Mori–Tanaka estimates of the effective elastic properties of stress-gradient composites

Abstract : A stress-gradient material model was recently proposed by Forest and Sab [Mech. Res. Comm. 40, 16--25, 2012] as an alternative to the well-known strain-gradient model introduced in the mid 60s. We propose a theoretical framework for the homogenization of stress-gradient materials. We derive suitable boundary conditions ensuring that Hill–Mandel's lemma holds. As a first result, we show that stress-gradient materials exhibit a softening size-effect (to be defined more precisely in this paper), while strain-gradient materials exhibit a stiffening size-effect. This demonstrates that the stress-gradient and strain-gradient models are not equivalent as intuition would have it, but rather complementary. Using the solution to Eshelby's spherical inhomogeneity problem that we derive in this paper, we propose Mori–Tanaka estimates of the effective properties of stress-gradient composites with spherical inclusions, thus opening the way to more advanced multi-scale analyses of stress-gradient materials.
Liste complète des métadonnées
Contributeur : Sébastien Brisard <>
Soumis le : jeudi 14 mars 2019 - 11:28:08
Dernière modification le : mardi 20 août 2019 - 17:12:02
Document(s) archivé(s) le : samedi 15 juin 2019 - 20:10:49


Fichiers produits par l'(les) auteur(s)



Sébastien Brisard, Johann Guilleminot, Karam Sab, Vinh Phuc Tran. Mori–Tanaka estimates of the effective elastic properties of stress-gradient composites. International Journal of Solids and Structures, Elsevier, 2018, 146, pp.55-68. ⟨10.1016/j.ijsolstr.2018.03.020⟩. ⟨hal-01740741v2⟩



Consultations de la notice


Téléchargements de fichiers