G. Carbone and L. Mangialardi, Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface, Journal of the Mechanics and Physics of Solids, vol.52, issue.6, pp.1267-1287, 2004.
DOI : 10.1016/j.jmps.2003.12.001

G. Carbone and L. Mangialardi, Analysis of the adhesive contact of confined layers by using a Green's function approach, Journal of the Mechanics and Physics of Solids, vol.56, issue.2, pp.684-706, 2008.
DOI : 10.1016/j.jmps.2007.05.009

G. Carbone, M. Scaraggi, and U. Tartaglino, Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories, The European Physical Journal E, vol.17, issue.1, pp.65-74, 2009.
DOI : 10.1088/0953-8984/17/1/R01

R. W. Carpick, D. F. Ogletree, and M. Salmeron, A General Equation for Fitting Contact Area and Friction vs Load Measurements, Journal of Colloid and Interface Science, vol.211, issue.2, pp.395-400, 1978.
DOI : 10.1006/jcis.1998.6027

X. Chateau and Q. Nguyen, Buckling of elastic structures in unilateral contact, European Journal of Mechanics -A/Solids, vol.10, issue.1, pp.71-89, 1991.
URL : https://hal.archives-ouvertes.fr/hal-00105477

P. L. Combettes and J. C. Pesquet, Proximal Splitting Methods in Signal Processing, pp.185-212, 2011.
DOI : 10.1007/978-1-4419-9569-8_10

URL : https://hal.archives-ouvertes.fr/hal-00643807

L. Condat, A Primal???Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms, Journal of Optimization Theory and Applications, vol.23, issue.1???2, pp.460-479, 2013.
DOI : 10.1081/NFA-120003674

URL : https://hal.archives-ouvertes.fr/hal-00609728

A. P. Da-costa, J. Martins, I. Figueiredo, and J. Júdice, The directional instability problem in systems with frictional contacts, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.3-5, pp.357-384, 2004.
DOI : 10.1016/j.cma.2003.09.013

D. Costa, A. P. Figueiredo, I. Júdice, J. Martins, and J. , A Complementarity Eigenproblem in the Stability Analysis of Finite Dimensional Elastic Systems with Frictional Contact, Complementarity: applications, algorithms and extensions, pp.67-83, 2001.
DOI : 10.1007/978-1-4757-3279-5_4

D. Costa, A. P. Seeger, and A. , Numerical resolution of cone-constrained eigenvalue problems, Computational & Applied Mathematics, vol.28, issue.1, pp.37-61, 2009.

D. Costa, A. P. Seeger, and A. , Cone-constrained eigenvalue problems: theory??and??algorithms, Computational Optimization and Applications, vol.372, issue.1, pp.25-57, 2010.
DOI : 10.1007/978-94-015-8822-5

B. Derjaguin, V. Muller, and Y. Toporov, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, vol.53, issue.2, pp.314-326, 1975.
DOI : 10.1016/0021-9797(75)90018-1

C. Dong and M. Bonnet, An integral formulation for steady-state elastoplastic contact over a coated half-plane, Computational Mechanics, vol.28, issue.2, pp.105-121, 2002.
DOI : 10.1007/s00466-001-0274-y

URL : https://hal.archives-ouvertes.fr/hal-00117842

R. Glowinski, Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems, SIAM, 2015.
DOI : 10.1137/1.9781611973785

Y. Z. Hu and K. Tonder, Simulation of 3-D random rough surface by 2-D digital filter and fourier analysis, International Journal of Machine Tools and Manufacture, vol.32, issue.1-2, pp.83-90, 1992.
DOI : 10.1016/0890-6955(92)90064-N

C. Jacq, D. Nelias, G. Lormand, and D. Girodin, Development of a Three-Dimensional Semi-Analytical Elastic-Plastic Contact Code, Journal of Tribology, vol.44, issue.4, pp.653-667, 2002.
DOI : 10.1115/1.3424140

URL : https://hal.archives-ouvertes.fr/hal-00475471

F. Jin and X. Guo, Mechanics of axisymmetric adhesive contact of rough surfaces involving power-law graded materials, International Journal of Solids and Structures, vol.50, issue.20-21, pp.3375-3386, 2013.
DOI : 10.1016/j.ijsolstr.2013.06.007

K. Johnson, The adhesion of two elastic bodies with slightly wavy surfaces, International Journal of Solids and Structures, vol.32, issue.3-4, pp.423-430, 1995.
DOI : 10.1016/0020-7683(94)00111-9

K. L. Johnson, Contact mechanics, 1994.

J. J. Júdice, H. D. Sherali, and I. M. Ribeiro, The eigenvalue complementarity problem, Computational Optimization and Applications, vol.2, issue.1, pp.139-156, 2007.
DOI : 10.1007/b98874

K. L. Johnson, K. K. Roberts, and A. D. , Surface Energy and the Contact of Elastic Solids, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.324, issue.1558, pp.301-313, 1558.
DOI : 10.1098/rspa.1971.0141

H. Kesari and A. J. Lew, Effective macroscopic adhesive contact behavior induced by small surface roughness, Journal of the Mechanics and Physics of Solids, vol.59, issue.12, pp.2488-2510, 2011.
DOI : 10.1016/j.jmps.2011.07.009

M. S. Longuet-higgins, Statistical Properties of an Isotropic Random Surface, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.250, issue.975, pp.157-174, 1957.
DOI : 10.1098/rsta.1957.0018

D. Maugis, Adhesion of spheres: The JKR-DMT transition using a dugdale model, Journal of Colloid and Interface Science, vol.150, issue.1, pp.243-269, 1992.
DOI : 10.1016/0021-9797(92)90285-T

D. Maugis and M. Barquins, Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: theory and experiment, Journal of Physics D: Applied Physics, vol.16, issue.10, p.1843, 1983.
DOI : 10.1088/0022-3727/16/10/010

P. Meakin, Fractals, Scaling and Growth Far from Equilibrium, 1998.

M. H. Müser, Single-asperity contact mechanics with positive and negative work of adhesion: Influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids, Beilstein Journal of Nanotechnology, vol.5, pp.419-437, 2014.
DOI : 10.3762/bjnano.5.50

M. H. Müser and W. B. Dapp, The contact mechanics challenge: Problem definition. arXiv preprint arXiv:1512, p.2403, 2015.

Q. S. Nguyen, Stability and nonlinear solid mechanics, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00105248

A. Papangelo and M. Ciavarella, A Maugis???Dugdale cohesive solution for adhesion of a surface with a dimple, Journal of The Royal Society Interface, vol.26, issue.127, p.20160996, 2017.
DOI : 10.1063/1.4895789

N. Parikh and S. Boyd, Proximal Algorithms, Foundations and Trends?? in Optimization, vol.1, issue.3, pp.127-239, 2014.
DOI : 10.1561/2400000003

URL : http://www.nowpublishers.com/article/DownloadSummary/OPT-003

L. Pastewka and M. O. Robbins, Contact between rough surfaces and a criterion for macroscopic adhesion, Proceedings of the National Academy of Sciences, vol.111, issue.9, pp.3298-3303, 2014.
DOI : 10.1103/PhysRevB.78.235409

P. Prokopovich and S. Perni, Multiasperity Contact Adhesion Model for Universal Asperity Height and Radius of Curvature Distributions, Langmuir, vol.26, issue.22, pp.28-17036, 2010.
DOI : 10.1021/la102208y

C. Putignano, L. Afferrante, G. Carbone, and G. Demelio, A new efficient numerical method for contact mechanics of rough surfaces, International Journal of Solids and Structures, vol.49, issue.2, pp.338-343, 2012.
DOI : 10.1016/j.ijsolstr.2011.10.009

M. Queiroz, J. Judice, and C. Humes-jr, The symmetric eigenvalue complementarity problem, Mathematics of Computation, vol.73, issue.248, pp.1849-1863, 2004.
DOI : 10.1090/S0025-5718-03-01614-4

V. Rey, G. Anciaux, and J. F. Molinari, Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution, Computational Mechanics, vol.52, issue.2, 2017.
DOI : 10.1016/j.ijsolstr.2014.09.019

A. Seeger, Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions, Linear Algebra and its Applications, vol.292, issue.1-3, pp.1-14, 1999.
DOI : 10.1016/S0024-3795(99)00004-X

H. M. Stanley and T. Kato, An FFT-Based Method for Rough Surface Contact, Journal of Tribology, vol.6, issue.3, pp.481-485, 1997.
DOI : 10.1098/rspa.1966.0242

H. Westergaard, Bearing pressures and cracks, Journal of Applied Mechanics, vol.6, pp.49-53, 1937.

W. Zhang, F. Jin, S. Zhang, and X. Guo, Adhesive Contact on Randomly Rough Surfaces Based on the Double-Hertz Model, Journal of Applied Mechanics, vol.81, issue.5, p.51008, 2014.
DOI : 10.1115/1.4026019