B. Altan and E. Aifantis, On Some Aspects in the Special Theory of Gradient Elasticity, Journal of the Mechanical Behavior of Materials, vol.106, issue.3, pp.231-282, 1997.
DOI : 10.1115/1.3225725

S. Altan and E. Aifantis, On the structure of the mode III crack-tip in gradient elasticity, Scripta Metallurgica et Materialia, vol.26, issue.2, pp.319-324, 1992.
DOI : 10.1016/0956-716X(92)90194-J

H. Askes and E. C. Aifantis, Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results, International Journal of Solids and Structures, vol.48, issue.13, pp.1962-1990, 2011.
DOI : 10.1016/j.ijsolstr.2011.03.006

Y. Benveniste, A new approach to the application of Mori-Tanaka's theory in composite materials, Mechanics of Materials, vol.6, issue.2, pp.147-157, 1987.
DOI : 10.1016/0167-6636(87)90005-6

C. Broese, C. Tsakmakis, and D. Beskos, Mindlin???s Micro-structural and Gradient Elasticity Theories and Their Thermodynamics, Journal of Elasticity, vol.72, issue.1, pp.1-46, 2016.
DOI : 10.1007/s00419-002-0231-z

N. Challamel, C. M. Wang, and I. Elishakoff, Nonlocal or gradient elasticity macroscopic models: A question of concentrated or distributed microstructure, Mechanics Research Communications, vol.71, pp.25-31, 2016.
DOI : 10.1016/j.mechrescom.2015.11.006

D. Davydov, E. Voyiatzis, G. Chatzigeorgiou, S. Liu, P. Steinmann et al., Size Effects in a Silica-Polystyrene Nanocomposite: Molecular Dynamics and Surface-enhanced Continuum Approaches, Soft Materials, vol.12, issue.sup1, pp.142-151, 2014.
DOI : 10.1016/j.jmps.2013.06.005

URL : https://hal.archives-ouvertes.fr/hal-01201924

A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of Applied Physics, vol.1, issue.9, pp.4703-4710, 1983.
DOI : 10.1063/1.331448

A. C. Eringen, Microcontinuum field theories. Vol. I. Foundations and Solids, 1999.
DOI : 10.1007/978-1-4612-0555-5

A. C. Eringen, Nonlocal continuum field theories, 2002.
DOI : 10.1115/1.1553434

J. D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.241, issue.1226, pp.376-396, 1226.
DOI : 10.1098/rspa.1957.0133

S. Forest and E. C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua, International Journal of Solids and Structures, vol.47, issue.25-26, pp.3367-3376, 2010.
DOI : 10.1016/j.ijsolstr.2010.07.009

URL : https://hal.archives-ouvertes.fr/hal-00542445

S. Forest, F. Pradel, and K. Sab, Asymptotic analysis of heterogeneous Cosserat media, International Journal of Solids and Structures, vol.38, issue.26-27, pp.4585-4608, 2001.
DOI : 10.1016/S0020-7683(00)00295-X

S. Forest and K. Sab, Stress gradient continuum theory, Mechanics Research Communications, vol.40, pp.16-25, 2012.
DOI : 10.1016/j.mechrescom.2011.12.002

URL : https://hal.archives-ouvertes.fr/hal-00697585

S. Forest and K. Sab, Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient models, Mathematics and Mechanics of Solids, vol.321, 2017.
DOI : 10.1016/j.jmps.2013.09.004

X. Gao and S. Park, Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem, International Journal of Solids and Structures, vol.44, issue.22-23, pp.7486-7499, 2007.
DOI : 10.1016/j.ijsolstr.2007.04.022

C. Huet, Application of variational concepts to size effects in elastic heterogeneous bodies, Journal of the Mechanics and Physics of Solids, vol.38, issue.6, pp.813-841, 1990.
DOI : 10.1016/0022-5096(90)90041-2

T. Kanit, S. Forest, I. Galliet, V. Mounoury, and D. Jeulin, Determination of the size of the representative volume element for random composites: statistical and numerical approach, International Journal of Solids and Structures, vol.40, issue.13-14, pp.13-14, 2003.
DOI : 10.1016/S0020-7683(03)00143-4

H. Ma and X. Gao, A new homogenization method based on a simplified strain gradient elasticity theory, Acta Mechanica, vol.2, issue.4-5, pp.4-5, 2014.
DOI : 10.1615/IntJMultCompEng.v2.i1.20

J. Marsden and T. J. Hughes, Mathematical Foundations of Elasticity, Journal of Applied Mechanics, vol.51, issue.4, 1994.
DOI : 10.1115/1.3167757

R. Mindlin, Second gradient of strain and surface-tension in linear elasticity, International Journal of Solids and Structures, vol.1, issue.4, pp.417-438, 1965.
DOI : 10.1016/0020-7683(65)90006-5

R. Mindlin and N. Eshel, On first strain-gradient theories in linear elasticity, International Journal of Solids and Structures, vol.4, issue.1, pp.109-124, 1968.
DOI : 10.1016/0020-7683(68)90036-X

R. D. Mindlin, Micro-structure in linear elasticity, Archive for Rational Mechanics and Analysis, vol.16, issue.1, pp.51-78, 1964.
DOI : 10.1007/BF00248490

URL : http://venus.usc.edu/PAPERS/MultiScaleMechanics/Microstructure-Linear-Elasticity-Mindlin.pdf

V. Monchiet and G. Bonnet, Inversion of higher order isotropic tensors with minor symmetries and solution of higher order heterogeneity problems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.11, issue.1226, 2010.
DOI : 10.1098/rspa.1957.0133

URL : https://hal.archives-ouvertes.fr/hal-00687817

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.
DOI : 10.1016/0001-6160(73)90064-3

H. B. Mühlhaus and I. Vardoulakis, The thickness of shear bands in granular materials, G??otechnique, vol.37, issue.3, pp.271-283, 1987.
DOI : 10.1680/geot.1987.37.3.271

G. Odegard, T. Clancy, and T. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer, vol.46, issue.2, pp.553-562, 2005.
DOI : 10.1016/j.polymer.2004.11.022

M. Ostoja-starzewski, Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics, vol.21, issue.2, pp.112-132, 2006.
DOI : 10.1016/j.probengmech.2005.07.007

C. Polizzotto, Stress gradient versus strain gradient constitutive models within elasticity, International Journal of Solids and Structures, vol.51, issue.9, pp.1809-1818, 2014.
DOI : 10.1016/j.ijsolstr.2014.01.021

URL : https://doi.org/10.1016/j.ijsolstr.2014.01.021

C. Polizzotto, Variational formulations and extra boundary conditions within stress gradient elasticity theory with extensions to beam and plate models, International Journal of Solids and Structures, vol.80, pp.405-419, 2016.
DOI : 10.1016/j.ijsolstr.2015.09.015

K. Sab, On the homogenization and the simulation of random materials, European Journal of Mechanics -A/Solids, vol.11, issue.5, pp.585-607, 1992.

K. Sab, F. Legoll, and S. Forest, Stress Gradient Elasticity Theory: Existence and Uniqueness of Solution, Journal of Elasticity, vol.11, issue.2, pp.179-201, 2016.
DOI : 10.1007/BF00253945

URL : https://hal.archives-ouvertes.fr/hal-01288563

P. Sharma and A. Dasgupta, Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities, Physical Review B, vol.64, issue.180, 2002.
DOI : 10.1115/1.2788920

X. Zhang and P. Sharma, Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems, International Journal of Solids and Structures, vol.42, issue.13, pp.3833-3851, 2005.
DOI : 10.1016/j.ijsolstr.2004.12.005

S. Zhou, A. Li, and B. Wang, A reformulation of constitutive relations in the strain gradient elasticity theory for isotropic materials, International Journal of Solids and Structures, vol.80, pp.28-37, 2016.
DOI : 10.1016/j.ijsolstr.2015.10.018