On stress-gradient materials: formulation and homogenization
Sébastien Brisard, Vinh Phuc Tran, Karam Sab, Johann Guilleminot

To cite this version:
Sébastien Brisard, Vinh Phuc Tran, Karam Sab, Johann Guilleminot. On stress-gradient materials: formulation and homogenization. Encounter of the third kind on generalized continua and microstructures, Apr 2018, Arpino, Italy. hal-01758985

HAL Id: hal-01758985
https://hal-enpc.archives-ouvertes.fr/hal-01758985
Submitted on 5 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
On stress-gradient materials: formulation and homogenization

S. Brisard¹, V.P. Tran¹,², K. Sab¹, J. Guilleminot³

¹Université Paris-Est, Laboratoire Navier, UMR 8205, CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vallée, France
²Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle (MSME), UMR 8208, CNRS, F-77454 Marne-la-Vallée, France
³Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA

4 April 2018
Stress-gradient elasticity in a nutshell

The Stress Principle of Cauchy

\[\sigma \cdot \nabla + b = 0 \quad \text{and} \quad [\sigma] \cdot n = 0 \quad (SA) \]

Cauchy elasticity

\[W^c[\sigma] = \int w^c(\sigma) \, dV \]

Stress-gradient elasticity

\[W^c[\sigma] = \int w^c(\sigma, \sigma \otimes \nabla) \, dV \]

A mature model

Forest and Sab (2012), Mechanics Research Communications 40

Sab, Legoll and Forest (2016), Journal of Elasticity 123(2)

Forest and Sab (2017), Mathematics and Mechanics of Solids

Alternative model (not discussed here)

Polizzotto (2014, 2016), International Journal of Solids and Structures
In the present talk

A brief overview of the stress-gradient model
► Decomposition of the stress-gradient
► Stress boundary conditions

Homogenization of stress-gradient materials
► Hill–Mandel lemma, boundary conditions
► Softening size effect

Application to composites with spherical inclusions
► Eshelby’s inhomogeneity problem
► Mori–Tanaka estimates of effective compliance

Tran, Brisard, Guillemínou and Sab (2018), International Journal of Solids and Structures

Some open questions
Derivation of the stress-gradient model for elasticity
Minimize complementary stress energy under SA constraint

- Cauchy elasticity: elastic equilibrium of fixed solid is retrieved
- Stress-gradient elasticity: elastic equilibrium of fixed solid is defined
- At this point, “fixed” not really meaningful, since dofs not (yet) defined
- “Trace” of the stress-gradient is prescribed
Decomposition of stress-gradient (1/2)

Complementary stress energy of stress-gradient materials

\[
W^c[\sigma] = \int w^c(\sigma, \sigma \otimes \nabla) \, dV
\]

Classical equilibrium equation

\[(\sigma \otimes \nabla) : I_2 = \sigma \cdot \nabla = -b\]

Orthogonal decomposition of stress gradient

\[\sigma \otimes \nabla = Q + R \quad \text{with} \quad R : I_2 = 0 \quad \text{and} \quad Q : R = 0\]

\[R = I_6' : (\sigma \otimes \nabla)\]

(projection onto space of trace-free, third-rank tensors)

Equivalent expression of complementary stress energy

\[
W^c[\sigma] = \int w^c(\sigma, Q, R) \, dV
\]
Decomposition of stress-gradient (2/2)

Orthogonal decomposition of stress gradient

\[\sigma \otimes \nabla = Q + R \quad \text{with} \quad R : I_2 = 0 \quad \text{and} \quad Q : R = 0 \]

Q is in fact fully prescribed

\[Q = -\frac{1}{2} l_4 \cdot b \]

No strain measure attached to Q (generalized prestress)

Modeling assumption

\[W^c[\sigma] = \int w^c(\sigma, Q, R) \, dV = \int w^c(\sigma, R) \, dV \]

with \(R = I'_6 : (\sigma \otimes \nabla) \)
Constrained minimization of energy

Initial problem

Minimize: \(W^c [\sigma] = \int w^c (\sigma, I'_6 \cdot (\sigma \otimes \nabla)) \, dV \)

subject to: \(\sigma \cdot \nabla + b = 0 \)

Stress-gradient as independent variable

Minimize: \(W^c [\sigma, R] = \int w^c (\sigma, R) \, dV \)

subject to: \(\begin{cases} \sigma \cdot \nabla + b = 0 & \cdot u \\ R = I'_6 \cdot (\sigma \otimes \nabla) & : \Phi \end{cases} \)

Lagrange multipliers
Elastic equilibrium of fixed, SG bodies

Field equations

\[\sigma \cdot \nabla + b = 0 \]

\[e = \partial_{\sigma} w^c \]

\[e = \Phi \cdot \nabla + \varepsilon[u] \]

Generalized equilibrium equations

Generalized stress-strain relations

Generalized strain-displacement relations

Boundary conditions

\[\Phi \cdot n + \text{sym} (u \otimes n) = 0 \]

6 scalar boundary conditions

Continuity conditions

\[[\Phi \cdot n + \text{sym} (u \otimes n)] = 0 \]

\[[\sigma] = 0 \]

Weaker continuity of “displacements”

Stronger continuity of “stresses”
Linear elasticity

Complementary stress energy density

\[w^c(\sigma, R) = \frac{1}{2} \sigma : S : \sigma + \frac{1}{2} R : M : R \]

No σ–R coupling for centrosymmetric materials!

S and M have major and minor symmetries

Generalized compliance M operates on trace-free tensors

\[M = I_6' : M : I_6' \]

Stress-strain relationships

\[e = S : \sigma \quad \text{and} \quad \Phi = M : R \]

or

\[\sigma = C : e \quad \text{and} \quad R = L : \Phi \]

\[C = S^{-1} \quad \text{and} \quad L = M^+ \]
Isotropic linear elasticity

General isotropic linear stress-gradient elasticity

\[M = I'_6 : M : I'_6 \]

\[2\mu M = \ell^2_J J_6 + \ell^2_K K_6 + \ell^2_H H_6 \]

\[I'_6 = J_6 + K_6 \]

\[2\mu S = \frac{1-2v}{1+v} J_4 + K_4 \]

\[\frac{2\mu}{\ell^2} M = \frac{1-2v}{1+v} J_6 + K_6 \]

Simplified model for isotropic linear stress-gradient elasticity

Altan and Aifantis (1992), Scripta Metallurgica et Materialia 26(2)
Altan and Aifantis (1997), Journal of the Mechanical behavior of Materials 8(3)
Setting the stage for homogenization

The 3 cases

► Stress-gradient (micro) → stress-gradient (macro)
► Cauchy (micro) → stress-gradient (macro)
► Stress-gradient (micro) → Cauchy (macro)

Separation of scales

► Classical condition

\[d \ll L_{\text{meso}} \ll L_{\text{macro}} \]

Microstructure \(\rightarrow\) RVE \(\rightarrow\) Structure

► Additional condition for stress-/strain- gradient materials

\[\ell \sim d \quad \text{or} \quad \ell \ll d \]

Material internal length \(\rightarrow\)
Effective and apparent properties

Effective behaviour: stress-gradient → Cauchy

\[\langle e \rangle = S^{\text{eff}} : \langle \sigma \rangle \]

\[\langle e \rangle = S^{\text{app}} (\Omega) : \langle \sigma \rangle \]

Apparent elastic properties of (large) SVE \(\Omega \)

\[\langle \sigma \rangle = \frac{1}{V} \int_{\Omega} \sigma \, dV \]

\[\langle e \rangle = \frac{1}{V} \int_{\Omega} e \, dV = \frac{1}{V} \int_{\Omega} \varepsilon [u] \, dV + \frac{1}{V} \int_{\partial \Omega} \Phi \cdot n \, dS \]

Local problem on SVE \(\Omega \)

\[\sigma \cdot \nabla = 0 \]

\[e = S : \sigma \]

\[\Phi = M : (\sigma \otimes \nabla) \]

\[e = \Phi \cdot \nabla + \varepsilon [u] \]

No body forces!

+ boundary conditions!
Boundary conditions

Generalized Hill–Mandel lemma

\[\langle \sigma^* : e + (\sigma^* \otimes \nabla) : \Phi \rangle = \langle \sigma^* \rangle : \langle e \rangle \]

Uniform stress boundary conditions

\[\sigma \big|_{\partial \Omega} = \overline{\sigma} \quad \langle e \rangle = S^\sigma(\Omega) : \langle \sigma \rangle = S^\sigma(\Omega) : \overline{\sigma} \]

Uniform strain boundary conditions

\[\Phi \cdot n + \text{sym}(u \otimes n) = \text{sym}[(\overline{e} \cdot x) \otimes n] \quad \langle \sigma \rangle = C^\varepsilon(\Omega) : \langle e \rangle = C^\varepsilon(\Omega) : \overline{e} \]

Uniform traction boundary conditions

\[\sigma \big|_{\partial \Omega} \cdot n = \overline{\sigma} \cdot n \quad \langle e \rangle = S^T(\Omega) : \langle \sigma \rangle = S^T(\Omega) : \overline{\sigma} \]

\[a \cdot [\Phi \cdot n + \text{sym}(u \otimes n)] \cdot a = 0 \quad a = I_2 - n \otimes n \]
Variational formulation

Minimum of complementary stress energy

$$\overline{\sigma} : S^\sigma (\Omega) : \overline{\sigma} = \inf \{ \langle \sigma : S : \sigma + (\sigma \otimes \nabla) : M : (\sigma \otimes \nabla) \rangle \}$$

subject to: \(\sigma \cdot \nabla = 0 \) and \(\sigma |_{\partial \Omega} = \overline{\sigma} \)

Minimum of strain energy

$$\overline{e} : C^\varepsilon (\Omega) : \overline{e} = \inf \{ \langle \varepsilon [u] : C : \varepsilon [u] + \Phi : L : \Phi \rangle \}$$

subject to: \(\Phi \cdot n + \text{sym} (u \otimes n) = \text{sym} [(\overline{e} \cdot x) \otimes n] \)

Bounds for finite-size SVEs

$$C^\sigma (\Omega_I) \leq C^\sigma (\Omega_{II}) \leq C^\text{eff} \leq C^\varepsilon (\Omega_{II}) \leq C^\varepsilon (\Omega_I) \quad \text{for} \quad \Omega_I \subset \Omega_{II}$$

Huet (1990), Journal of the Mechanics and Physics of Solids 38(6)
Softening size-effect

Variational definition of apparent compliance (uniform σ BC)

If $S_I \leq S_{II}$ and $M_I \leq M_{II}$ everywhere in Ω, then $S^\text{eff}_I \leq S^\text{eff}_{II}$

Fixed microstructure, variable material internal length

For $S_I = S_{II}$ and $M_I = \frac{\ell_I^2}{\ell_{II}^2} M_{II}$: if $\ell_1 \leq \ell_{II}$ then $S^\text{eff}_I \leq S^\text{eff}_{II}$

More generally: if $\left(\frac{\ell}{d}\right)_I \leq \left(\frac{\ell}{d}\right)_{II}$ then $S^\text{eff}_I \leq S^\text{eff}_{II}$

Scaled microstructure, constant material internal length

If $d_I \leq d_{II}$ then $C^\text{eff}_I \leq C^\text{eff}_{II}$

Softening size-effect!
Eshelby’s inhomogeneity problem for stress-gradient elasticity
Problem setting

Matrix: μ_m, v_m, ℓ_m

$\sigma^\infty e_z$

$-\sigma^\infty e_z$

$\nu_i = v_m = 0.25$

$\mu_i = 10\mu_m$
Some tedious calcs later…

Axial stress along vertical axis

Theorem of Eshelby (1957) does \textbf{not} hold!

\textbf{Hat tip to VP Tran!}

Dilute stress concentration tensor

\[
\langle \sigma \rangle_i = \frac{1}{V_i} \int_{\Omega_i} \sigma \, dV = B^\infty : \sigma^\infty
\]

Axial stress along vertical axis

Axial stress at origin
Mori–Tanaka estimates for composites with spherical inclusions
Problem setting

$\mu_i = 10 \mu_m, \nu_i = 0.25, \ell_i$

$\mu_m, \nu_m = 0.25, \ell_m$

Volume fraction of inclusions: f
Estimates of bulk and shear moduli

Effective bulk modulus

\[S_{\text{eff}} = S_m + f (S_i - S_m) : B^\infty : [(1 - f) I_4 + f B^\infty]^{-1} \]

Effective shear modulus

Strain- and stress- gradient models are not equivalent!

Benveniste (1987), Mechanics of Materials 6(2)
Ma and Gao (2014), Acta Mechanica 225(4-5)
Some questions
The total complementary energy

Assumption 1: Stress Principle of Cauchy

\[\sigma \cdot \nabla = 0 \quad \text{and} \quad \sigma \cdot n \big|_{\partial \Omega} = \overline{T} \]

Assumption 2: complementary work of prescribed displacements

\[V^c = \int_{\partial \Omega_u} \overline{u} \cdot \sigma \cdot n \, dS \]

Minimization of complementary energy

Minimize:

\[\Pi^c = W^c - V^c \]

subject to:

\[\sigma \cdot \nabla = 0 \quad \text{and} \quad \sigma \cdot n \big|_{\partial \Omega} = \overline{T} \]
The general BVP

Field equations

\[\sigma \cdot \nabla + b = 0 \]
\[R = I'_6 \cdot (\sigma \otimes \nabla) \]
\[e = \partial_\sigma \mathcal{W}^c \]
\[\Phi = \partial_R \mathcal{W}^c \]
\[e = \Phi \cdot \nabla + \varepsilon [u] \]

Boundary conditions

\[\partial \Omega_T: \begin{cases} \sigma \cdot n |_{\partial \Omega} = \overline{T} \\ a \cdot [\Phi \cdot n + \text{sym}(u \otimes n)] \cdot a = 0 \end{cases} \]
\[a = I_2 - n \otimes n \]

\[\partial \Omega_u: \Phi \cdot n + \text{sym}(u \otimes n) = \text{sym}(\overline{u} \otimes n) \]

Continuity conditions

\[[\sigma] = 0 \]
\[[\Phi \cdot n + \text{sym}(u \otimes n)] = 0 \]
The total potential energy

Potential strain energy

\[W = \int \omega \left(e, \Phi \right) dV \]

Work of prescribed body forces and tractions

\[V = \int_\Omega b \cdot u \, dV + \int_{\partial \Omega_T} \overline{T} \cdot [u + 2 \Phi : n \otimes n - (\Phi : n \otimes n \otimes n) n] \, dS \]

Minimization of total potential energy

Minimize: \(\Pi = W - V \)

subject to:

\[\begin{align*}
\partial \Omega_T : & \quad a \cdot [\Phi \cdot n + \text{sym}(u \otimes n)] \cdot a = 0 \\
\partial \Omega_u : & \quad \Phi \cdot n + \text{sym}(u \otimes n) = \text{sym}(\overline{u} \otimes n)
\end{align*} \]
Conclusion & perspectives

Summary
► Simplified model for isotropic linear elasticity
► General framework for stress-gradient → Cauchy homogenization
► Softening size-effect
► Mori–Tanaka estimates for spherical inclusions

Outlook
► Hashin–Shtrikman (size-dependent) bounds on effective properties
► Cauchy → stress-gradient homogenization
► Understand the meaning of u (use above)
Thanks for your attention!

Sebastien.brisard@ifstttar.fr
http://navier.enpc.fr/BRISARD-Sebastien
http://sbrisard.github.io

This work has benefited from a French government grant managed by ANR within the frame of the national program Investments for the Future ANR-11-LABX-022-01.

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.