Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection

Abstract : This paper presents a new method to solve the scheduling problem of adaptive traffic signal control at intersection. The method involves recursive least-squares temporal difference (RLS-TD(λ)) learning that is integrated into approximate dynamic programming. The learning mechanism of RLS-TD(λ) is to make an adaptation of linear function approximation by updating its parameters based on environmental feedback. This study investigates the method implementation after modelling a traffic dynamic system at intersection in discrete time. In the model, different traffic control schemes regarding signal phase sequence are considered, especially the defined adaptive phase sequence (APS). By simulating traffic scenarios, RLS-TD(λ) is superior to TD(λ) for updating functional parameters in the approximation, and APS outperforms other conventional control schemes on reducing traffic delay. By comparing with other traffic signal control algorithms, the proposed algorithm yields satisfying results in terms of traffic delay and computation time.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-01763263
Contributeur : Frédérique Bordignon <>
Soumis le : mardi 10 avril 2018 - 21:07:22
Dernière modification le : mardi 6 juillet 2021 - 16:48:16

Identifiants

Collections

Citation

Abdellah El Moudni, Biao Yin, Mahjoub Dridi, Abdellah Moudni. Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection. Neural Computing and Applications, Springer Verlag, 2017, 31, pp.1013 - 1028. ⟨10.1007/s00521-017-3066-9⟩. ⟨hal-01763263⟩

Partager

Métriques

Consultations de la notice

253