G. A. Francfort and J. Marigo, Revisiting brittle fracture as an energy minimization problem, Journal of the Mechanics and Physics of Solids, vol.46, issue.8, pp.1319-1342, 1998.
DOI : 10.1016/S0022-5096(98)00034-9

A. Karma, D. A. Kessler, and H. Levine, Phase-Field Model of Mode III Dynamic Fracture, Physical Review Letters, vol.71, issue.4, p.45501, 2001.
DOI : 10.1103/PhysRevLett.71.2417

A. Karma and A. E. Lobkovsky, Unsteady Crack Motion and Branching in a Phase-Field Model of Brittle Fracture, Physical Review Letters, vol.42, issue.24, p.245510, 2004.
DOI : 10.1103/PhysRevLett.66.2484

K. Pham, H. Amor, J. Marigo, and C. Maurini, Gradient Damage Models and Their Use to Approximate Brittle Fracture, International Journal of Damage Mechanics, vol.30, issue.4, pp.618-652, 2011.
DOI : 10.1016/0029-5493(92)90094-C

URL : https://hal.archives-ouvertes.fr/hal-00549530

P. Sicsic and J. Marigo, From Gradient Damage Laws to Griffith???s Theory of Crack Propagation, Journal of Elasticity, vol.59, issue.6, pp.55-74, 2013.
DOI : 10.1016/j.jmps.2011.03.010

C. Miehe and S. Mauthe, Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media, Computer Methods in Applied Mechanics and Engineering, vol.304, pp.619-655, 2016.
DOI : 10.1016/j.cma.2015.09.021

C. Miehe, S. Mauthe, and S. Teichtmeister, Minimization principles for the coupled problem of Darcy???Biot-type fluid transport in porous media linked to phase field modeling of fracture, Journal of the Mechanics and Physics of Solids, vol.82, pp.186-217, 2015.
DOI : 10.1016/j.jmps.2015.04.006

F. Freddi and G. Royer-carfagni, Variational fracture mechanics to model compressive splitting of masonry-like materials, Annals of Solid and Structural Mechanics, vol.3, issue.2-4, pp.57-67, 2011.
DOI : 10.1007/s10659-009-9189-1

M. Hossain, C. Hsueh, B. Bourdin, and K. Bhattacharya, Effective toughness of heterogeneous media, Journal of the Mechanics and Physics of Solids, vol.71, pp.15-32, 2014.
DOI : 10.1016/j.jmps.2014.06.002

T. Nguyen, J. Yvonnet, Q. Zhu, M. Bornert, and C. Chateau, A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure, Engineering Fracture Mechanics, vol.139, pp.18-39, 2015.
DOI : 10.1016/j.engfracmech.2015.03.045

URL : https://hal.archives-ouvertes.fr/hal-01140963

Y. Xie, O. G. Kravchenko, R. B. Pipes, and M. Koslowski, Phase field modeling of damage in glassy polymers, Journal of the Mechanics and Physics of Solids, vol.93, pp.182-197, 2016.
DOI : 10.1016/j.jmps.2015.12.021

R. Alessi, M. Ambati, T. Gerasimov, S. Vidoli, and L. De-lorenzis, Comparison of Phase-Field Models of Fracture Coupled with Plasticity, pp.1-21, 2018.
DOI : 10.2140/jomms.2016.11.463

F. Freddi and G. Royer-carfagni, Phase-field slip-line theory of plasticity, Journal of the Mechanics and Physics of Solids, vol.94, pp.257-272, 2016.
DOI : 10.1016/j.jmps.2016.04.024

R. Alessi, J. Marigo, and S. Vidoli, Gradient damage models coupled with plasticity: Variational formulation and main properties, Mechanics of Materials, vol.80, pp.351-367, 2015.
DOI : 10.1016/j.mechmat.2013.12.005

URL : https://hal.archives-ouvertes.fr/hal-01667724

M. Ambati, T. Gerasimov, and L. , Phase-field modeling of ductile fracture, Computational Mechanics, vol.92, issue.3???4, pp.1017-1040, 2015.
DOI : 10.1017/CBO9780511762956

M. Ambati, R. Kruse, and L. , A phase-field model for ductile fracture at finite strains and its experimental verification, Computational Mechanics, vol.186, issue.4, pp.149-167, 2016.
DOI : 10.1007/s10704-013-9904-6

M. J. Borden, T. J. Hughes, C. M. Landis, A. Anvari, and I. J. Lee, A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects, Computer Methods in Applied Mechanics and Engineering, vol.312, pp.312-130, 2016.
DOI : 10.1016/j.cma.2016.09.005

C. Miehe, F. Aldakheel, and A. Raina, Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory, International Journal of Plasticity, vol.84, pp.1-32, 2016.
DOI : 10.1016/j.ijplas.2016.04.011

P. Sicsic, J. Marigo, and C. Maurini, Initiation of a periodic array of cracks in the thermal shock problem: A gradient damage modeling, Journal of the Mechanics and Physics of Solids, vol.63, pp.256-284, 2014.
DOI : 10.1016/j.jmps.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-00843625

A. Mesgarnejad, B. Bourdin, and M. Khonsari, A variational approach to the fracture of brittle thin films subject to out-of-plane loading, Journal of the Mechanics and Physics of Solids, vol.61, issue.11, pp.61-2360, 2013.
DOI : 10.1016/j.jmps.2013.05.001

A. L. Baldelli, J. Babadjian, B. Bourdin, D. Henao, and C. Maurini, A variational model for fracture and debonding of thin films under in-plane loadings, Journal of the Mechanics and Physics of Solids, vol.70, pp.320-348, 2014.
DOI : 10.1016/j.jmps.2014.05.020

URL : https://hal.archives-ouvertes.fr/hal-00841953

R. Alessi, S. Vidoli, and L. D. Lorenzis, A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case, Engineering Fracture Mechanics, vol.190, pp.53-73, 2018.
DOI : 10.1016/j.engfracmech.2017.11.036

E. Tanné, T. Li, B. Bourdin, J. Marigo, and C. Maurini, Crack nucleation in variational phase-field models of brittle fracture, Journal of the Mechanics and Physics of Solids, vol.110, pp.80-99, 2018.
DOI : 10.1016/j.jmps.2017.09.006

K. Pham, K. Ravi-chandar, and C. Landis, Experimental validation of a phase-field model for fracture, International Journal of Fracture, vol.27, issue.6, pp.83-101, 2017.
DOI : 10.1016/j.jmps.2011.03.010

E. Lorentz, A nonlocal damage model for plain concrete consistent with cohesive fracture, International Journal of Fracture, vol.19, issue.2, pp.123-159, 2017.
DOI : 10.1016/j.engfracmech.2015.09.040

F. Freddi and F. Iurlano, Numerical insight of a variational smeared approach to cohesive fracture, Journal of the Mechanics and Physics of Solids, vol.98, pp.156-171, 2017.
DOI : 10.1016/j.jmps.2016.09.003

M. J. Borden, C. V. Verhoosel, M. A. Scott, T. J. Hughes, and C. M. Landis, A phase-field description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, vol.217, issue.220, pp.77-95, 2012.
DOI : 10.1016/j.cma.2012.01.008

M. Hofacker and C. Miehe, Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation, International Journal of Fracture, vol.42, issue.220, pp.113-129, 2012.
DOI : 10.1016/0022-5096(94)90003-5

T. Li, J. Marigo, D. Guilbaud, and S. Potapov, Gradient damage modeling of brittle fracture in an explicit dynamics context, International Journal for Numerical Methods in Engineering, vol.44, issue.20, pp.1381-1405, 2016.
DOI : 10.1016/j.ijsolstr.2007.02.044

URL : https://hal.archives-ouvertes.fr/hal-01248263

J. Bleyer, C. Roux-langlois, and J. Molinari, Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms, International Journal of Fracture, vol.72, issue.9, pp.79-100, 2017.
DOI : 10.1016/j.engfracmech.2004.10.011

URL : https://hal.archives-ouvertes.fr/hal-01390233

H. Henry and M. , Fractographic aspects of crack branching instability using a phase-field model, Physical Review E, vol.88, issue.6, p.60401, 2013.
DOI : 10.1103/PhysRevLett.100.178303

J. Bleyer and J. Molinari, Microbranching instability in phase-field modelling of dynamic brittle fracture, Applied Physics Letters, vol.110, issue.15, p.151903, 2017.
DOI : 10.1103/PhysRevLett.114.175501

URL : https://hal.archives-ouvertes.fr/hal-01508202

V. Hakim and A. Karma, Crack path prediction in anisotropic brittle materials, Physical review letters, p.95, 2005.

B. Li, C. Peco, D. Millán, I. Arias, and M. Arroyo, Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy, International Journal for Numerical Methods in Engineering, vol.14, issue.7, pp.711-727, 2015.
DOI : 10.1007/BF00665906

S. Teichtmeister, D. Kienle, F. Aldakheel, and M. Keip, Phase field modeling of fracture in anisotropic brittle solids, International Journal of Non-Linear Mechanics, vol.97, pp.1-21, 2017.
DOI : 10.1016/j.ijnonlinmec.2017.06.018

J. Clayton and J. Knap, Phase field modeling of directional fracture in anisotropic polycrystals, Computational Materials Science, vol.98, pp.158-169, 2015.
DOI : 10.1016/j.commatsci.2014.11.009

T. Nguyen, J. Rethore, J. Yvonnet, and M. Baietto, Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials, Computational Mechanics, vol.48, issue.20, pp.60-289, 2017.
DOI : 10.1016/S1359-6454(00)00214-7

URL : https://hal.archives-ouvertes.fr/hal-01499862

X. Zhang, S. W. Sloan, C. Vignes, and D. Sheng, A modification of the phase-field model for mixed mode crack propagation in rock-like materials, Computer Methods in Applied Mechanics and Engineering, vol.322, pp.123-136, 2017.
DOI : 10.1016/j.cma.2017.04.028

P. Ladevèze, A damage computational method for composite structures, Computers & Structures, vol.44, issue.1-2, pp.79-87, 1992.
DOI : 10.1016/0045-7949(92)90226-P

A. Matzenmiller, J. Lubliner, and R. Taylor, A constitutive model for anisotropic damage in fiber-composites, Mechanics of Materials, vol.20, issue.2, pp.125-152, 1995.
DOI : 10.1016/0167-6636(94)00053-0

P. Maimí, P. P. Camanho, J. Mayugo, and C. Dávila, A continuum damage model for composite laminates: Part I ??? Constitutive model, Mechanics of Materials, vol.39, issue.10, pp.897-908, 2007.
DOI : 10.1016/j.mechmat.2007.03.005

B. Nedjar, N. Kotelnikova-weiler, and I. Stefanou, Modeling of unidirectional fibre-reinforced composites under fibre damage, Mechanics Research Communications, vol.56, pp.115-122, 2014.
DOI : 10.1016/j.mechrescom.2013.12.006

URL : https://hal.archives-ouvertes.fr/hal-00923841

R. Alessi and F. Freddi, Phase-field modelling of failure in hybrid laminates, Composite Structures, vol.181, pp.9-25, 2017.
DOI : 10.1016/j.compstruct.2017.08.073

J. Marigo, C. Maurini, and K. Pham, An overview of the modelling of fracture by gradient damage models, Meccanica, vol.63, issue.1, pp.3107-3128, 2016.
DOI : 10.1016/j.jmps.2013.09.003

URL : https://hal.archives-ouvertes.fr/hal-01374814

B. Bourdin, G. A. Francfort, and J. Marigo, The Variational Approach to Fracture, Journal of Elasticity, vol.125, issue.8, pp.5-148, 2008.
DOI : 10.1016/S1874-5717(06)80009-5

URL : https://hal.archives-ouvertes.fr/hal-00551079

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : I. Les concepts fondamentaux, Comptes Rendus M??canique, vol.338, issue.4, pp.191-198, 2010.
DOI : 10.1016/j.crme.2010.03.009

URL : https://hal.archives-ouvertes.fr/hal-00490518

K. Pham and J. Marigo, Approche variationnelle de l'endommagement : II. Les mod??les ?? gradient, Comptes Rendus M??canique, vol.338, issue.4, pp.199-206, 2010.
DOI : 10.1016/j.crme.2010.03.012

URL : https://hal.archives-ouvertes.fr/hal-00490520

K. Pham, J. Marigo, and C. Maurini, The issues of the uniqueness and the stability of the homogeneous response in uniaxial tests with gradient damage models, Journal of the Mechanics and Physics of Solids, vol.59, issue.6, pp.1163-1190, 2011.
DOI : 10.1016/j.jmps.2011.03.010

URL : https://hal.archives-ouvertes.fr/hal-00578995

B. Bourdin, G. A. Francfort, and J. Marigo, Numerical experiments in revisited brittle fracture, Journal of the Mechanics and Physics of Solids, vol.48, issue.4, pp.797-826, 2000.
DOI : 10.1016/S0022-5096(99)00028-9

A. Braides, Approximation of free-discontinuity problems, 1998.

E. Lorentz, S. Cuvilliez, and K. Kazymyrenko, Convergence of a gradient damage model toward a cohesive zone model, Comptes Rendus M??canique, vol.339, issue.1, pp.20-26, 2011.
DOI : 10.1016/j.crme.2010.10.010

F. Freddi and G. Royer-carfagni, Regularized variational theories of fracture: A unified approach, Journal of the Mechanics and Physics of Solids, vol.58, issue.8, pp.1154-1174, 2010.
DOI : 10.1016/j.jmps.2010.02.010

A. Logg, K. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book, 2012.
DOI : 10.1007/978-3-642-23099-8

M. Alnaes, J. Blechta, J. Hake, A. Johansson, B. Kehlet et al., The FEniCS project version 1, Archive of Numerical Software, vol.5, issue.3, pp.9-23, 2015.

H. Petryk, Incremental energy minimization in dissipative solids, Comptes Rendus M??canique, vol.331, issue.7, pp.469-474, 2003.
DOI : 10.1016/S1631-0721(03)00109-8

G. Lancioni, Modeling the Response of Tensile Steel Bars by Means of Incremental Energy Minimization, Journal of Elasticity, vol.54, issue.612, pp.25-54, 2015.
DOI : 10.1002/nme.431

J. Bleyer, Phase-Field Composites : supplementary code for " Phase-field approach to anisotropic brittle fracture including several damage mechanisms

V. Hakim and A. Karma, Laws of crack motion and phase-field models of fracture, Journal of the Mechanics and Physics of Solids, vol.57, issue.2, pp.342-368, 2009.
DOI : 10.1016/j.jmps.2008.10.012

A. Chambolle, G. A. Francfort, and J. Marigo, When and how do cracks propagate?, Journal of the Mechanics and Physics of Solids, vol.57, issue.9, pp.1614-1622, 2009.
DOI : 10.1016/j.jmps.2009.05.009

URL : http://www.cmap.polytechnique.fr/preprint/repository/654.pdf

D. Leguillon, Asymptotic and numerical analysis of a crack branching in non-isotropic materials, European journal of mechanics, A. Solids, vol.12, pp.33-51, 1993.

J. Modniks, E. Sp¯-arni¸n?arni¸n?, J. Andersons, and W. Becker, Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension, Journal of Composite Materials, vol.12, issue.9, pp.1071-1080, 2015.
DOI : 10.1007/s11029-005-0064-2

J. Felger, N. Stein, and W. Becker, Mixed-mode fracture in open-hole composite plates of finite-width: An asymptotic coupled stress and energy approach, International Journal of Solids and Structures, vol.122, issue.123, pp.14-24, 2017.
DOI : 10.1016/j.ijsolstr.2017.05.039

A. A. Baldelli, B. Bourdin, J. Marigo, and C. Maurini, Fracture and debonding of a thin film on a stiff substrate: analytical and numerical solutions of a one-dimensional variational model, Continuum Mechanics and Thermodynamics, vol.9, issue.4, SI, pp.243-268, 2013.
DOI : 10.4171/IFB/171

URL : https://hal.archives-ouvertes.fr/hal-00736782

R. Alessi, J. Ciambella, and A. Paolone, Damage evolution and debonding in hybrid laminates with a cohesive interfacial law, Meccanica, vol.12, issue.7, pp.1079-1091, 2017.
DOI : 10.1007/BF00540846

A. Chambolle, G. A. Francfort, and J. Marigo, Revisiting Energy Release Rates in Brittle Fracture, Journal of Nonlinear Science, vol.187, issue.11, pp.395-424, 2010.
DOI : 10.1142/S0218202508003236

URL : https://hal.archives-ouvertes.fr/hal-00490537