P. K. Goel, Water Pollution: Causes, Effects and Control, 2006.

H. Dallas, J. Day, S. R. Carpenter, N. F. Caraco, D. L. Correll et al., The Effect of Water Quality Variables on Aquatic Ecosystems: A Review Water Research Commission: Pretoria, South Africa Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen, CrossRef] 4. United Nations. The Millennium Development Goals Report 2015. Available online, pp.559-568, 1998.

E. Parliament and . Council, EC Establishing a Framework for Community Action in the Field of Water Policy, Official Journal of the European Communities, vol.60, issue.327, pp.1-73, 2000.

I. Kanoshina, U. Lips, J. D. Leppänen, and T. Zohary, The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea) Harmful Algae Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria, N. Z. J. Mar. Freshw. Res, vol.2, issue.21, pp.29-41, 1987.

J. Arle, V. Mohaupt, and I. Kirst, Monitoring of Surface Waters in Germany under the Water Framework Directive???A Review of Approaches, Methods and Results, Water, vol.10, issue.12, p.217, 2016.
DOI : 10.1016/j.scitotenv.2015.12.006

I. Bertani, C. E. Steger, D. R. Obenour, G. L. Fahnenstiel, T. B. Bridgeman et al., Tracking cyanobacteria blooms: Do different monitoring approaches tell the same story? Sci. Total Environ, pp.294-308, 2017.

K. Sivonen, S. I. Niemelä, R. M. Niemi, L. Lepistö, T. H. Luoma et al., Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters, Hydrobiologia, vol.22, issue.3, pp.267-275, 1990.
DOI : 10.1007/BF00008195

S. Sendra, L. Parra, J. Lloret, and J. M. Jiménez, Oceanographic Multisensor Buoy Based on Low Cost Sensors for Posidonia Meadows Monitoring in Mediterranean Sea Available online: https://www.hindawi.com/ journals/js, 2015.

L. Parra, S. Sendra, J. Lloret, and J. J. Rodrigues, Low cost wireless sensor network for salinity monitoring in mangrove forests, IEEE SENSORS 2014 Proceedings, pp.2-5, 2014.
DOI : 10.1109/ICSENS.2014.6984949

Z. Rasin and M. R. Abdullah, Water Quality Monitoring System Using Zigbee Based Wireless Sensor Network, Int. J. Eng. Technol, vol.9, pp.24-28, 2009.

B. O-'flynn, R. Martinez-catala, S. Harte, C. O-'mathuna, J. Cleary et al., SmartCoast: A Wireless Sensor Network for Water Quality Monitoring, Proceedings of the 32nd IEEE Conference on Local Computer Networks, pp.15-18, 2007.

R. H. Foy, The phycocyanin to chlorophyll ?? ratio and other cell components as indicators of nutrient limitation in two planktonic cyanobacteria subjected to low-light exposures, Journal of Plankton Research, vol.15, issue.11, pp.1263-1276, 1993.
DOI : 10.1093/plankt/15.11.1263

J. Bertrand-krajewski, D. Laplace, C. Joannis, and G. Chebbo, Mesures en Hydrologie Urbaine et Assainissement; Technique et Documentation, 2000.

P. J. Huber, Robust Statistics; Wiley Series in Probability and Mathematical Statistics, 1981.

E. L. Kosarev and E. Pantos, Optimal smoothing of 'noisy' data by fast Fourier transform, Journal of Physics E: Scientific Instruments, vol.16, issue.6, p.537, 1983.
DOI : 10.1088/0022-3735/16/6/020

J. Alferes and P. A. Vanrolleghem, Efficient automated quality assessment: Dealing with faulty on-line water quality??sensors, AI Communications, vol.19, issue.6, pp.701-709, 2016.
DOI : 10.1002/env.900

M. Ndong, D. Bird, T. Nguyen-quang, M. De-boutray, A. Zamyadi et al., Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: Application to drinking water production, Water Research, vol.56, pp.98-108, 2014.
DOI : 10.1016/j.watres.2014.02.023

URL : https://hal.archives-ouvertes.fr/hal-00967649

C. F. Iscen, Ö. Emiroglu, S. Ilhan, N. Arslan, V. Yilmaz et al., Application of multivariate statistical techniques in the assessment of surface water quality in Uluabat Lake, Turkey, Environmental Monitoring and Assessment, vol.35, issue.6, pp.269-276, 2008.
DOI : 10.1007/s00267-004-2864-x

K. Chau and N. Muttil, Data mining and multivariate statistical analysis for ecological system in coastal waters, Journal of Hydroinformatics, vol.9, issue.4, p.305, 2007.
DOI : 10.2166/hydro.2007.003

C. Crisci, B. Ghattas, and G. Perera, A review of supervised machine learning algorithms and their applications to ecological data, Ecological Modelling, vol.240, issue.240, pp.113-122
DOI : 10.1016/j.ecolmodel.2012.03.001

F. Recknagel, Applications of machine learning to ecological modelling, Ecological Modelling, vol.146, issue.1-3, pp.303-310, 2001.
DOI : 10.1016/S0304-3800(01)00316-7

F. Soulignac, B. Vinçon-leite, B. J. Lemaire, J. R. Scarati-martins, C. Bonhomme et al., Performance Assessment of a 3D Hydrodynamic Model Using High Temporal Resolution Measurements in a Shallow Urban Lake, Environmental Modeling & Assessment, vol.131, issue.5, pp.2017-309
DOI : 10.1061/(ASCE)0733-950X(2005)131:5(213)

URL : https://hal.archives-ouvertes.fr/hal-01578035

O. Kerimoglu, S. Jacquet, B. Vinçon-leite, B. J. Lemaire, F. Rimet et al., Anneville, O. Modelling the plankton groups of the deep, peri-alpine Lake Bourget, Ecol. Model, vol.359, pp.2017-415

L. S. Pilotto, R. M. Douglas, M. D. Burch, S. Cameron, M. Beers et al., Health effects of exposure to cyanobacteria (blue-green algae) during recreational water-related activities, Aust. N. Z. J. Public Health, vol.21, pp.562-566, 1997.

I. Chorus and J. Bartram, Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring and Management; World Health Organization, 1999.
DOI : 10.4324/9780203478073