1137/060666214

P. Higuera, J. L. Lara, and I. J. Losada, Realistic wave generation and active wave absorption for Navier-Stokes Application to OpenFOAM R ?, 2013.

P. Higuera, J. L. Lara, and I. J. Losada, Simulating coastal engineering processes with OpenFOAM??, Coastal Engineering, vol.71, pp.119-134, 2013.
DOI : 10.1016/j.coastaleng.2012.06.002

A. B. Kennedy and J. D. Fenton, A fully-nonlinear computational method for wave propagation over topography, Coastal Engineering, vol.32, issue.2-3, pp.137-161, 1997.
DOI : 10.1016/S0378-3839(97)81747-4

A. B. Kennedy, J. T. Kirby, Q. Chen, and R. A. Dalrymple, Boussinesq-type equations with improved nonlinear performance, Wave Motion, vol.33, issue.3, pp.225-243, 2001.
DOI : 10.1016/S0165-2125(00)00071-8

V. C. Lakhan and E. , Advances in Coastal Modeling, pp.1-31

H. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Telus XXIV, vol.3, pp.199-215, 1972.

J. L. Lara, N. Garcia, and I. J. Losada, RANS modelling applied to random wave interaction with submerged permeable structures, Coastal Engineering, vol.53, issue.5-6, pp.395-417, 2006.
DOI : 10.1016/j.coastaleng.2005.11.003

B. Li and C. Fleming, A three dimensional multigrid model for fully nonlinear water waves, Coastal Engineering, vol.30, issue.3-4, pp.235-258, 1997.
DOI : 10.1016/S0378-3839(96)00046-4

P. Lynett, P. L. Liu, and -. , A two-layer approach to wave modelling, Proc. R. Soc. A 460, pp.2637-2669, 2004.
DOI : 10.1098/rspa.2004.1305

Q. W. Ma, G. X. Wu, and R. E. Taylor, Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1: methodology and numerical procedure, International Journal for Numerical Methods in Fluids, vol.37, issue.2, pp.265-285, 2001.
DOI : 10.2534/jjasnaoe1968.1993.45

P. A. Madsen, H. B. Bingham, and H. Liu, A new Boussinesq method for fully nonlinear waves from shallow to deep water, Journal of Fluid Mechanics, vol.462, pp.1-30, 2002.
DOI : 10.1017/S0022112002008467

P. A. Madsen and H. A. Schäffer, Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.356, issue.1749, p.31233181, 1998.
DOI : 10.1098/rsta.1998.0309

M. Narayanaswamy, C. Crespo, A. J. Gómez-gesteira, and M. , SPHysics-FUNWAVE hybrid model for coastal wave propagation, Journal of Hydraulic Research, vol.1, issue.sup1, pp.85-93, 2010.
DOI : 10.1017/S0022112095002813

J. N. Newman and C. Lee, Boundary-Element Methods In Offshore Structure Analysis, Journal of Offshore Mechanics and Arctic Engineering, vol.35, issue.2, pp.81-89, 2002.
DOI : 10.1006/jfls.2000.0305

S. Shao, Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, International Journal for Numerical Methods in Fluids, vol.9, issue.5, pp.597-621, 2006.
DOI : 10.1002/fld.1068

R. A. Smith, An operator expansion formalism for nonlinear surface waves over variable depth, Journal of Fluid Mechanics, vol.363, pp.333-347, 1998.
DOI : 10.1017/S0022112098001219

G. Stelling and M. Zijlema, An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, International Journal for Numerical Methods in Fluids, vol.36, issue.1, pp.1-23, 2003.
DOI : 10.1016/S0378-3839(99)00009-5

Y. Tian and S. Sato, A Numerical Model on the Interaction Between Nearshore Nonlinear Waves and Strong Currents, Coastal Engineering Journal, vol.2, issue.5, pp.369-395, 2008.
DOI : 10.1061/(ASCE)0733-950X(1995)121:5(251)

F. C. Ting and J. T. Kirby, Observation of undertow and turbulence in a laboratory surf zone, Coastal Engineering, vol.24, issue.1-2, pp.51-80, 1994.
DOI : 10.1016/0378-3839(94)90026-4

P. Wang, Y. Yao, and M. Tulin, An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM, International Journal for Numerical Methods in Fluids, vol.83, issue.12, pp.1315-1336, 1995.
DOI : 10.1002/fld.1650201203

B. J. West, K. A. Brueckner, R. S. Janda, M. Milder, and R. L. Milton, A new numerical method for surface hydrodynamics, Journal of Geophysical Research, vol.65, issue.C11, pp.11803-11824, 1987.
DOI : 10.1017/S0022112076001195

G. X. Wu, Q. W. Ma, and R. E. Taylor, Numerical simulation of sloshing waves in a 3D tank based on a finite element method, Applied Ocean Research, vol.20, issue.6, pp.337-355, 1998.
DOI : 10.1016/S0141-1187(98)00030-3

M. L. Yates and M. Benoit, Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves, International Journal for Numerical Methods in Fluids, vol.32, issue.1, pp.616-640, 2015.
DOI : 10.1016/S0378-3839(97)81747-4

URL : https://hal.archives-ouvertes.fr/hal-01143724

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, Journal of Applied Mechanics and Technical Physics, vol.10, issue.no. 4, pp.190-194, 1968.
DOI : 10.1007/BF00913182

B. B. Zhao, R. C. Ertekin, W. Y. Duan, and M. Hayatdavoodi, On the steady solitary-wave solution of the Green???Naghdi equations of different levels, Wave Motion, vol.51, issue.8, pp.1382-1395, 2014.
DOI : 10.1016/j.wavemoti.2014.08.009

L. Zhu, Q. Chen, and X. Wan, Optimization of non-hydrostatic Euler model for water waves, Coastal Engineering, vol.91, pp.191-199, 2014.
DOI : 10.1016/j.coastaleng.2014.06.003

M. Ziljema and G. S. Stelling, Further experiences with computing nonhydrostatic free-surface flows involving water waves, Int. J. Numer. Meth. Fluids, vol.48, 2005.