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Abstract: 
Disdrometer data collected during the two extremely wet months of May and June 2016 at the 
Ecole des Ponts ParisTech are used to get insights on radar algorithms. The rain rate and 
pseudo-radar quantities (horizontal and vertical reflectivity, specific differential phase shift) 
are all estimated over several durations with the help of drop size distributions DSD) collected 
at 30 s time steps. The pseudo-radar quantities are defined with simplifying hypotheses, in 
particular on the DSD homogeneity. First it appears that the parameters of the standard radar 
relations RZh − , dpKR−  and drh ZZR −−  for these pseudo-radar quantities exhibit strong 

variability between events and even within an event. Second an innovative methodology that 
relies on checking the ability of a given algorithm to reproduce the good scale invariant 
multifractal behaviour (on scales 30 s – few h) observed on rainfall time series is 
implemented. In this framework, the classical hybrid model ( RZh −  for low rain rates and 

dpKR− for great ones) performs best, as well as the local estimates of the radar relations’ 

parameters. However, we emphasise that due to the hypotheses on which they rely these 
observations cannot be straightforwardly extended to real radar quantities. 
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1) Introduction 
 
Disdrometers are rainfall point measurement devices that give access not only to rain rates but 
also to information about the size and velocity of drops falling through the sampling section. 
They are commonly implemented for research purposes and their operational use is spreading. 
Weather radars are basically the only devices providing volumetric rainfall data almost 
instantaneously, but in a less direct measurement. Indeed a radar transmits a wave and 
actually measures the power of the wave backscattered by the hydrometeors of the 
atmosphere, and not the rain rate which is the quantity hydrometeorologists are interested in. 
With the strong simplifying hypothesis that the drop size distribution (DSD) is homogeneous 
in the radar scanned volume and corresponds to the one measured with the help of 
disdrometer, it is possible to define pseudo radar quantities based on the pointwise 
disdrometer measurement. This furthermore assumes incoherent scattering, i.e. there is no 
clustering of the drops inside radar pulse volumes, whose radial scale is usually in the range 
of 100 m to 1 km. In other words that drop centres are homogenously distributed. It has been 
shown that this hypothesis may lead to strong statistical biases (Lovejoy et al, 1996, Schertzer 
et al., 2012). These hypotheses enable to partially inverse the retrieval algorithms from radar 
backscattering to rain rate. This approach was implemented by numerous authors (Gires et al. 
2016; Jaffrain and Berne 2012b; Leinonen et al. 2012; Ryzhkov et al. 2005; Verrier et al. 
2013,). Others relied on synthetic DSD functions and ran various simulations using 
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probability distributions for the key parameters characterizing the DSD (Anagnostou et al., 
2010; Illingworth and Blackman, 2002; Ryzhkov et al., 2005). 
 
In this paper we use data collected in May and June 2016 by the TARANIS observatory 
(exTreme and multi-scAle RAiNdrop parIS observatory, Gires et al. 2016) of the Fresnel 
Platform of Ecole des Ponts ParisTech (https://hmco.enpc.fr/Page/Fresnel-Platform/en). This 
period was extremely rainy over this area, and resulted in severe floods of the Seine River in 
Paris and its tributaries. The peak flow in Paris was reached on 7 June 2016 with levels not 
observed since 1982 on the Seine River. Some upstream tributaries of the Paris area, 
especially the Loing, reached levels greater than the ones of the famous 1910 flood 
(http://www.developpement-durable.gouv.fr/Point-sur-les-inondations-6-juin.html). This data 
is used to get insights on various radar algorithms. 
 
The data is presented in section 2, with a highlight on two events exhibiting different features; 
an almost two day uninterrupted period of light rain (29-31 May 2016), and a short heavy one 
(17 June 2016). A multifractal analysis of the rainfall data is used to quantify the variability 
across scales of the measured time series (see Schertzer and Lovejoy 2011 for a recent 
review). The radar relations are investigated in section 3, after having defined the following 
pseudo-radar quantities: the horizontal reflectivity Zh, the specific phase shift Kdp and the 
differential reflectivity Zdr. The latter two depend on the oblate shape of drops. The 
parameters of the power law relations between these quantities and the rain rate are assessed 
on average over the whole period and also for each event. The variability during an event is 
studied as well. Finally in section 4, the consequences of the previous findings on rainfall 
retrieval with radars are analysed. More precisely reconstructed radar observations of rainfall 
time series (using the relations described in section 3) are compared with actual rainfall time 
series. An innovative comparison based on multifractal properties is carried out as well as the 
computation of standard scores commonly used by hydro-meteorologists.   
 
 
2) Rainfall data and preliminary analysis 
 
2.1) Data collection and computation 
 
The data analysed in this paper was collected between 1 May 2016 and 31 June 2016 by the 
TARANIS observatory’s optical disdrometers which are collocated on the roof of the Ecole 
des Ponts ParisTech building (East of Paris, France). Two OTT Parsivel2 disdrometers 
(Loffler-Mang and Joss 2000, for an initial version; Battaglia et al. 2010, OTT 2014) are the 
first type of disdrometer used and denoted Pars#1 and Pars#2 hereafter. The two Parsivel2 are 
installed perpendicularly. Such optical disdrometer transmits a laser sheet and computes the 
size and velocity of drops falling through the sampling area by assessing the portion of light 
occluded before it reaches the receiver. The second disdrometer type is a Campbell Scientific 
PWS100 (Ellis et al. 2006, Campbell Scientific Ltd 2012). In this case, it is the light refracted 
by drops that is analysed. It should be mentioned that a correction of the drops’ diameters 
estimation was implemented to better take into account the oblateness of drops (Gires et al., 
2016). Both devices basically provide a matrix with the number of drop(s) recorded according 
to classes of equivolumic diameter and terminal fall velocity. From this matrix, it is possible 
to compute the rain rate R in mm.h-1 (by counting the number of drop(s) that fell during a time 
interval) and a drop size distribution (DSD) denoted N(D) (in m-3.mm-1). With the 
aforementioned hypotheses (homogeneous DSD and distribution of the drop centres), the 
horizontal reflectivity (Zh in mm6.m-3), the vertical reflectivity (Zv in mm6.m-3) and the 
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specific differential phase shift (Kdp in °.km-1) can be estimated as moments of the (local) 
DSD estimated by the disdrometers: 
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where Dmin and Dmax are the minimum and maximum measured diameters D’s (in mm), vhB ,;σ  

(in mm2) the backscattering cross section at horizontal / vertical polarization, Re(Shh/vv) (in 
mm) the real part of the forward scattering amplitude at horizontal/vertical polarization, λ the 
radar wavelength (in mm, for the X-band radar wavelength used in this paper we haveλ = 
33.3 mm), m the complex refractive index of water (a temperature of 20°C is taken for which 
m=8.633 +1.289i). The scattering coefficients are obtained with the help of the Python 
PyTMatrix library (Leinonen 2014), which relies on the T-Matrix code (Mishchenko et al., 
1996). The following set up is implemented for the computations: (i) an oblate spheroids 
model for drop shape is taken with an axis ratio - equivolumic diameter relation 
corresponding to the one implemented in the Parsivel2 rationale (Battaglia et al. 2010). In this 
model the ratio between the vertical and horizontal axis is equal to 1 for D < 1 mm, 0.7 for D 
> 5 mm, and linearly related to D with a slope equal to 0.075 in for intermediate D. (ii) Drop 
orientation is the same as in Leinonen et al. (2012); i.e. drops are partially aligned and a 
normal distribution (mean and standard deviation respectively equal to 0° and 7°, in 
agreement with the findings of Bringi et al. 2008) characterizes the angle of the symmetry 
axis. Figure 1 displays typical curves of the scattering coefficients with respect to the 
particular diameter. As expected Bσ  is smaller for vertical polarization than horizontal ones 

and the differences get greater with increasing D as drops get more oblate (Fig. 1.a).  Bσ  vs. 
D is plotted in log10-log10 plot in Fig. 1.b. It enables to point out a slight interest of using T-
Matrix computations code rather than rely on a pure Rayleigh approximation in which 

6DB ∝σ . This approximation remains valid for D < 3 mm (the linear regression yields a 
slope equal to 5.95), and a somewhat more complex behaviour is found for greater D. This 
transition occurs for decreasing drop diameter with decreasing wave length, meaning that it is 
more relevant to use T-Matrix computations instead of pure Rayleigh approximation at the X-
band radar wave length than at the the C-band one. For instance instead of the 3 mm limit 
found here, the transition occurs at roughly 5 mm at a C-band radar wave length of 53.5 mm).  

The term used in the computation of Kdp (Eq. 2) exhibits a more complex behaviour 
with regards to drop equivolumic diameter (Fig. 1.c). Given the simplifying assumption made 
of spherical drops for D < 1 mm, it theoretically yields a zero anisotropic scattering 
coefficient on this range and in fact a numerical noise (smaller than 10-16 software precision 
used), whereas prolate drops are usually expected (Beard and Chuang, 1987). This 
corresponds to a truncation of Kdp, with Dmin=1 that may introduce a bias for low intensity 
rainfalls to be discussed below. The small bump for drop ranging from 3 to 4 mm is followed 
by a power law-like behaviour for greater D’s. The differential reflectivity Zdr (no unit) is 
simply defined as the ratio between the horizontal and the vertical reflectivity: 
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Observations are carried out with time steps of 30 s. There is no missing data for these two 
months of observations for the Pasivel2s and few ones for the PWS. In some sections of this 
paper, individual events are studied. An event is defined as a rainy period isolated by at least 
15 minutes of dry condition before and after and resulting in more than 0.5 mm of total 
collected water depth. 
 
The DSD is (at least partly) characterized with the help of the classical total drop 
concentration Nt (m

-3) and the mass-weighted diameter Dm (mm): 
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2.2) Data for May and June 2016 
 
For better readability of this paper the results will be mainly presented for the device Pars#2, 
and results for the other two will only be briefly mentioned. Figure 2 displays the temporal 
evolution of the rain rate for May and June 2016 and Pars#2 data at the observation scale of 
30 s and at the 5 min scale to which people are generally more familiar with. The cumulative 
depth is shown as well. 144 mm were recorded in May and 72 mm in June. The month of May 
was the wettest ever recorded in the Paris area. To provide order of magnitude, the average 
water depth in May is 63.2mm in Paris (18.25 km West from disdrometer location) and 64.6 
mm in Melun (32 km South from disdrometer location). The Month of June was also wetter 
than usual but with less extreme values. On average 49.6 mm are recorded in Paris and 53.9 in 
Melun (source http://www.meteofrance.com/climat/france) 
 
Between 1 May 2016 and 31 June 2016, 50 events were recorded by the disdrometer resulting 
in a total water depth of 204 mm. The number of events with total depth greater than 1, 2, 5, 
and 10 mm are respectively 42, 24, 10 and 6. The number of events with durations greater 
than 1, 2, 3, 4 and 12 h are respectively 40, 23, 14, 8 and 2. The variability between the events 
of Nt and Dm is significant. The coefficient of variation for Nt is equal to 54 % for a mean 
equal to 301 m-3. The coefficient of variation for Dm is equal to 42 % for a mean equal to 1.39 
mm. 
 
Figure 3 presents a scatter plot of the rain rates estimated at 30 s time steps of Pars#1 and 
PWS vs. Pars#2. It should be mentioned that there is some missing data during heavy rainfall 
for the PWS device resulting in roughly 7% of points missing. There is no missing data for 
both Pars#1 and Pars#2. Hence the analysis done in this paragraph is based only on the time 
steps when all devices are available to allow for a reliable comparison. For these time steps, 
the cumulative depth is of 181 mm for Pars#1, 191 mm for Pars#2 and 230 mm for PWS. It 
appears that the estimates for the two Parsivels are similar with a 6% split. The discrepancies 
with the PWS are larger, with 20% differences in terms of cumulative depths. These 
differences are great (it is more than 50 % without the correction), and greater than the 10% 
noticed on a previous study (Gires et al. 2016). This could be related to the fact that both 
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devices do not work on the same principle, i.e. one estimates drops’ size and velocity from 
occlude light whereas this other uses refracted light. 
 
 
2.3) A focus on two different events 
 
Two events were selected to be studied more precisely throughout the paper. They exhibit 
different features:  
(i) The 29-31 May 2016 event. It corresponds to the slow passing of a depression coming 
from the Atlantic Ocean (West of study area) that later went North-East. It started on 29-5-
2016 at 19:56:00 (local times are provided) and lasted until 31-5-2016 at 15:5:30. It should be 
mentioned that there was a 1h dry period on 30 May 2016 at approximately 5, but it is 
nevertheless presented as a single event. The main features for Pars#2 are presented on Fig. 4. 
It is basically an event with limited rain rates, and a DSD centred on small drops (Fig. 4.c; Dm 
= 0.94 mm). Its striking feature is its duration. Indeed it lasted more than 43 h (and almost 32 
h without considering the first part) which is exceptionally long for this area. To stress this 
point authors carried out a short analysis on two 20 year long rainfall time series recorded by 
rain gauges located in the Val-de-Marne County less than 20 km from the disdrometer 
location (see Hoang et al. 2012 for a more detailed presentation of the data). For one rain 
gauge, the maximum observed duration for an event is only 13.2 h, and the number of events 
with duration greater than 12 h, 10 h, 8 h, and 6 h is respectively 2, 4, 7, and 20. The 
corresponding numbers for the other rain gauges are 1, 1, 3, and 10, with a maximum duration 
of 12.8 h. 
(ii) The 17 June 2016 event. It was due to the presence of a cold and instable air mass over 
France that resulted in numerous storms all over the country. It started on 17-6-2016 at 
17:36:00 (local times are provided) and lasted until 17-6-2016 at 19:05:00. It is a short event 
during which great rain rates (Fig. 5.a) were recorded (more than 70 mm.h-1 at 30 second time 
steps and more than 40 mm.h-1 at 5 min time steps). No significant damage was reported on 
this area. The DSD exhibits a heavier tail (Fig. 5.c) with Dm = 2.08 mm. The number of large 
drops, i.e. with diameters greater than 3-4 mm, might be overestimated with the Parsivels, as 
this issue was recently reported by Park et al. (2017) for intense rainfall. The interpretation 
that it could be due to the orientation of the Parsivel sampling area with regards to the wind 
direction is discarded in this case because both perpendicular devices exhibit similar DSD. 
This possible overestimation could be due to nearly coincident drops intersecting the Parsivel 
laser causing multiple smaller drops to appear as a larger drop.   
 
 
2.4) Multifractal analysis of the data  
 
The variability across scales of the measured time series is quantified with the help of the 
theoretical framework of Universal Multifractals (UM) which has been extensively used to 
analyse and simulate geophysical fields exhibiting great variability over wide ranges of 
spatio-temporal scales (see Schertzer and Lovejoy 2011 for a recent review). Only the main 
elements are presented here, for more details readers are invited to refer to the review.  
 
Let us consider a conservative field ελ at resolution λ, defined as the ratio between the 
observation scale l and the outer scale L (λ=L/l). In practice the field measured at the 
maximum resolution is up-scaled (by averaging consecutive time steps) to obtain it at other 
resolutions. The first step of a multifractal analysis consists in computing the power spectra. If 
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the field exhibits some scaling feature, then the spectra behaves as a power law with regards 
to the wave number k:  

β−∝ kkE )(       (6),  

where β is the spectral slope. 
 
If ελ is a multifractal field, then its statistical moment orders scale with resolution as: 

)(qKq λελ ≈    (7), 

where K(q) is the moment scaling function that fully characterizes the variability across scales 
of the field ελ. The quality of the scaling is assessed with the help of the Trace Moment (TM) 
analysis. It consists of plotting Eq. 7 in log-log; the slope of the obtained straight line being 
K(q). In the specific framework of the Universal Multifractals (UM) toward which most 
multiplicative process converge (this a broad generalization of the central limit theorem, 
Schertzer and Lovejoy 1987, 1997), K(q) is fully characterized with the help of only two scale 
invariant parameters C1 and α. C1 is the mean intermittency co-dimension and measures the 
clustering of the (average) intensity at smaller and smaller scales (C1=0 for a homogeneous 
field). α is the multifractality index ( 20 ≤≤ α ) and measures the clustering variability with 
regards to intensity level. In this paper, the Double Trace Moment (DTM) technique is used to 
estimate UM parameters (Lavallée et al. 1993). 
 
If the studied field φλ appears to be non-conservative (as it is the case here), then a third 
parameter H, the non-conservation parameter, should be introduced. It is equal to zero for 
conservative fields. The TM and DTM analysis should be carried out on the conservative part 
ελ of the field written as  

H−= λεφ λλ       (8) 

And H can be estimated with the help of (Tessier et al. 1993):  

)2(21 cKH −+=β       (9) 

Where Kc is the moment scaling function of the conservative part.  
 
In practice TM and DTM techniques remain reliable as long as H<0.5. In case of greater H, 
they should be implemented not on φλ, but on the underlying conservative field ελ. 
Theoretically, a fractional integration of order H (equivalent to a multiplication by kH in the 
Fourier space) enables to compute ελ from φλ. Here we will use a common approximation 
(Lavallée et al. 1993) which consists of taking εΛ at the maximum resolution simply equal to 
the renormalized absolute value of the fluctuations of the field i.e.:  
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and then upscaling this field at other resolutions λ. 
 
Analyses are carried out on ensemble average over various samples. Each sample is 
considered as a realisation of the process and is up-scaled independently. The same 
methodology as in Gires et al. 2016 is implemented to select the samples from the available 
data, i.e.  “for each event (i) a sample size is chosen (a power of two, if possible); (ii) the 
maximum number of samples for this event is computed; (iii) the portion of the event of 
length equal to the sample size multiplied by the number of samples found in (ii) with the 
greatest cumulative depth is extracted; (iv) the extracted series is cut into various samples.” 
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Sample sizes of power of two is simpler to handle, but implies that some available data are 
actually not used. More precisely with sample sizes of 64, 128, 256, 512, 1024 and 2048 time 
steps, the percentage of data actually used of 90, 82, 64, 43, 26 and 11%. Here a size of 64 
time steps of 30 s, corresponding to 32 min is used to maximise the amount of data used to 
estimate UM parameters and get more robust ones. Scaling features will also be discussed 
with other sample sizes.  
 
UM analysis is mainly discussed for data collected with Pars#2. The quality of the scaling on 
the available data is very good over the whole range of selected scales (30 s – 32 min). See 
Fig. 6.a for the spectral analysis and 6.b for TM analysis where the quality of the linear 
regression is very good. Given the great value of the spectral slope (and H, see after), the TM 
and DTM analyses are implemented not on the field directly but on its. It should be mentioned 
that when tested with greater sample size, the scaling remains very good (R2>0.99) up to 512 
time steps (~ 4.3 h). For sample size of 1024 (3 events and 5 samples), there seems to be a 
break also visible when performing the analysis with 2048 time steps. This limit of 4.3 h is a 
standard duration for meteorological situations in this area. Given the high quality of the 
scaling, the DTM analysis is reliable. The UM parameters found are: β = 1.98, C1 = 0.19, α = 
1.64 and H = 0.65. Similar results with same high quality of scaling are found for Pars#1 with 
β = 2.08, C1 = 0.19, α = 1.56 and H = 0.70. Due to the missing time steps it was not possible 
to carry out a similar analysis with the PWS data. 
 
 
3) Radar relations at various temporal scales 
 
3.1) Presentation of the 3 relations used 
 
In this paper we study and discuss three radar relations (see references in the following 
section where parameters’ values are discussed):  
(i) The RZh − relation: b

h aRZ =     (11) 

(ii) The dpKR− relation: d
dpcKR =     (12) 

(iii) The drh ZZR −−  relation: g
dr

f
h ZeZR =    (13) 

Here it should simply be mentioned that some authors express drZ  in dB (ex. Illingworth and 

Blackman 2002) while others keep it in linear scale (Leinonen 2012, Fuigueras i Ventura 
2012) as we did here. 
We focus on these relations because they are the most commonly used, especially the first 
two. Other ones can be found in the literature such as the drdp ZKR −− (Ryzhkov et al. 1995), 

but they are not explored here. 
 
The parameters a, b, c, d, e, f, and g are estimated using the measured DSD at the observation 
time step of 30 s. For the RZh −  relation, an orthogonal regression is carried out for time 

steps with 2.0≥R  mm.h-1. An orthogonal regression minimizes the orthogonal distance from 
the data points to the fitted line, contrary to the ordinary linear regression which minimizes 
the vertical distance. For the dpKR− relation, an orthogonal regression is carried out for time 

steps with 2.0≥dpK °.km-1. For the drh ZZR −−  relation, a linear regression minimizing the 

quadratic error considering only the time steps with 2.0≥R  mm.h-1 is used. Computations 
are carried out only when more than 10 points (i.e. time steps) are available. 
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3.2) “Climatic” analysis 
 
First we consider all the available data to compute average values of the radar relations’ 
parameters. In this study they will be denoted “climatic” values keeping in mind that they 
were obtained only with two months of data which is limited for such a statement. The plots 
yielding to the parameters’ estimates of the RZh −  and dpKR− relations for the Pars#2 data 

are shown in Fig. 7. The quality of the regression is good with coefficient of determination 
greater than 0.8. Estimates are reported in Table 1 for all radar relations and disdrometers. 
They are consistent with those commonly reported in the literature. 
 
With regards to the RZh −  relationship we find a = 195 and b = 1.78 for Pars#2. The value of 

a is significantly greater for Pars#1 with similar value of b. For PWS, values found for a and 
b are respectively greater and smaller than with Pars#2 data. There is a wide variety of values 
reported in the literature for these parameters. Typical ones are a=200 and b=1.6 (the widely 
used parameter set since Marshal and Palmer, 1948) or a=300 and b =1.4 (which are the 
Nexrad standard values in USA, Fulton et al. 1998). Matrosov et al. (2002) found values of a 
= 250 and b = 1.68 in the X-band using experimental raindrop size distributions. Jaffrain and 
Berne (2012b) reported values ranging from 220 to 320 for a and from 1.4 to 1.6 for b after 
analysing 36 rainfall events with disdrometer data. Hence it appears that the values found here 
for a and b are located respectively in the lower range and upper range of reported values in 
the literature. 
This apparent slight discrepancy is actually not surprising. Indeed Verrier et al. (2013) 
showed that a and b are dependent on the scale at which they are computed. Given that they 
are computed here at 30s which is much smaller than the minute or few minutes commonly 
used, the differences are expected. Values are in agreement with those found by Verrier et al. 
at this temporal scale. It should also be reminded that one should be careful when comparing 
values because they are also dependent on the regression method (mainly the choice to 
express quantity in log or not, and the regression type) used to extract them (Campos and 
Zawadski, 2000; Jaffrain and Berne 2012; Verrier et al. 2013). 
 
For the dpKR− relation, we find c = 12.9 and d = 0.75 for Pars#2. Very close estimates are 

found with Pars#1 data and close ones with PWS data. Typical values for the X-band are c = 
19.9 and d = 0.85 (Beard and Chuang, 1987) or c = 23.2 and d = 0.79 (Brandes at al. 2002). 
Jaffrain and Berne (2012b) found also in the X-band c ~ [11-14] and d ~ [0.69-0.75] 
according to the studied event. Leinonen (2012) found in the C-band c=21.0 d =0.72, meaning 
that the parameter c would be similar to the one found here, had the study be done in X-band. 
Anagnostou et al. (2010) reported values of c = 19.26 and d = 0.85 in the X-band. Matrosov et 
al. (2002) found values of c = 12.3 and d = 0.81 in the X-band. Hence the values obtained in 
this analysis are in agreement with the ones found in the literature. 
 
Finally we find for the drh ZZR −− relation e = 0.023, f = 0.77 and g = -4.05 for Pars#2. 

Comparable values are retrieved with the other devices. This relation is less used by the 
community than the other two. Leinonen et al. (2012) reported values of e = 0.012, f = 0.822 
and g = -2.28. Ryzhkov et al. (2005) found e ~ [0.0067-0.0159], f ~ [0.73-1] and g ~ [-4.73, -
1.03] according to the drop shape model, and the type of data used (experimental or modelled 
DSD). 
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Radar relation Parameter Pars#1 Pars#2 PWS 
a 243 195 240 b

h aRZ =  
b 1.76 1.78 1.52 
c 12.6 12.9 14.7 d

dpcKR =  
d 0.80 0.75 0.82 
e 0.018 0.023 0.012 
f 0.80 0.77 0.87 

g
dr

f
h ZeZR =  

g -3.95 -4.05 -4.52 
 
Table 1: “Climatic” parameters of the radar relations obtained with the disdrometer data used 
in this study.  
 
 
 
 
 
3.3) Event based analysis 
 
In this section the radar relations are estimated independently for each event with Pars#2 data. 
Similar results are found for the other devices. They are computed only for events with more 
than 10 points available to carry out the linear regression and whose cumulative depth is 
greater than 3 mm. These conditions result in 17 events studied for the RZh −  and 

drh ZZR −− relations and 16 for the dpKR− relation. Figure 8.a displays b vs a for the RZh −  

relation. No tendency was found between the event general features (duration, total rainfall 
amount…) and the parameters of the radar relations. It appears that the ranges of values is 
rather great and greater than the ones reported by Jaffrain and Berne (2012) in their analysis 
of 36 events over the Lausanne area (Switzerland). It is of the same order of magnitude as 
those found by Matrosov et al. (2002) who found a ~ [94-624] and b ~ [1.34-2.36] when 
analysing 15 rainfall events observed with a transportable X-band radar. No trend is visible 
with this data. The variability is smaller for the exponent b than for the pre-factor a, with 
coefficients of variation (CV) respectively equal to 14% and 33%. Figure 8.b displays d vs. c 
for the dpKR−  relation. Again the range of obtained values is wider than in Jaffrain and 

Berne (2012b). Here there is no obvious trend between c and d, maybe a slight positive 
correlation (as in Jaffrain and Berne 2012 reported) but nothing of a statistical significance. 
Similarly to the RZh −  relation, CV is smaller for the exponent d than the pre-factor c (28% 

vs. 41%). The variability between events seems slightly greater for the parameters of the 

dpKR−  relation than for the ones of the RZh −  relation. It is likely to be due to a greater 

sensitivity of the dpKR−  relation than the RZh −  one to the disparities in terms of DSD. For 

these selected events we find CV=35% for Dm and 34% for Nt, which is only slightly smaller 
than the values found for all the events. Figure 8.c, 8.d and 8.e respectively display the e (CV 
= 40%) , f (CV = 9.3%) and g (CV = 53%) parameters of the drh ZZR −−  relation vs. one 

another. There simply seems to be a negative correlation trend between e and f. The CV are 
greater than for the other relations except for f.  
 
 
3.4) Intra-event analysis 
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In this section, we go a step further and investigate the variability of the RZh −  and dpKR−  

radar relations at the highest available temporal resolution with the help of data collected with 
Pars#2 device. In order to achieve this, the parameters a, b, c and d are computed for each 
time step considering a moving window of 40 time steps (i.e. 10 minutes before and 10 
minutes after). Again they are only computed if 10 points are available to perform the linear 
regression. This is done for the two selected events of 29-31 May 2016 and 17 June 2016.  
 
With regards to the 29-31 May event, Fig. 9.a displays the computation of a and b ( RZh −  

relation) for the whole event. Figure 9.c and d shows the temporal evolution of the “local” 
(i.e. with the moving window) of respectively a and b; while a scatter plot of b vs. a is in Fig. 
9.b. Note that the colour of the points in Fig. 9.b corresponds to the time within the event at 
which a and b are estimated. It means that two points with similar colours correspond to the 
same moment of the storm. Figure 10 displays the same information but for the dpKR−  radar 

relation. It should be noted that the number of time steps for which it is possible to compute c 
and d (only 6% of time steps for the May event) is more reduced than for a and b. This is due 
to the condition 2.0≥dpK °.km-1 which requires significant rain rates. This explains the lack 

of information found on Fig. 10.c and 10.d. Figures 11 and 12 are the equivalent of 
respectively 8 and 9 but for the 17 June event. For this event the dpKR−  can be fitted on 

most of the event.  
 
It can be seen that at the event scale, the linear regression illustrating the radar relations are 
good meaning the underlying radar relations are reliable. Second it appears that the variability 
observed between events (see section 4.3) is also present within an event. Indeed the temporal 
evolutions of radar parameters exhibit some quick variability, even with the use of the moving 
window technique. Figure 13 displays the temporal evolution of a and b for the 29-31 May 
event for the three co-located disdrometers. It highlights that parameters a and b exhibit a 
very local variability, which if taken into account could improve rainfall retrieval with radars. 
Furthermore although with some differences (local variability, sampling variability, device 
functioning), it appears that similar patterns are found. It suggests that the temporal variability 
of a and b is associated with a variability of the underlying physical processes and not 
instrumental or sampling uncertainties. For the 17 June event a negative correlation between 
the parameters of a given radar relation (a and b Fig 11.b or c and d Fig 12.b) is visible for the 
first 50 minutes. Such obvious correlations are not so visible for the May event which is 
longer. Let us note that for the RZh −  relation one can distinguish some correlation on small 

portions of the event (some “lines” on Fig. 9.b with similar colours); suggesting that such 
correlation would only be valid for short periods of time, typically few tens of minutes.  
 
An attempt was made to establish a correlation between the mass weighted diameter Dm and 
the radar parameters. It was computed in a similar way with a moving window for each time 
step. Results are presented in Table 2. They are contrasted and do not enable to obtain strong 
conclusions. Limited correlation is found for the RZh −  relation. For the dpKR− an anti-

correlation is noted with c, while contrasted results according to the event are found for d, 
suggesting a lower dependence on Dm. Similar results were found for Pars#1.This issue 
should be further investigated to yield more robust conclusions. 
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Radar relation parameter 29-31 May 
2016 

17 June 
2016 

a 0.34 0.069 RZh −  
b 0.60 0.15 
c -0.60 -0.91 

dpKR−  
d -0.30 0.89 

Table 2: Correlation between the radar parameters and the mass weighted diameter (Dm) for 
the two selected events with Pars#2 
 
 
4) Consequences on rainfall retrievals with radars.  
 
4.1) Methodology 
 
In this section the portion of radar algorithms converting filtered radar quantities to rainfall 
rates are mimicked with the help of disdrometer measurements. More precisely:  
(i) Pseudo-radar quantities (Z, Zdr, Kdp) are estimated with the help of the instantaneous DSD 
and Eqs. 1 and 2. The rain rate is computed from the raindrops collected. 
(ii) The parameters of the radar relations are estimated at various temporal scales (“climatic”, 
event, and local) with the help of log-regressions, as described in section 3.  
(iii) Rain rates that would have been obtained with radars are simulated by implementing the 
radar relations. Four of them are tested; the three studied ones in previous sections and an 
additional hybrid one:  

-
b

h
rad a

Z
R

/1








=        (14) 

- d
dprad cKR =           (15) 

- g
dr

f
hrad ZeZR =          (16) 

- A rather standard hybrid model which consists in using a RZh −  relation for low rain rates 

( 2.0≤dpK °.km-1) and a dpKR−  relation otherwise.  

When “local” estimates of the radar relations’ parameters are not available the “event” ones 
are used. When “event” estimates are not available, “climatic” ones are used. All 
computations are carried out at 30 s time steps. The issue of rain profiling algorithm using all 
the values along a full radar beam are not explored here (Anagnostou et al., 2004; Park et al., 
2005; Testud et al. 1999) and only local algorithms are mimicked. These radar relations, 
which are used in all radar algorithms based on pre-defined scattering relations, are sensitive 
to the choice the drop shape model and the discrepancies with the unknown true shapes yield 
some significant uncertainty on the rain rate retrieval. It should be highlighted that the 
developed approach enables to artificially avoid this very complex problem by simply using 
the same to compute the reconstructed pseudo-radar quantities and the radar relations. 
Obviously this cannot be the case with true radar data since the drop shape is then unknown. 
 
With these algorithms, we obtain 12 (4 types with either “climatic”, “event” or “local” 
parameters for the radar relations) pseudo-radar rainfall time series (Rrad) for each event and 
they are compared with the rainfall time series obtained directly from drop measurements (R). 
The first step of the comparison consists in performing the same multifractal analysis that was 
done in section 3 and checking whether similar results are obtained. In a more standard way, 
we also computed scores commonly used for such tasks (Diss et al., 2009; Emmanuel et al., 
2012; Figueras I Ventura et al., 2012; Krajewski et al., 2010; Moreau et al. 2009):  
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- The Normalized Bias (NB) whose optimal value is 0: 1−=
R

R
NB rad         

- The correlation coefficient (corr) which varies between -1 and 1 and whose optimal value is 

1: 
( )( )
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- The Nash-Sutcliffe model efficiency coefficient (Nash), which varies between ∞−  and 1 

and whose optimal value is 1: 
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- The Root mean square error (RMSE), which varies between 0 and ∞+ and whose optimal 

value is 0: 
( )

N

RR
RMSE i

iirad

2

,∑
∀

−
=     

- The Slope and Offset of the orthogonal linear regression. The optimal values are respectively 
1 and 0.  
 
Where Rrad and R correspond respectively to the reconstructed pseudo-radar data and rain 
drop derived rainfall. <> denotes the average. Time steps (index i in the previous formulas) of 
all the events are used in the sum for each indicator. 
 
 
4.2) Overall results 
 
Results are presented for the data collected with Pars#2 device. Similar ones are found for the 
other disdrometers. Figure 14 displays the scatter plot of Rrad vs. R for the 12 algorithms 
tested. Table 3 shows the output of the multifractal analysis performed on the various fields. 
For instance if we consider the RZh −  algorithm with “climatic” parameters, we find α=1.84 

and C1=0.25 while for the actual series we have α=1.64 and C1=0.19. It means that the series 
obtained with the pseudo radar algorithm exhibits too strong multifractality and intermittency 
with regards to the actual one, resulting in unrealistic stronger extremes. Standard comparison 
scores are presented in Table 4. These results enable to sort the various algorithms in terms of 
performance.  
 
Considering a fixed temporal scale for the computation of the radar relations’ parameters (i.e. 
“climatic”, “event” or “local”) it appears that the hybrid algorithm is the one performing best. 
Indeed the UM parameters estimates are closer to actual values for the time series computed 
with this algorithm and the standard scores are better. This confirms the results found by 
Figueras i Ventura et al. (2012) who analysed at the hourly time scale radar data from France 
comparing them with rain gauge data. Then follow respectively the drh ZZR −−  and RZh −  

algorithm. The behaviour of the dpKR− relation is trickier to analyse. Indeed in terms of 

scores, it seems to perform similarly or best than the other algorithms except for NB and total 
cumulative depth. This is related to the behaviour for “small” intensity for which there is a 
strong negative bias. For instance with the climatic average, we have NB equal to almost -0.3 
for time steps when the rain rate is smaller than 10 mm.h-1 whereas it is lower than 0.1 with 
rain rates greater than 10 mm.h-1 (which is visible on Fig. 14). Fitting it using the whole range 



 13 

of available rain rates yields very low regression quality. This is consistent with the more 
complex behaviour of the scattering coefficient for computing Kdp vs. D (Fig. 1.c). Indeed the 
relation becomes clearer only for rather large drops which are visible during heavy rainfall 
periods, whereas the aforementioned truncation of drops with D <1 mm cannot be forgotten 
for low intensity rainfalls 
 
For each algorithm it appears that the performance improves when going from using 
“climatic” to “event” to “local” estimates of the radar relations’ parameters. This effect was 
expected and is now quantified. The RZh −  algorithm is especially sensitive to this effect and 

its performance strongly improves when a and b parameters are tuned more locally. With 
“local” estimates, its performances become comparable with the drh ZZR −−  ones which is 

not the case with “climatic” estimates. Matrosov et al. (2002) noticed this effect for the 
RZh −  algorithm at the event scale. This improvement could somehow be expected from Fig. 

1.a-b which displays the backscattering coefficient as a function of the equivolumic drop 
diameter. Indeed, the relation being straightforward, once parameters of the RZh −  are fitted 

with a local DSD which limits its influence on the variability (i.e. the main source of 
uncertainty), it is not surprising that the RZh −  performs well. This improvement is less 

pronounced for the hybrid algorithm mainly because its performances are already good with 
“climatic” estimates of radar parameters, and the hybrid algorithm somehow already tunes the 
parameters according to rain rates by using two different relations. Although it is practically 
complicated these results make a case for the use (when possible) of tuned radar relations’ 
parameters, if not in real time at least during re-analysis. The rather good performances of the 
simple RZh −  algorithm show at first glance that when no dual-polarization radar can be 

installed, the combination of a disdrometer used to estimate in real time the parameters of the 
RZh −  relation and a single polarization radar can yield good rainfall estimates. However, 

one should keep in mind that tuned parameters rely on DSD measurement at a single point not 
taking into account its variability in space.  
 
In this paper, multifractal techniques are used to assess the quality of pseudo-radar algorithms 
The closeness of UM parameters assessed on radar time series to the ones obtained on the 
actual rainfall time series may help to assess the performance of the algorithms. The use of 
such techniques is very interesting because it intrinsically validates the outcome across all 
studied scales and is not limited to a single resolution as it is the case for the standard scores 
also computed in this paper. Such practical applications of scaling techniques were already 
developed to assess the quality of high frequency long rainfall time series (Hoang et al. 2012). 
The analyses carried out here are another example.   
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Radar algorithm 

Parameter 
estimation 

Radar 
conversion 

β R2 α C1 H 

b

h
rad a

Z
R

/1








=  
1.69 0.98 1.84 0.25 0.59 

d
dprad cKR =  1.93 0.99 1.44 0.20 0.63 

g
dr

f
hrad ZeZR =  1.41 0.99 2.05 0.23 0.44 

Climatic 

Hybrid 1.81 0.99 1.76 0.21 0.60 
b

h
rad a

Z
R

/1








=  
1.58 0.99 1.79 0.24 0.51 

d
dprad cKR =  1.97 0.99 1.42 0.19 0.63 

g
dr

f
hrad ZeZR =  1.55 0.99 1.91 0.22 0.49 

Event 

Hybrid 1.97 0.99 1.60 0.19 0.65 
b

h
rad a

Z
R

/1








=  
1.74 0.99 1.69 0.22 0.56 

d
dprad cKR =  1.94 0.99 1.47 0.19 0.63 

g
dr

f
hrad ZeZR =  1.82 0.99 1.72 0.20 0.59 

Local 

Hybrid 1.96 0.99 1.61 0.19 0.65 
For the actual time series 1.98 0.99 1.64 0.19 0.65 

Table 3: Results of the multifractal analysis performed on the rain rates computed via 
reconstructed pseudo-radar data and algorithms (Rrad) vs. the one obtained from direct drop 
measurements (R) for the data collected with the help of Pars#2 device. 
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Radar algorithm 

Parameter 
estimation 

Radar 
conversion 

NB corr Nash RMSE Slope Offsett Cumul 
(mm) 

b

h
rad a

Z
R

/1








=  
0.11 0.85 -0.68 22.7 1.7 -1.2 229 

d
dprad cKR =  -0.24 0.96 0.88 1.67 1.05 -0.58 153 

g
dr

f
hrad ZeZR =  -0.065 0.86 0.69 4.2 0.90 -0.07 192 

Climatic 

Hybrid -0.032 0.94 0.85 2.0 1.0 -0.15 200 
b

h
rad a

Z
R

/1








=  
0.016 0.90 0.73 3.6 1.1 -0.08 209 

d
dprad cKR =  -0.100 0.95 0.89 1.5 0.89 0.02 183 

g
dr

f
hrad ZeZR =  -0.017 0.89 0.70 4.1 1.1 -0.19 201 

Event 

Hybrid -0.033 0.96 0.92 1.0 0.89 0.15 199 
b

h
rad a

Z
R

/1








=  
0.002 0.94 0.88 1.6 0.96 -0.09 206 

d
dprad cKR =  -0.098 0.96 0.92 1.1 0.96 -0.11 183 

g
dr

f
hrad ZeZR =  -0.011 0.96 0.92 1.1 0.98 -0.06 202 

Local 

Hybrid -0.008 0.98 0.96 0.48 0.96 -0.06 204 
Table 4: Standard scores of the rain rates computed via reconstructed pseudo-radar data and 
algorithms (Rrad) vs. the one obtained from direct drop measurements (R) (total cumulative 
depth = 204 mm) for the data collected with the help of Pars#2 device. 
 
 
4.3) Focus on the two selected events 
 
In this section, we illustrate more precisely the general results discussed quantitatively in the 
previous section on the performance of the various radar algorithms. This is done by looking 
into more details at the time series for the two selected events and Pars#2 data. 
Figure 15.a displays the temporal evolution of the rain rates obtained via reconstructed 
pseudo-radar data and the three RZh −  algorithms (“climatic”, “event”, and “local”) along 

with the direct estimation of R. The cumulative depth is shown in Fig. 15.b, where it is visible 
that the “climatic” estimates yield the worst cumulative depth (an underestimation in this 
case). A closer look at the temporal evolution of rain rates confirms the improvement brought 
by the “local” (in time) estimates of the radar relations’ parameters. For example during the 
pseudo-peak slightly before 4.7 h (Fig. 15.c) the rain rate is below 5 mm.h-1 and the use of 
either the “climatic” or “event” relations yields strong overestimation, while the local 
parameters enable to better represent actual rain rates. Similar conclusion is found around the 
peak at 11.9 h, with an underestimation by the “climatic” and “event” based algorithms. The 
hybrid models yield similar results, but results are not shown here because of the actually 
limited number of time steps for which a local dpKR−  can be computed (6%). 

Figure 16 (left column) displays the temporal evolution of the rain rates computed via 
reconstructed pseudo-radar data and the 4 algorithms with “climatic”, “event”, and “local” 
parameters along with the direct estimation of R. Figure 16 (right column) exhibits the 
corresponding cumulative depth. Again the “local” estimates of radar relations’ parameter 
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provide the best estimates. In this case the “climatic” parameters yield an overestimation 
expect for drh ZZR −−  algorithm. It is especially visible for the RZh −  algorithm. The 

improvement brought by the “event” based and “local” estimates are visible on the successive 
peaks (Fig. 16.a).  
 
 
5) Conclusion 
 
In this paper, the rainfall data measured by disdrometers of Ecole des Ponts ParisTech during 
the two extremely wet months of May and June 2016 are analysed. At first, this rainfall data 
exhibit very good quality of scaling behaviour over scales ranging from 30 s to few hours.   
 
Classical relations between rain rate and the horizontal reflectivity, the differential phase shift 
and the differential reflectivity ( RZh − , dpKR− , drh ZZR −− ) are investigated with the help 

of pseudo-radar quantities reconstructed from the disdrometer data. This reconstruction 
requires that both the DSD and the drop centre distribution are homogeneous. In this 
simplistic framework, the characteristic parameters of these power-law relations are computed 
at various scales: “climatic”, “event” and “local” with moving time window. It appears that 
these parameters exhibit a strong variability from one event to the other and even within an 
event.  
 
Finally these radar relations are used to reconstruct rain rate time series that would be 
observed with the help of weather radars. In addition to the previously mentioned relations, 
the standard hybrid model relying on a RZh −  relation for low intensities and a dpKR−  

relation for large intensities is tested. An innovative methodology based on assessing the 
quality of an algorithm on its ability to reproduce the scaling behaviour of actual time series 
was developed. This ensures that results are valid across scales. The main conclusion is that 
the hybrid algorithm is the one performing best for the pseudo-radar quantities, whatever the 
temporal scale of the computation of the radar relations’ parameters. However, the 
disdrometer algorithm estimating the drop shape unfortunately truncates the computation of 
the pseudo Kdp  at Dmin=1 mm and therefore the contribution of the prolate drops. It also 
appears that the performances of all algorithms significantly improve by using parameters 
computed over shorter period of time, but this unfortunately corresponds to less predictive 
value. Not too surprisingly, the famous RZh −  relation tuned with “local” parameter 

estimates exhibits very good performance, but this seems to be a somewhat artificial result 
from the power-law-like behaviour of the radar cross-section σ(D). Overall, the analyses 
presented in this paper call for extended studies that would take into account (including in real 
time) the spatial variability of the DSD and the possible clustering of drops, as well as the 
contribution of the prolate drops, that could not be addressed in this paper.  
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Figures: 
 

 
Figure 1: Scattering coefficients with respect to particular diameter (a) vhB ,;σ  vs. D (b) hB;σ  

vs. D in log-log plot along with a linear regression for D < 3 mm (c) [ ])()(Re DSDS vvhh −  vs. 

D 
 

 
Figure 2: (Left) Temporal evolution of the rain rate in mm.h-1 with 30 s time steps (solid 
black, the observation time step) and 5 min time steps (dashed red). (Right) Cumulative 
rainfall depth in mm. The months of May (top) and June (bottom) are presented separately.    
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Figure 3: (a) Scatter plot of the 30 s time step rain rate for Pars#1 vs. Pars#2. (b) Same as (a) 
but for PWS vs. Pars#2 
 

 
Figure 4: For the 29-31 May 2016 event with device Pars#2. (a) Temporal evolution of the 
rain rate in mm.h-1 with 30 s time steps (solid black, the observation time step) and 5 min time 
steps (dashed red). (b) Cumulative rainfall depth in mm. (c) Temporal evolution of the DSD 
N(D).  
 

 
Figure 5:  For the 17 June 2016 event with device Pars#2. (a) Temporal evolution of the rain 
rate in mm.h-1 with 30 s time steps (solid black, the observation time step) and 5 min time 
steps (dashed red). (b) Cumulative rainfall depth in mm. (c) Temporal evolution of the DSD 
N(D).  
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Figure 6: For the data collected with Pars#2 (a) Spectral analysis, i.e. Eq. 6 in log-log (b) TM 
analysis, i.e. Eq. 7 in log-log. Samples of size 64, corresponding to 32 min, are used. 
 

 
Figure 7: For the Pars#2 device, estimation of the exponents of the power-law relations 

RZh −  (a) and dpKR−  (b) by regression in a log-log plot, considering all the available 

events. 
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Figure 8: For the Pars#2 device, plot of the radar relations’ exponents vs. one another for the 

RZh −  (a), the dpKR−  (b) and the  drh ZZR −−  (c, d, e) power-law relations. The red 

crosses represent the values obtained by fitting the relations with the entire data set.  
 

 
Figure 9: RZh −  relation for the 29-31 May 2016 event with Pars#2. (a) Computation of the 

parameters a and b at the event scale (eq. 10 in a log-log plot). (b) Scatter plot of b vs. a 
estimated for each time step (20 minutes moving window). The colour of the points 
corresponds to the time within the event at which the parameters are estimated (c) Temporal 
evolution of a. (d) Temporal evolution of b.  
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Figure 10: dpKR− relation for the 29-31 May 2016 event with Pars#2. (a) Computation of the 

parameters c and d at the event scale (eq. 11 in a log-log plot). (b) Scatter plot of d vs. c 
estimated for each time step (20 minutes moving window). The colour of the points 
corresponds to the time within the event at which the parameters are estimated (c) Temporal 
evolution of c. (d) Temporal evolution of d.  
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Figure 11: RZh −  relation for the 17 June 2016 event with Pars#2. (a) Computation of the 

parameters a and b at the event scale (eq. 10 in a log-log plot). (b) Scatter plot of b vs. a 
estimated for each time step (20 minutes moving window). The colour of the points 
corresponds to the time within the event at which the parameters are estimated (c) Temporal 
evolution of a. (d) Temporal evolution of b.  
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Figure 12: dpKR− relation for the 17 June 2016 event with Pars#2. (a) Computation of the 

parameters c and d at the event scale (eq. 11 in a log-log plot). (b) Scatter plot of d vs. c 
estimated for each time step (20 minutes moving window). The colour of the points 
corresponds to the time within the event at which the parameters are estimated (c) Temporal 
evolution of c. (d) Temporal evolution of d. 
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Figure 13: RZh −  relation for the 29-31 May 2016 event with the three disdrometers. (a) 

Temporal evolution of a during the full event. (b) Temporal evolution of b during the full 
event. (c) and (d) Zoom of (a) and (b) during a shorter period.  
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Figure 14: Scatter plot of the rain rates computed via reconstructed pseudo-radar data and 
algorithms (Rrad) vs. the one obtained from direct drop measurements (R) for the data 
collected with the help of Pars#2 device. 
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Figure 15: For the 29-31 May 2016 event and Pars#2 data. (a) Temporal evolution of the rain 
rates obtained via reconstructed pseudo-radar data and the three RZh −  algorithms 

(“climatic”, “event”, and “local”) along with the direct estimation of R. (b) Corresponding 
cumulative depth. (c) Zoom of (a) for a shorter period of time. (d) Zoom of (a) for another 
shorter period of time. 
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Figure 16: For the 17 June 2016 event and Pars#2 data. (a) Temporal evolution of the rain 
rates obtained via reconstructed pseudo-radar data and the three hybrid algorithms 
(“climatic”, “event”, and “local”) along with the direct estimation of R. (b) Corresponding 
cumulative depth. 
 


