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Abstract:

Disdrometer data collected during the two extremety months of May and June 2016 at the
Ecole des Ponts ParisTech are used to get insghtsdar algorithms. The rain rate and
pseudo-radar quantities (horizontal and verticiiécévity, specific differential phase shift)
are all estimated over several durations with g bf drop size distributions DSD) collected
at 30 s time steps. The pseudo-radar quantitiededieed with simplifying hypotheses, in
particular on the DSD homogeneity. First it appehas the parameters of the standard radar
relationsZ, =R, R-K,, andR-Z, -Z, for these pseudo-radar quantities exhibit strong

variability between events and even within an ev8etond an innovative methodology that
relies on checking the ability of a given algorithorreproduce the good scale invariant
multifractal behaviour (on scales 30 s — few h)esbed on rainfall time series is
implemented. In this framework, the classical hgmodel ¢, — R for low rain rates and

R-K,, for great ones) performs best, as well as the lestainates of the radar relations’

parameters. However, we emphasise that due toyfiwheses on which they rely these
observations cannot be straightforwardly extenda@al radar quantities.
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1) Introduction

Disdrometers are rainfall point measurement dewitasgive access not only to rain rates but
also to information about the size and velocitglafps falling through the sampling section.
They are commonly implemented for research purpasdsheir operational use is spreading.
Weather radars are basically the only devices ginogivolumetric rainfall data almost
instantaneously, but in a less direct measureneaig¢ed a radar transmits a wave and
actually measures the power of the wave backsedttey the hydrometeors of the
atmosphere, and not the rain rate which is the tifydrydrometeorologists are interested in.
With the strong simplifying hypothesis that the pisize distribution (DSD) is homogeneous
in the radar scanned volume and corresponds tortheneasured with the help of
disdrometer, it is possible to define pseudo ragantities based on the pointwise
disdrometer measurement. This furthermore assumeseérent scattering, i.e. there is no
clustering of the drops inside radar pulse volumdgse radial scale is usually in the range
of 100 m to 1 km. In other words that drop centmreshomogenously distributed. It has been
shown that this hypothesis may lead to strongssieail biases (Lovejoy et al, 1996, Schertzer
et al., 2012). These hypotheses enable to pariralrse the retrieval algorithms from radar
backscattering to rain rate. This approach wasemphted by numerous authors (Gires et al.
2016; Jaffrain and Berne 2012b; Leinonen et al22®&lyzhkov et al. 2005; Verrier et al.
2013,). Others relied on synthetic DSD functiond ean various simulations using



probability distributions for the key parametersuccterizing the DSD (Anagnostou et al.,
2010; lllingworth and Blackman, 2002; Ryzhkov et aD05).

In this paper we use data collected in May and 2046 by the TARANIS observatory
(exTreme and multi-scAle RAINdrop parlS observai@yes et al. 2016) of the Fresnel
Platform of Ecole des Ponts ParisTech (https://hemguc.fr/Page/Fresnel-Platform/en). This
period was extremely rainy over this area, andltedin severe floods of the Seine River in
Paris and its tributaries. The peak flow in Paré&sweached on 7 June 2016 with levels not
observed since 1982 on the Seine River. Some @pstirgbutaries of the Paris area,
especially the Loing, reached levels greater tharonhes of the famous 1910 flood
(http://www.developpement-durable.gouv.fr/Point-Rg-inondations-6-juin.html). This data
is used to get insights on various radar algorithms

The data is presented in section 2, with a highlaghtwo events exhibiting different features;
an almost two day uninterrupted period of lightrg?9-31 May 2016), and a short heavy one
(17 June 2016). A multifractal analysis of the faiindata is used to quantify the variability
across scales of the measured time series (seetZxhand Lovejoy 2011 for a recent
review). The radar relations are investigated otisa 3, after having defined the following
pseudo-radar quantities: the horizontal reflegtiit, the specific phase shifty, and the
differential reflectivityZy,. The latter two depend on the oblate shape ofsdrbipe

parameters of the power law relations between theaatities and the rain rate are assessed
on average over the whole period and also for eaeht. The variability during an event is
studied as well. Finally in section 4, the consegas of the previous findings on rainfall
retrieval with radars are analysed. More precisetpnstructed radar observations of rainfall
time series (using the relations described in se@) are compared with actual rainfall time
series. An innovative comparison based on multilgaroperties is carried out as well as the
computation of standard scores commonly used byohygkteorologists.

2) Rainfall data and preliminary analysis
2.1) Data collection and computation

The data analysed in this paper was collected lmgtieMay 2016 and 31 June 2016 by the
TARANIS observatory’s optical disdrometers whicke aollocated on the roof of the Ecole
des Ponts ParisTech building (East of Paris, Flafieeo OTT Parsivéldisdrometers
(Loffler-Mang and Joss 2000, for an initial versi@attaglia et al. 2010, OTT 2014) are the
first type of disdrometer used and denoted Pars#iIPars#2 hereafter. The two Parsieeb
installed perpendicularly. Such optical disdrométansmits a laser sheet and computes the
size and velocity of drops falling through the séingparea by assessing the portion of light
occluded before it reaches the receiver. The sedmalometer type is a Campbell Scientific
PWS100 (Ellis et al. 2006, Campbell Scientific Rl 2). In this case, it is the light refracted
by drops that is analysed. It should be mentiohatld correction of the drops’ diameters
estimation was implemented to better take into actthe oblateness of drops (Gires et al.,
2016). Both devices basically provide a matrix wiita number of drop(s) recorded according
to classes of equivolumic diameter and terminaiealiocity. From this matrix, it is possible
to compute the rain raRin mm.h' (by counting the number of drop(s) that fell dgrmtime
interval) and a drop size distribution (DSD) derd¥¢D) (in m>.mm™). With the
aforementioned hypotheses (homogeneous DSD anibdigin of the drop centres), the
horizontal reflectivity Z, in mn?.m?), the vertical reflectivityZ, in mn?.m®) and the



specific differential phase shifiKg,in ° km™) can be estimated as moments of the (local)
DSD estimated by the disdrometers:

Zh,v = /t '[Dmax N(D)UBhv(D)dD (1)
M =1 “Prmin
m* +1
Koo = T80 2 s, (D) -5, DIN(D)D (2)

whereDpin andDmax are the minimum and maximum measured diam&ergin mm), oy,

(in mn¥) the backscattering cross section at horizontattical polarization, Re{®w) (in
mm) the real part of the forward scattering ampitat horizontal/vertical polarizatioh the
radar wavelength (in mm, for the X-band radar wength used in this paper we hale
33.3 mm)mthe complex refractive index of water (a tempawatf 20°C is taken for which
m=8.633 +1.289i). The scattering coefficients aramied with the help of the Python
PyTMatrix library (Leinonen 2014), which relies tre T-Matrix code (Mishchenko et al.,
1996). The following set up is implemented for doenputations: (i) an oblate spheroids
model for drop shape is taken with an axis ragquivolumic diameter relation
corresponding to the one implemented in the Pdfsiationale (Battaglia et al. 2010). In this
model the ratio between the vertical and horizoaxad is equal to 1 fdd < 1 mm, 0.7 foD
>5 mm, and linearly related @ with a slope equal to 0.075 in for intermedi@tg(ii) Drop
orientation is the same as in Leinonen et al. (2012 drops are partially aligned and a
normal distribution (mean and standard deviati@peetively equal to 0° and 7°, in
agreement with the findings of Bringi et al. 20@&aracterizes the angle of the symmetry
axis. Figure 1 displays typical curves of the sratg coefficients with respect to the
particular diameter. As expectex, is smaller for vertical polarization than horizainbnes

and the differences get greater with increafregs drops get more oblate (Fig. 1.a@j, Vvs.

D is plotted in log10-log10 plot in Fig. 1.b. It drl@s to point out a slight interest of using T-
Matrix computations code rather than rely on a Regleigh approximation in which

o, 0 D°. This approximation remains valid fBr< 3 mm (the linear regression yields a

slope equal to 5.95), and a somewhat more comm@kawour is found for greaté&r. This
transition occurs for decreasing drop diameter @webreasing wave length, meaning that it is
more relevant to use T-Matrix computations instefplure Rayleigh approximation at the X-
band radar wave length than at the the C-bandFmranstance instead of the 3 mm limit
found here, the transition occurs at roughly 5 nhiim @-band radar wave length of 53.5 mm).
The term used in the computationkaf, (Eq. 2) exhibits a more complex behaviour
with regards to drop equivolumic diameter (Fig.)1Given the simplifying assumption made
of spherical drops fdD < 1 mm, it theoretically yields a zero anisotropoattering
coefficient on this range and in fact a numeriazisa (smaller than 18 software precision
used), whereas prolate drops are usually expeBeatd and Chuang, 1987). This
corresponds to a truncation Ky, with Dyin=1 that may introduce a bias for low intensity
rainfalls to be discussed below. The small bumplfop ranging from 3 to 4 mm is followed
by a power law-like behaviour for greai®'s. The differential reflectivityZy, (no unit) is
simply defined as the ratio between the horizoaua the vertical reflectivity:



Z
zZ, =—" 3
dr Z\, ( )
Observations are carried out with time steps a$.30here is no missing data for these two
months of observations for the Pasfseind few ones for the PWS. In some sections sf thi
paper, individual events are studied. An evenefnéd as a rainy period isolated by at least
15 minutes of dry condition before and after arglilteng in more than 0.5 mm of total

collected water depth.

The DSD is (at least partly) characterized withhiep of the classical total drop
concentratioN; (m>) and the mass-weighted diameBgr (mm):

Dmax

N, = [ "™ N(D)dD (4)
Dmax
jD N(D)D*dD

D, =g ———— ()
J’ “N(D)D%dD

min

2.2) Data for May and June 2016

For better readability of this paper the resultl b8 mainly presented for the device Pars#2,
and results for the other two will only be briefhentioned. Figure 2 displays the temporal
evolution of the rain rate for May and June 2016 Rars#2 data at the observation scale of
30 s and at the 5 min scale to which people arergéiy more familiar with. The cumulative
depth is shown as well. 144 mm were recorded in May72 mm in June. The month of May
was the wettest ever recorded in the Paris areprdwde order of magnitude, the average
water depth in May is 63.2mm in Paris (18.25 km Wiesn disdrometer location) and 64.6
mm in Melun (32 km South from disdrometer locatioff)e Month of June was also wetter
than usual but with less extreme values. On avet@gemm are recorded in Paris and 53.9 in
Melun (source http://www.meteofrance.com/climatifra)

Between 1 May 2016 and 31 June 2016, 50 eventsneeoeded by the disdrometer resulting
in a total water depth of 204 mm. The number ohévevith total depth greater than 1, 2, 5,
and 10 mm are respectively 42, 24, 10 and 6. Tihebeu of events with durations greater
than 1, 2, 3, 4 and 12 h are respectively 40, 238Z1and 2. The variability between the events
of N; andDy, is significant. The coefficient of variation bk is equal to 54 % for a mean
equal to 301 M. The coefficient of variation fd,, is equal to 42 % for a mean equal to 1.39
mm.

Figure 3 presents a scatter plot of the rain raséisnated at 30 s time steps of Pars#1 and
PWS vs. Pars#2. It should be mentioned that tlseseme missing data during heavy rainfall
for the PWS device resulting in roughly 7% of peintissing. There is no missing data for
both Pars#1 and Pars#2. Hence the analysis ddhisiparagraph is based only on the time
steps when all devices are available to allow fraeliable comparison. For these time steps,
the cumulative depth is of 181 mm for Pars#1, 194 for Pars#2 and 230 mm for PWS. It
appears that the estimates for the two Parsivelsiarilar with a 6% split. The discrepancies
with the PWS are larger, with 20% differences mmi® of cumulative depths. These
differences are great (it is more than 50 % withtbatcorrection), and greater than the 10%
noticed on a previous study (Gires et al. 2016)s Thuld be related to the fact that both



devices do not work on the same principle, i.e. @stanates drops’ size and velocity from
occlude light whereas this other uses refractdd.lig

2.3) A focus on two different events

Two events were selected to be studied more plgdls®ughout the paper. They exhibit
different features:

() The 29-31 May 2016 event. It corresponds todlogv passing of a depression coming
from the Atlantic Ocean (West of study area) thédd went North-East. It started on 29-5-
2016 at 19:56:00 (local times are provided) antethsintil 31-5-2016 at 15:5:30. It should be
mentioned that there was a 1h dry period on 30 Ry at approximately 5, but it is
nevertheless presented as a single event. Thefeaures for Pars#2 are presented on Fig. 4.
It is basically an event with limited rain rateadaa DSD centred on small drops (Fig. Dg;

= 0.94 mm). lIts striking feature is its durationdéed it lasted more than 43 h (and almost 32
h without considering the first part) which is egtienally long for this area. To stress this
point authors carried out a short analysis on t@g&ar long rainfall time series recorded by
rain gauges located in the Val-de-Marne Countytleas 20 km from the disdrometer
location (see Hoang et al. 2012 for a more detgledentation of the data). For one rain
gauge, the maximum observed duration for an eweonly 13.2 h, and the number of events
with duration greater than 12 h, 10 h, 8 h, and$respectively 2, 4, 7, and 20. The
corresponding numbers for the other rain gauge&,ate3, and 10, with a maximum duration
of 12.8 h.

(i) The 17 June 2016 event. It was due to thegmwes of a cold and instable air mass over
France that resulted in numerous storms all ovectuntry. It started on 17-6-2016 at
17:36:00 (local times are provided) and lasted Uti6-2016 at 19:05:00. It is a short event
during which great rain rates (Fig. 5.a) were rdedr(more than 70 mnithat 30 second time
steps and more than 40 mm.at 5 min time steps). No significant damage wasnted on

this area. The DSD exhibits a heavier tail (Fig) Svith D, = 2.08 mm. The number of large
drops, i.e. with diameters greater than 3-4 mmhirtig overestimated with the Parsivels, as
this issue was recently reported by Park et all 12@or intense rainfall. The interpretation
that it could be due to the orientation of the Ratssampling area with regards to the wind
direction is discarded in this case because batbepeicular devices exhibit similar DSD.
This possible overestimation could be due to neavigcident drops intersecting the Parsivel
laser causing multiple smaller drops to appearlasgar drop.

2.4) Multifractal analysis of the data

The variability across scales of the measured senes is quantified with the help of the
theoretical framework of Universal Multifractals 1) which has been extensively used to
analyse and simulate geophysical fields exhibitjreat variability over wide ranges of
spatio-temporal scales (see Schertzer and Lové)ag for a recent review). Only the main
elements are presented here, for more detailsneadeinvited to refer to the review.

Let us consider a conservative figdat resolutiom, defined as the ratio between the
observation scaleand the outer scale(A=L/l). In practice the field measured at the
maximum resolution is up-scaled (by averaging combee time steps) to obtain it at other
resolutions. The first step of a multifractal arsédyconsists in computing the power spectra. If



the field exhibits some scaling feature, then thectra behaves as a power law with regards
to the wave numbé¢

E(k)Ok™? (6),

wheregis the spectral slope.

If € is a multifractal field, then its statistical momi@rders scale with resolution as:

<£AQ> ~ K@ ),

whereK(q) is the moment scaling function that fully chaeaizes the variability across scales
of the fielde,. The quality of the scaling is assessed with #ip bf the Trace Moment (TM)
analysis. It consists of plotting Eq. 7 in log-ldlge slope of the obtained straight line being
K(g). In the specific framework of the Universal Mtrictals (UM) toward which most
multiplicative process converge (this a broad galiwation of the central limit theorem,
Schertzer and Lovejoy 1987, 199K)(q) is fully characterized with the help of only twoale
invariant parameterS; anda. C; is the mean intermittency co-dimension and measine
clustering of the (average) intensity at smallet amaller scale<3=0 for a homogeneous
field). a is the multifractality indeX0< a < 2) and measures the clustering variability with

regards to intensity level. In this paper, the Deufrace Moment (DTM) technique is used to
estimate UM parameters (Lavallée et al. 1993).

If the studied fieldg appears to be non-conservative (as it is the lva®, then a third
parameteH, the non-conservation parameter, should be intredlult is equal to zero for
conservative fields. The TM and DTM analysis shduddcarried out on the conservative part
& of the field written as

@ =g A" (8)

And H can be estimated with the help of (Tessier e12923):

F=1+2H-K (2) (9)

WhereK; is the moment scaling function of the conservapiag.

In practice TM and DTM techniques remain relialddang ad4<0.5. In case of greatet,
they should be implemented not gn but on the underlying conservative fieid
Theoretically, a fractional integration of ordérequivalent to a multiplication b in the
Fourier space) enables to compagtdérom ¢. Here we will use a common approximation
(Lavallée et al. 1993) which consists of takingt the maximum resolution simply equal to
the renormalized absolute value of the fluctuatiohihe field i.e.:
. - B0+D-a(0) (10)

(o +1) - @ ())

and then upscaling this field at other resolutidns

Analyses are carried out on ensemble average averus samples. Each sample is
considered as a realisation of the process anptsxaled independently. The same
methodology as in Gires et al. 2016 is implemenbesklect the samples from the available
data, i.e. “for each event (i) a sample size @seln (a power of two, if possible); (ii) the
maximum number of samples for this event is congyuié) the portion of the event of
length equal to the sample size multiplied by thmber of samples found in (ii) with the
greatest cumulative depth is extracted; (iv) thieaeted series is cut into various samples.”



Sample sizes of power of two is simpler to hanblig,implies that some available data are
actually not used. More precisely with sample sie®4, 128, 256, 512, 1024 and 2048 time
steps, the percentage of data actually used @804, 43, 26 and 11%. Here a size of 64
time steps of 30 s, corresponding to 32 min is usedaximise the amount of data used to
estimate UM parameters and get more robust onesin§d¢eatures will also be discussed
with other sample sizes.

UM analysis is mainly discussed for data collectétth Pars#2. The quality of the scaling on
the available data is very good over the whole eavfgselected scales (30 s — 32 min). See
Fig. 6.a for the spectral analysis and 6.b for TiMdlgsis where the quality of the linear
regression is very good. Given the great valudefspectral slope (artd, see after), the TM
and DTM analyses are implemented not on the figkecty but on its. It should be mentioned
that when tested with greater sample size, thénspemains very good R0.99) up to 512
time steps (~ 4.3 h). For sample size of 1024 €hevand 5 samples), there seems to be a
break also visible when performing the analysif\2048 time steps. This limit of 4.3 his a
standard duration for meteorological situationtis area. Given the high quality of the
scaling, the DTM analysis is reliable. The UM paedens found aref=1.98,C; = 0.19,a=
1.64 andH = 0.65. Similar results with same high qualitysoéling are found for Pars#1 with
£=2.08,C; =0.19,a=1.56 andH = 0.70. Due to the missing time steps it was mssfble

to carry out a similar analysis with the PWS data.

3) Radar relations at various temporal scales
3.1) Presentation of the 3 relations used

In this paper we study and discuss three radatioeta(see references in the following
section where parameters’ values are discussed):

(i) The Z, — Rrelation: Z, =aR’>  (11)

(i) The R— K, relation: R=cK,"  (12)

(i) The R-Z, -Z, relation:R=eZ'7,° (13)

Here it should simply be mentioned that some astespressZ, in dB (ex. lllingworth and

Blackman 2002) while others keep it in linear s¢akinonen 2012, Fuigueras i Ventura
2012) as we did here.

We focus on these relations because they are tBegommonly used, especially the first
two. Other ones can be found in the literature saagctheR- K, — Z, (Ryzhkov et al. 1995),

but they are not explored here.

The parameters, b, c, d, e, f, andg are estimated using the measured DSD at the aigerv
time step of 30 s. For th&, — R relation, an orthogonal regression is carriedfoutime
steps withR=> 0.2mm.h%. An orthogonal regression minimizes the orthogatistance from
the data points to the fitted line, contrary to ¢indinary linear regression which minimizes
the vertical distance. For tHe - K, relation, an orthogonal regression is carried outifne

steps withK,, = 0.2°.km™. For theR-Z, - Z,, relation, a linear regression minimizing the
quadratic error considering only the time stepfiviRt= 0.2 mm.H" is used. Computations

are carried out only when more than 10 points {in@e steps) are available.



3.2) “Climatic” analysis

First we consider all the available data to compwrage values of the radar relations’
parameters. In this study they will be denotedfigliic” values keeping in mind that they
were obtained only with two months of data whichingted for such a statement. The plots
yielding to the parameters’ estimates of #je- R and R- K, relations for the Pars#2 data

are shown in Fig. 7. The quality of the regresssogood with coefficient of determination
greater than 0.8. Estimates are reported in Tabde dll radar relations and disdrometers.
They are consistent with those commonly reportetiéniterature.

With regards to th&, — R relationship we finch = 195 andb = 1.78 for Pars#2. The value of

a is significantly greater for Pars#1 with similalwe ofb. For PWS, values found farand

b are respectively greater and smaller than witls#2adata. There is a wide variety of values
reported in the literature for these parameterpicey ones ara=200 andb=1.6 (the widely
used parameter set since Marshal and Palmer, D48B00 andb =1.4 (which are the
Nexrad standard values in USA, Fulton et al. 19®Bjtrosov et al. (2002) found valuesaof

= 250 andb = 1.68 in the X-band using experimental raindnae slistributions. Jaffrain and
Berne (2012b) reported values ranging from 22@®f8ra and from 1.4 to 1.6 fdv after
analysing 36 rainfall events with disdrometer datence it appears that the values found here
for a andb are located respectively in the lower range amqeupange of reported values in
the literature.

This apparent slight discrepancy is actually nopssing. Indeed Verrier et al. (2013)
showed thah andb are dependent on the scale at which they are dehpGiven that they
are computed here at 30s which is much smallerttiminute or few minutes commonly
used, the differences are expected. Values argre@ement with those found by Verrier et al.
at this temporal scale. It should also be remirttiatione should be careful when comparing
values because they are also dependent on thessegrenethod (mainly the choice to
express quantity in log or not, and the regressipa) used to extract them (Campos and
Zawadski, 2000; Jaffrain and Berne 2012; Verrieale2013).

For the R— K, relation, we findc = 12.9 andd = 0.75 for Pars#2. Very close estimates are

found with Pars#1 data and close ones with PWS dgacal values for the X-band ate=

19.9 andd = 0.85 (Beard and Chuang, 1987)car 23.2 andd = 0.79 (Brandes at al. 2002).
Jaffrain and Berne (2012b) found also in the X-bard11-14] andd ~ [0.69-0.75]

according to the studied event. Leinonen (2012hdon the C-band=21.0d =0.72, meaning
that the parameterwould be similar to the one found here, had thdysbe done in X-band.
Anagnostou et al. (2010) reported values 8f19.26 and d = 0.85 in the X-band. Matrosov et
al. (2002) found values @f= 12.3 andl = 0.81 in the X-band. Hence the values obtained in
this analysis are in agreement with the ones foanke literature.

Finally we find for theR-2Z, —Z, relatione= 0.023,f = 0.77 andj = -4.05 for Pars#2.

Comparable values are retrieved with the otheradsviThis relation is less used by the
community than the other two. Leinonen et al. (30&ported values ad= 0.012f = 0.822
andg = -2.28. Ryzhkov et al. (2005) fourd- [0.0067-0.0159] ~ [0.73-1] andy ~ [-4.73, -
1.03] according to the drop shape model, and the of data used (experimental or modelled
DSD).



Radar relation Parameter Pars#1 Pars#?2 PWS
Z = aR’ a 243 195 240
b 1.76 1.78 1.52
R= Cded c 12.6 12.9 14.7
d 0.80 0.75 0.82
R= ezhfzdrg e 0.018 0.023 0.012
f 0.80 0.77 0.87
g -3.95 -4.05 -4.52

Table 1: “Climatic” parameters of the radar relati@mbtained with the disdrometer data used
in this study.

3.3) Event based analysis

In this section the radar relations are estimatddpendently for each event with Pars#2 data.
Similar results are found for the other deviceseyrare computed only for events with more
than 10 points available to carry out the linegression and whose cumulative depth is
greater than 3 mm. These conditions result in Enesvstudied for th&, — R and

R-2Z, -Z,relations and 16 for th& - K, relation. Figure 8.a displaysvsa for the Z, - R
relation. No tendency was found between the eveneéal features (duration, total rainfall
amount...) and the parameters of the radar relatibappears that the ranges of values is
rather great and greater than the ones reportddffnain and Berne (2012) in their analysis
of 36 events over the Lausanne area (Switzerldind)of the same order of magnitude as
those found by Matrosov et al. (2002) who foane [94-624] andb ~ [1.34-2.36] when
analysing 15 rainfall events observed with a transyble X-band radar. No trend is visible
with this data. The variability is smaller for tagponenb than for the pre-facta, with
coefficients of variation@V) respectively equal to 14% and 33%. Figure 8.pldisd vs.c

for the R-K,, relation. Again the range of obtained values idewtthan in Jaffrain and

Berne (2012b). Here there is no obvious trend bemweandd, maybe a slight positive
correlation (as in Jaffrain and Berne 2012 rep9rbed nothing of a statistical significance.
Similarly to theZ, — R relation,CV is smaller for the exponedtthan the pre-factar (28%
vs. 41%). The variability between events seem$sligyreater for the parameters of the
R-K,, relation than for the ones of th& — R relation. It is likely to be due to a greater

sensitivity of theR- K, relation than theZ, - R one to the disparities in terms of DSD. For

these selected events we fiGi¥=35% forD,, and 34% foiN;, which is only slightly smaller
than the values found for all the events. Figuce 8.d and 8.e respectively display 8§V
= 40%) ,f (CV=9.3%) andy (CV = 53%) parameters of the—Z, —Z, relation vs. one
another. There simply seems to be a negative atioeltrend betweeaandf. TheCV are
greater than for the other relations excepft.for

3.4) Intra-event analysis



In this section, we go a step further and investigiae variability of theZ, - R and R- K,

radar relations at the highest available temp@sblution with the help of data collected with
Pars#2 device. In order to achieve this, the patense b, c andd are computed for each
time step considering a moving window of 40 timepst(i.e. 10 minutes before and 10
minutes after). Again they are only computed ifpbints are available to perform the linear
regression. This is done for the two selected eveh29-31 May 2016 and 17 June 2016.

With regards to the 29-31 May event, Fig. 9.a digplthe computation afandb (Z, - R

relation) for the whole event. Figure 9.c and dvehthe temporal evolution of the “local”
(i.e. with the moving window) of respectivedyandb; while a scatter plot d§ vs.a is in Fig.
9.b. Note that the colour of the points in Fig. 8doresponds to the time within the event at
whicha andb are estimated. It means that two points with gingblours correspond to the
same moment of the storm. Figure 10 displays threesaformation but for th&R - K, radar

relation. It should be noted that the number ottsteps for which it is possible to compate
andd (only 6% of time steps for the May event) is mggduced than fos andb. This is due
to the conditionK;; > 0.2.km™ which requires significant rain rates. This expaihe lack
of information found on Fig. 10.c and 10.d. Figutdsand 12 are the equivalent of
respectively 8 and 9 but for the 17 June eventtffisrevent theR- K, can be fitted on

most of the event.

It can be seen that at the event scale, the Inegmession illustrating the radar relations are
good meaning the underlying radar relations atiabld. Second it appears that the variability
observed between events (see section 4.3) is edsemnqt within an event. Indeed the temporal
evolutions of radar parameters exhibit some quarkability, even with the use of the moving
window technique. Figure 13 displays the tempovalgion ofa andb for the 29-31 May
event for the three co-located disdrometers. lhlights that parameteesandb exhibit a

very local variability, which if taken into accoueuld improve rainfall retrieval with radars.
Furthermore although with some differences (lo@alability, sampling variability, device
functioning), it appears that similar patternsfawend. It suggests that the temporal variability
of a andb is associated with a variability of the underlypigysical processes and not
instrumental or sampling uncertainties. For thelde event a negative correlation between
the parameters of a given radar relatiaaiidb Fig 11.b orc andd Fig 12.b) is visible for the
first 50 minutes. Such obvious correlations aresaotisible for the May event which is
longer. Let us note that for th&, — R relation one can distinguish some correlationroalk

portions of the event (some “lines” on Fig. 9.blmsimilar colours); suggesting that such
correlation would only be valid for short perioddime, typically few tens of minutes.

An attempt was made to establish a correlation éetvthe mass weighted diamddgrand

the radar parameters. It was computed in a simiggrwith a moving window for each time
step. Results are presented in Table 2. They areasted and do not enable to obtain strong
conclusions. Limited correlation is found for tég — R relation. For theR- K, an anti-

correlation is noted with, while contrasted results according to the evenf@und ford,
suggesting a lower dependencelpn Similar results were found for Pars#1.This issue
should be further investigated to yield more rolmastclusions.
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Radar relation parametey  29-31 May 17 June
2016 2016
Z, -R a 0.34 0.069
b 0.60 0.15
R-Ky, C -0.60 -0.91
d -0.30 0.89

Table 2: Correlation between the radar parametetstee mass weighted diametBx,j for
the two selected events with Pars#2

4) Consequences on rainfall retrievals with radars.
4.1) Methodology

In this section the portion of radar algorithms\eening filtered radar quantities to rainfall
rates are mimicked with the help of disdrometersueaments. More precisely:

(i) Pseudo-radar quantitied, (Zqr, Kap) are estimated with the help of the instantané&x®b
and Egs. 1 and 2. The rain rate is computed framwdmdrops collected.

(i) The parameters of the radar relations arevested at various temporal scales (“climatic”,
event, and local) with the help of log-regressi@ssgdescribed in section 3.

(iif) Rain rates that would have been obtained wétttars are simulated by implementing the
radar relations. Four of them are tested; the thtadied ones in previous sections and an
additional hybrid one:

Ru=(2] a9

a
- Raa = Cded (15)
- R =€Z,'Z,° (16)
- A rather standard hybrid model which consistasmg aZ, — R relation for low rain rates
(Kgp 02°.km™) and aR - Kq, relation otherwise.

When “local” estimates of the radar relations’ paeters are not available the “event” ones
are used. When “event” estimates are not availatliejatic” ones are used. All
computations are carried out at 30 s time steps.iFdue of rain profiling algorithm using all
the values along a full radar beam are not explbexd (Anagnostou et al., 2004; Park et al.,
2005; Testud et al. 1999) and only local algorittaresmimicked. These radar relations,
which are used in all radar algorithms based ordefaned scattering relations, are sensitive
to the choice the drop shape model and the discoggmwith the unknown true shapes vyield
some significant uncertainty on the rain rate estul. It should be highlighted that the
developed approach enables to artificially avoid ¥iery complex problem by simply using
the same to compute the reconstructed pseudo-gadatities and the radar relations.
Obviously this cannot be the case with true ra@aa dince the drop shape is then unknown.

With these algorithms, we obtain 12 (4 types withex “climatic”, “event” or “local”
parameters for the radar relations) pseudo-radafiatetime seriesR,q) for each event and
they are compared with the rainfall time seriesot@d directly from drop measuremer®. (
The first step of the comparison consists in penfog the same multifractal analysis that was
done in section 3 and checking whether similarltesue obtained. In a more standard way,
we also computed scores commonly used for sucls (&ks et al., 2009; Emmanuel et al.,
2012; Figueras | Ventura et al., 2012; Krajewskalet2010; Moreau et al. 2009):
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- The Normalized Biad\B) whose optimal value is NB = <<RF2;> -1
- The correlation coefficient@rr) which varies between -1 and 1 and whose optiralalevis

z (R a < R>)(Rad i < Rad >)

1: corr = 0

;(R _<R>)2 ;(Rad,i _<R'ad >)2
- The Nash-Sutcliffe model efficiency coefficieddsh, which varies betweer c and 1

Z(Rad,i - R )2

and whose optimal value is Nash=1--4

> (R-(R)Y

Oi
- The Root mean square err&\SH, which varies between 0 ando and whose optimal

Z(Rad,i - R)z

value is 0:RMSE=\/ il

- The SlopeandOffsetof the orthogonal linear regression. The optiméles are respectively
1 and 0.

WhereR.aq andR correspond respectively to the reconstructed pseadar data and rain
drop derived rainfall. <> denotes the average. T8teps (index in the previous formulas) of
all the events are used in the sum for each inalicat

4.2) Overall results

Results are presented for the data collected vatb#2 device. Similar ones are found for the
other disdrometers. Figure 14 displays the scptt#rof R4q vs. R for the 12 algorithms

tested. Table 3 shows the output of the multifraatellysis performed on the various fields.
For instance if we consider thi& — R algorithm with “climatic” parameters, we firw=1.84

andC;=0.25 while for the actual series we haw€l.64 andC;=0.19. It means that the series
obtained with the pseudo radar algorithm exhilmitsdtrong multifractality and intermittency
with regards to the actual one, resulting in unséialstronger extremes. Standard comparison
scores are presented in Table 4. These resultsesttabrt the various algorithms in terms of
performance.

Considering a fixed temporal scale for the comparadf the radar relations’ parameters (i.e.
“climatic”, “event” or “local”) it appears that thieybrid algorithm is the one performing best.
Indeed the UM parameters estimates are closetualaalues for the time series computed
with this algorithm and the standard scores areehethis confirms the results found by
Figueras i Ventura et al. (2012) who analysed ehiburly time scale radar data from France

comparing them with rain gauge data. Then followpeesively theR-27, -Z, andZ, - R
algorithm. The behaviour of the - K, relation is trickier to analyse. Indeed in terms of

scores, it seems to perform similarly or best tti@nother algorithms except fiNiB and total
cumulative depth. This is related to the behaviourdmall” intensity for which there is a
strong negative bias. For instance with the climatierage, we haweB equal to almost -0.3
for time steps when the rain rate is smaller thamin.h" whereas it is lower than 0.1 with
rain rates greater than 10 mm.gwhich is visible on Fig. 14). Fitting it usingetwhole range
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of available rain rates yields very low regresgjoality. This is consistent with the more
complex behaviour of the scattering coefficientdomputingKqp vs.D (Fig. 1.c). Indeed the
relation becomes clearer only for rather large dnopich are visible during heavy rainfall
periods, whereas the aforementioned truncatiomagsiwithD <1 mm cannot be forgotten
for low intensity rainfalls

For each algorithm it appears that the performamgeoves when going from using
“climatic” to “event” to “local” estimates of theadar relations’ parameters. This effect was
expected and is now quantified. THe— R algorithm is especially sensitive to this effectia
its performance strongly improves wheandb parameters are tuned more locally. With
“local” estimates, its performances become companaiih the R-Z, —Z, ones which is

not the case with “climatic” estimates. Matrosowakt(2002) noticed this effect for the
Z, — R algorithm at the event scale. This improvementa@dsoimehow be expected from Fig.

1.a-b which displays the backscattering coefficeena function of the equivolumic drop
diameter. Indeed, the relation being straightfodyance parameters of th&, - R are fitted

with a local DSD which limits its influence on thariability (i.e. the main source of
uncertainty), it is not surprising that tl& — R performs well. This improvement is less

pronounced for the hybrid algorithm mainly becaiis@erformances are already good with
“climatic” estimates of radar parameters, and tyiarid algorithm somehow already tunes the
parameters according to rain rates by using twierdift relations. Although it is practically
complicated these results make a case for thewtsen(possible) of tuned radar relations’
parameters, if not in real time at least duringn@lysis. The rather good performances of the
simple Z, — R algorithm show at first glance that when no dualbpzation radar can be

installed, the combination of a disdrometer useestomate in real time the parameters of the
Z, — R relation and a single polarization radar can yggdd rainfall estimates. However,

one should keep in mind that tuned parametersorelpSD measurement at a single point not
taking into account its variability in space.

In this paper, multifractal techniques are useds®ess the quality of pseudo-radar algorithms
The closeness of UM parameters assessed on rad@eséimes to the ones obtained on the
actual rainfall time series may help to assesgénmrmance of the algorithms. The use of
such techniques is very interesting because ihsitally validates the outcome across all
studied scales and is not limited to a single tggmi as it is the case for the standard scores
also computed in this paper. Such practical apfidioa of scaling techniques were already
developed to assess the quality of high frequeoicy fainfall time series (Hoang et al. 2012).
The analyses carried out here are another example.
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Radar algorithm B R o C1 H
Parameter Radar
estimation conversion
Climatic 7 P 1.69 0.98 1.84 0.25 0.59
=0
& a
R, = Cded 1.93 0.99 1.44 0.20 0.63
R, = ezhfzdrg 1.41 0.99 2.05 0.23 0.44
Hybrid 1.81 0.99 1.76 0.21 0.60
Event 7 \VP 1.58 0.99 1.79 0.24 0.51
=0
& a
R, = Cded 1.97 0.99 1.42 0.19 0.63
R, = ezhfzdrg 1.55 0.99 1.91 0.22 0.49
Hybrid 1.97 0.99 1.60 0.19 0.65
Local 7 /b 1.74 0.99 1.69 0.22 0.56
=0
& a
R, = Cded 1.94 0.99 1.47 0.19 0.63
R, = ezhfzdrg 1.82 0.99 1.72 0.20 0.59
Hybrid 1.96 0.99 1.61 0.19 0.65
For the actual time series 1.98 0.99 1.64 0.19 0.6

Table 3: Results of the multifractal analysis parfed on the rain rates computed via
reconstructed pseudo-radar data and algoritiRpg ¢’s. the one obtained from direct drop

measurement$] for the data collected with the help of Pars#zak
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Radar algorithm NB corr Nash| RMSE Slopg Offsett Cumul
Parametelf Radar (mm)
estimation| conversion
Climatic Z, 1/b 0.11 0.85 -0.68 22.7 1.7 -1.2 229

R'ad :(_j
a
R. = Cded -0.24 0.96 0.88 1.67 1.05 -0.58 158
R, = equZdrg -0.065| 0.86 0.69 4.2 0.90 -0.07 19p
Hybrid -0.032| 0.94 0.85 2.0 1.0 -0.16 200
Event Z. vb | 0.016 0.90 0.73 3.6 1.1 -0.08 209
Rrad :(_j
a
R. = Cded -0.100| 0.95 0.89 1.5 0.89 0.02 1838
R, = equZdrg -0.017| 0.89 0.70 4.1 1.1 -0.19 201
Hybrid -0.033| 0.96 0.92 1.0 0.89 0.1% 199
Local Z. vb | 0.002 0.94 0.88| 1.6 0.96 -0.09 206
Rrad :(_j
a
R. = Cded -0.098| 0.96 0.92 1.1 0.96 -0.11 1838
R, = ethZdrg -0.011| 0.96 0.92 1.1 0.98 -0.06 20p
Hybrid -0.008| 0.98 0.96 0.48 0.9¢6 -0.06 204

Table 4: Standard scores of the rain rates compigeconstructed pseudo-radar data and
algorithms Ri,g) vs. the one obtained from direct drop measuresn@pft(total cumulative
depth = 204 mm) for the data collected with theohwIPars#2 device.

4.3) Focus on the two selected events

In this section, we illustrate more precisely tieaeral results discussed quantitatively in the
previous section on the performance of the varradar algorithms. This is done by looking

into more details at the time series for the tweded events and Pars#2 data.
Figure 15.a displays the temporal evolution ofrtia rates obtained via reconstructed

pseudo-radar data and the thige- R algorithms (“climatic”, “event”, and “local”) alam

with the direct estimation & The cumulative depth is shown in Fig. 15.b, wheievisible
that the “climatic” estimates yield the worst cuatite depth (an underestimation in this
case). A closer look at the temporal evolutionaoh rates confirms the improvement brought
by the “local” (in time) estimates of the radaratedns’ parameters. For example during the
pseudo-peak slightly before 4.7 h (Fig. 15.c) #ia rate is below 5 mm’hand the use of

either the “climatic” or “event” relations yieldsrang overestimation, while the local

parameters enable to better represent actualatgn.rSimilar conclusion is found around the
peak at 11.9 h, with an underestimation by therfalic” and “event” based algorithms. The
hybrid models yield similar results, but resulte abt shown here because of the actually

limited number of time steps for which a lo®F K, can be computed (6%).

Figure 16 (left column) displays the temporal eviolu of the rain rates computed via
reconstructed pseudo-radar data and the 4 algaittith “climatic”, “event”, and “local”
parameters along with the direct estimatiofRoFigure 16 (right column) exhibits the
corresponding cumulative depth. Again the “locatimates of radar relations’ parameter
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provide the best estimates. In this case the “¢clchparameters yield an overestimation
expect forR—-2Z, —Z, algorithm. It is especially visible for th& - R algorithm. The

improvement brought by the “event” based and “lbeatimates are visible on the successive
peaks (Fig. 16.a).

5) Conclusion

In this paper, the rainfall data measured by disaters of Ecole des Ponts ParisTech during
the two extremely wet months of May and June 20&6aalysed. At first, this rainfall data
exhibit very good quality of scaling behaviour ogeales ranging from 30 s to few hours.

Classical relations between rain rate and the bota reflectivity, the differential phase shift
and the differential reflectivity4, - R, R-K,,,R-2, - Z, ) are investigated with the help

of pseudo-radar quantities reconstructed from tbdrdmeter data. This reconstruction
requires that both the DSD and the drop centreilboligion are homogeneous. In this
simplistic framework, the characteristic parametérthese power-law relations are computed
at various scales: “climatic”, “event” and “locakiith moving time window. It appears that
these parameters exhibit a strong variability frame event to the other and even within an
event.

Finally these radar relations are used to recocistain rate time series that would be
observed with the help of weather radars. In aoldito the previously mentioned relations,
the standard hybrid model relying orZa - R relation for low intensities and B - K,

relation for large intensities is tested. An innibv@ methodology based on assessing the
quality of an algorithm on its ability to reproduite scaling behaviour of actual time series
was developed. This ensures that results are valaa scales. The main conclusion is that
the hybrid algorithm is the one performing besttfae pseudo-radar quantities, whatever the
temporal scale of the computation of the radaticeia’ parameters. However, the
disdrometer algorithm estimating the drop shapenunhately truncates the computation of
the pseuddqp atDmin=1 mm and therefore the contribution of the protiteps. It also
appears that the performances of all algorithmsifsegntly improve by using parameters
computed over shorter period of time, but this uniftately corresponds to less predictive
value. Not too surprisingly, the famoi§ — R relation tuned with “local” parameter
estimates exhibits very good performance, butdbems to be a somewhat artificial result
from the power-law-like behaviour of the radar ergectiono(D). Overall, the analyses
presented in this paper call for extended studiaswould take into account (including in real
time) the spatial variability of the DSD and thespible clustering of drops, as well as the
contribution of the prolate drops, that could netaaldressed in this paper.
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vs.D in log-log plot along with a linear regression bk 3 mm (C)Re[th(D) —SN(D)] VS.
D
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Figure 2: (Left) Temporal evolution of the rainaan mm.h* with 30 s time steps (solid
black, the observation time step) and 5 min tineps{dashed red). (Right) Cumulative
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Figure 4: For the 29-31 May 2016 event with deRees#2. (a) Temporal evolution of the
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Figure 16: For the 17 June 2016 event and Parg#2 @ Temporal evolution of the rain
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