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Abstract

In this paper we suggest to innovatively use sgdhms and more specifically
Universal Multifractals (UM) to analyse simulatedtface runoff and compare the retrieved
scaling features with the rainfall ones. The methogly is tested on a 3 Knsemi-urbanised
with a steep slope study area located in the Regs along the Biévre River. First Multi-
Hydro, a fully distributed model is validated oristbatchment for four rainfall events
measured with the help of a C-band radar. The teiogy associated with small scale
unmeasured rainfall, i.e. occurring below the 1kdkm x 5min observation scale, is
quantified with the help of stochastic downscaksdfall fields. It is rather significant for
simulated flow and more limited on overland watepith for these rainfall events. Overland
depth is found to exhibit a scaling behaviour amall scales (10 m - 80 m) which can be
related to fractal features of the sewer network.diect and obvious dependency between
the overland depth multifractal features (qualityh® scaling and UM parameters) and the

rainfall ones was found.
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1) Introduction

The combined effects of a growing urbanisationpragimately 80% of Europe’s
population will live in cities by 2020 (EEA, 2014)and potential increase of extreme events
as a consequence of climate change (IPCC, 2018sexpore and more people to surface
pluvial flooding. Pitt (2008) carried out a reviem flood events in the United Kingdom and
showed that two thirds of the flood related damagere caused by surface water flooding.
Urban flooding has become a growing concern in peirbence a significant number of
European research projects address this issuey afitim national counterparts. The purpose
of these projects is to increase the resilienaglodn areas through improvement of both real
time management of extreme events and long terrmlg. We can cite FP7 SMARTesT

(http://floodresilience.eu/), CORFUWttp://www.corfu-fp7.eu), Climate KIC Blue Green

Dream (www.bgd.org.uk) or the INTERREG |V RainGanoject attp://www.raingain.ey

among others.

There is a need to improve the understanding drudurface flow. Indeed, there is a
growing interest for 2D models in urban environmientooth operational and research
applications (Bolle et al., 2006; Carr and SmitbQ&, Chen et al., 2007; Deltares, 2013; DHI,
2011; Giangola-Murzyn et al., 2014; Innovyze, 20T 3; Phillips et al., 2005; XP
Solutions, 2012). Such models aim at actually modgprocesses in a physically based
manner, while the most commonly used semi-distethumodels take them into account
through tailored lumped models. In case of overftbay simply consider a volume output
from the sewer system and deduce a local watehdept the dynamical behaviour of the
water added on the ground is not addressed. Bisiadban surface flow is not commonly

perceived as a geophysical process and is thenetdr@ddressed with geophysical tools
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capable of grasping its intrinsic complexity vigitzicross all scales. Indeed, it results from the
non-linear interactions between the highly spatiaiid temporally variable rainfall field, the
topography and the strongly inhomogeneous lancdoger.

In this paper we suggest to use multifractal towtsch are commonly used in
geophysics to characterise and simulate fieldemety variable over a wide range of scales;
such as wind turbulence, rainfall, river flow optmgraphy (see Schertzer and Lovejoy, 2011
for review). Such tools have seldom been used mrban context. Gires et al. (2013, 2014b)
used them to downscale rainfall to quantify theautainty associated with small scale rainfall
variability, or to characterise the variability ass scales of simulated flow in conduits
(sewer). To the knowledge of the authors it hasenbeen used to study either surface runoff
flow (urban drainage) or surface flow in generalunling stream rivers. Investigating the
potential multifractal features of surface flow amatably whether it inherits rainfall features
is the main purpose of this paper and constitstendin novelty. In addition, this case study
will also be used to quantify the uncertainty agsed with small scale rainfall variability,
not only on the simulated flow which has alreadgrbdone on other catchments, but also on
the surface flow.

Given the lack of measurements of distributed daturface runoff, outputs of a
numerical model are analysed. The model used isiiiytro (El Tabach et al., 2009 for an
initial version and Giangola-Murzyn, 2014 for aeetone) developed at the Ecole des Ponts
ParisTech. It is implemented on a 3.017 km? pdsaarcatchment in Jouy-en-Josas (South-
East of Paris), which exhibits steep slopes anl favest and urbanised areas. Achieving
such an analysis is relevant only if a distributgidfall field is used as model input. Météo-
France radar mosaics with a resolution of 1 knpisce and 5 min time (Tabary, 2007,

Tabary et al., 2007) for four events that occutretiveen 2009 and 2011 are used. When
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needed, the rainfall field is downscaled both iacgand time from the raw radar data, in
order to simulate the improvement that could beenaith higher radar resolution.

The model and the study area data for its imple¢atiem are presented in details in
section 2. The multifractal framework and analysethods are presented in section 3.
Results are discussed in section 4 and 5. Moreggigcthe validation of the model and
quantification of the uncertainty associated witiai scale unmeasured rainfall variability on
both simulated sewer flow and maximum water depitarried out in section 4. Multifractal
characterization of overland water depth is adeeas section 5. Main conclusions are

highlighted in section 6.

2) Model and catchment

2.1) The Multi-Hydro model

Multi-Hydro is a multi-module model whose goal asmodel and predict the impacts
of rainfall events in urban and peri-urban areaghis paper, there is an emphasis on heavy
rainfall events. Following the approach of varioesent developments of hydrological
models (Djordjevic et al., 1999; Fletcher et al12; Hsu et al., 2000; Jankowfsky, 2011;
Rodriguez et al., 2008); it makes different modugsract, each of them echoing a portion of
the water cycle in urban areas (surface runofiitiation, ground water flow, sewer flow).

Each of the modules integrated in Multi-Hydro relen open-source software
packages that have already been widely used arthted by the scientific community. The
surface module is based on TREX (Two dimensionald®uErosion and eXport model,

Velleux et al., 2011) which solves fluid mechareguiations for surface flow (diffusive wave
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approximation of 2D Saint-Venant, see p. 6-7 of IREX user manual) and infiltration
(simplification of Green and Ampt equation). Thevee or drainage module, which is based
on SWMM developed by the US Environmental Agendgi(® Water Management Model,
Rossman, 2010), is a 1D-model dealing with sevaavdlthrough numerical solutions of
Saint-Venant 1D equations in pipes. The interastioetween the surface and sewer flow is
handled through the gully pixels. These interadipnput or output of water) between the
surface and sewer flow are carried out every 3 iMhen there is no overflow, gully pixels
are considered to have an infinite infiltrationesedind the water passing through them is
directly inputted into the corresponding node & slewer model. This way of modelling
implies that a large transport capacity is assufoedully, especially with 10 m pixel size as
in this paper (see below). Future developments wtiNHydro will enable to improve the
model with regards to this coarse assumption. Toeyd notably rely on the experimental
and computational studies of gully inflow capacitgluding 3D CFD studies, which analyse
phases in the flow, inlet capacity, reverse flonewlhe piezometric level in the sewer is
beyond the ground level (Despotovic et al., 200®yjBvic et al., 2005). In case of sewer
overflow through a node, the corresponding gulkepis converted into a road pixel and the
water exiting the node is inputted on this pix@nsidered as a source in TREX). There is
also a module handling ground water flow which wasincluded in this study to limit
computation time.

In order to run Multi-Hydro, data needs to be slibipea standard format. Commonly
available Geographical Information System (GISadatch as land use and topography
provided in France by IGN (the French agency produgeographical information) are
inputted to MH-AssimTool (Richard et al., 2014).iF boftware formats the inputs with the
desired resolution and makes Multi-Hydro a trantgiide model, rather easy to implement on

a new catchment. Once a resolution is chosen, as¢ohaffect an elevation and a land use



123 class to each pixel. The elevation is obtainedrbinterpolation of the raw available data.
124  With regards to the land use, a priority order Iesn determined to assign a unique land use
125 class for a given pixel according to the hydrolagjimportance of the given class instead of
126 the surface represented by this class: if a gsllgcated on a pixel, the entire pixel will be
127 considered as a gully. This process is repeatétkifollowing order for this case study:

128 roads, houses, forest, grass, and water surfaedcBiba et al. (2017) for a comparison with
129 other possible strategies.

130 In this paper, the model was implemented with gxalsize 10 m x 10 m. Given the
131 obtained results discussed below it was not folewbssary to run it at higher resolution
132 which makes computation time too long. For an iptdenalysis of the relation between the
133 selected pixel size and simulated flow, which isthe purpose of this paper, refer to Ichiba
134 (2016). Multi-hydro was not calibrated, i.e. startb@alues for the parameters describing a
135 land use class are used (hydraulic conductivityilleay suction, moisture deficit, Manning’s
136 coefficient, depth of interception). Raw or dowrsdaadar data are used as input of the
137 model.

138

139 2.2) Presentation of the study area

140

141 The catchment studied in this article is locatedany-en-Josas (Yvelines County,
142  South-west of Paris). It occupies a 3.017 km? aresnly on the left bank of the Bievre

143 River. A small portion of the right bank near tineer bed is also included. The remaining
144  portion of the right bank is drained to a smalerithat flows into the Bievre River

145 downstream the outlet of the studied catchment.Bigere River is a tributary of the Seine
146 River which it meets in Paris. It flows throughrieasingly urbanised areas along its 33 km

147 path. This has led to strongly modify its naturadipboth in underground pipes which are
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integrated in the storm water sewer system, orhighly artificial open air bed. An effort is
currently undertaken to restore its “natural” aspec

A striking feature of this catchment is that, uglike previous ones studied with
Multi-Hydro (Giangola-Murzyn et al., 2014; Giresadt, 2014a), it exhibits steep slopes.
There is a difference of approximately 100 m betwtbe plateau in the north of the
catchment, and the outlet of the catchment (FigThg downhill portion strengthens overland
runoff, and the combination of pluvial and fluviaocesses on the river bank has led to
severe flooding in 1973 and 1982. Some detailsaadable on the SIAVB (Syndicat
Intercommunal d’Assainissement de la Vallée deiévi®, the local authority in charge of

urban drainage of the area) websitp://www.siavb.fr/gestion_des_crues.aspxbanisation

and imperviousness are concentrated along thelvaugt, and on a housing estate along one
major North-South road. The remaining of this semlian catchment is mainly made of
forests. The sewer system is a separate one, arsdahm water is routed into the Biévre
River.

Following the severe flooding, the SIAVB has creat® storage basins (integrated in
the landscape) along the Biévre River to mitighdeding risks. One, the Bassin des Bas Pres,
is located just upstream the Jouy-en-Josas catdhiftes outlet of this basin is equipped with
flow and height gauges operated in real time. Tieeaesecond measuring point of water
depth, few meters upstream the outlet of the cagcitpat the “Pont de Pierre” (Fig. 1). This
gauge has been installed to monitor the river lanel to protect a music school by triggering
a warning system in case of elevated height. Gikierposition of the two measuring points,
Multi-hydro will only be validated on the area drad by the sewer network represented in
green in Fig. 1. The forest corresponds approximaes0% of the catchment (~ 2 K
Although it is only possible to validate the implkentation of the model on a portion of the

catchment, the whole area is modelled to ensuradberacy of flow over the areas actually
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used for validation. The river is part of the stom@ter sewer system in Jouy-en-Josas and is
modelled as a pipe in Multi-Hydro drainage modineleed, through the city, the river bed is
highly artificial or even underground. The long ak@st — East oriented pipe located in the

South of the Basin (Fig. 1, left) is actually thi®Be River.

2.3) Fractal dimensions of the impervious surfaoes of the sewer system

The studied catchment is located in a semi-urbdrasea. The impervious surfaces
are highly relevant for hydrology since they bakyceorrespond to areas where runoff is
quickly active during a storm event. Thanks tode&ermination of land use per pixel in MH-
AssimTool, the evaluation of the impervious areas loe done in an apparent simple way by
calculating the number of pixels of roads, buildiragnd gullies (since the water falling on
gully pixels is immediately routed to the sewemmak, they are considered as impervious).

This impervious surface depends on the resolutievhich it is computed. Indeed, an
imperviousness of 55%, 50%, 42%, 32% and 25% iagilodd with pixels of size 20, 15, 10,
5, 2 m respectively. This is due to the prioritd@r set in the data assimilation tool that
affects a land use for each pixel. This order grams impervious areas (Fig. 2). Obviously
these values strongly depend on the approach ingpiead to affect a land use class to a
pixel. As previously mentioned, comparison withesthpproaches can be found in Ichiba et
al. (2017). Investigations on the possibility ot/img different pixel size according to the land
use should also be envisaged in the future, inrdod®r instance refine the pixels for roads
and gullies and coarser them for forests. Comirl b@ the imperviousness percentages
found in this paper, it is possible to use theorbf fractal dimension, which is scale
invariant, to explain these figures. The fractahensionDr of a geometrical set (here the

impervious pixels) is obtained with the help of thkowing equation:
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N, =A% Eq. 1

whereN, is the number of impervious pixels, akhds the resolution defined as the ratio

L
between the outer scdleof the phenomenon and the observation dc¢4 = I_)' It

characterizes the space occupied by a geometdtal a scale invariant way. The symbol
denotes an asymptotic convergence and absorbsyslawling prefactors.

For the studied catchment, it appears that thenwmes areas exhibit a fractal
dimension. Indeed Eq. 1 is plotted in log-log foe geometrical set consisting of the
impervious pixels at the 2-m resolution (impervioess of 25 %), and a straight line is
retrieved on the whole range of scales, i.e. 2nBB0{&Fig. 3.a). This a basic feature of the
catchment. The fact that the points correspondithe catchment representation at 20, 15,
10, 5, 2 m obtained with MH-AssimTool are alongstkiraight line (circled cross on Fig. 3.a)
is simply a consequence of the priority order setffecting a land use class to a pixel
(impervious classes are prioritised over perviouss). This confirms the fact that even
though the represented imperviousness varies wéle sa feature (the fractal dimension) is
conserved and provides a quantification of thelle¥arbanisation. We findDr equal to 1.73
for this catchment. In a previous study Gires e(2014a), found that for a highly urbanised
area in Seine-Saint-Denis (North-East of Pari® fthctal dimension was of 1.85 from on
scales ranging from 1 m to 1024 m. Given that¢hishment is less urbanised, it was
expected to obtain a smaller fractal dimension.

The same study was performed on the sewer systgm3(B). In this case, the
geometrical set studied is the “rasterised” sewstesn. If a pixel is crossed by a conduit
belonging to the storm water sewer network, thes ¢onsidered as part of the sewer system..
Two scaling regimes can be identified: from 10 n8®@m the fractal dimension is 1.03 and
from 80 m to 1280 m it is 1.76. For small scalbs, dimension is close to 1, and it simply

reflects the 1D intrinsic nature of the sewer gystEor large scales, the structure of the
9
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network becomes apparent, and exhibits a scalihgweur. For large scales the value is
slightly smaller than the 1.85 found on the Seia@&Denis catchment in Gires et al.
(2014a) which is consistent with the fact that thme is less urbanised. The similarity
between both fractal dimensions (imperviousnesdange scale sewers) indicates that it is a
relevant way of quantifying a level of urbanisationthe area. See Gires et al. (2017) for an

extension of this approach to 10 areas in 5 Eurmopeantries.

2.4) Rainfall data

Four rainfall events, which occurred between 2008 2011, are studied in this paper.
Simulations are performed using Météo-France radasaic, which provides a spatially
distributed data with a resolution of 1 km x 1 krb xin (the closest radar is the C-band one
of Trappes located 15 km West). For three everdsdtita recorded with the help of a rain
gauge operated by the SIAVB located a few hundreters south of the catchment at the
“Bassin des Bas Pres” is also available. Becaus@) adhe standard 0.2 mm discretization
issue of the tipping bucket rain gauge (data isemof tips equal to 0.2 mm) which prevents
it from providing reliable intensity, (i) the gapetween the observation scales of the two
measuring devices (see Gires et al., 2014b, fon-alepth analysis of this issue) and (iii) the
fact that the rain gauge is furthermore outsidéhef catchment; it is not possible to use the
rain gauge data for other purpose than a roughkobiethe accuracy of radar data. It is done
by comparing the cumulative volumes of rainfall &ach studied event which are displayed
in Table 1 along with their main features. Girealet(2014b) used data from dense network
of point measurement devices (rain gauges or diselrers) distributed over 1 Kmand
showed that the cumulative depth differences betwsices could reach more than 40 %

for individual rainfall events (of the same ordémnmagnitude as the one discussed here). They

10
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showed with the help of numerical simulations thiatilar values were found simply taking
into account small scale rainfall variability. Hehee maximum observed differences are 34%,
which suggests that the agreement between the éwizas is acceptable, i.e. smaller than
expected uncertainty simply due to the scale gapd®n the two measuring devices. Authors
did not have access to longer time series of badlarand rain gauge to perform a more in-
depth evaluation of the radar versus rain gaugesuamement for this specific point, which
would be the topic of another study. The tempovalwgions of the radar rain rate averaged
over the catchment are displayed in Fig. 4. Thesats were selected because they are heavy
ones. However they are not extreme ones, indeeddwrations of 1 h and 4 h, only the 14
July 2010 event has a return period greater thgeat (data from a rain gauge located in the
Paris area that was available to the authors wed tssobtain these estimates). For the July
event, the return period is of about 1 year forugation of 1 h and of about 2 years for a

duration of 4 h.

3) Methods
3.1) Multifractal framework

The Multifractal framework is used for several ppsps throughout this paper to
characterize the variability across scales of fighhd is therefore presented here in a generic
way. Only basic properties are discussed hereiraakested readers are referred to the recent
review by Schertzer and Lovejoy (2011) for moreadet The general assumption of
multifractal fields is that they are generated byuaderlying scale invariant multiplicative
cascade process. In such process, a structurgi\arascale is divided into smaller structures
at smaller scale and the value of a child struatisgjual to the value of the parent structure
multiplied of a random increment. The process éesmvariant in the sense that the way

structures are divided into sub-structures angtbbability distribution of the random
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multiplicative increments are the same at all scateconsequence is that statistical
properties of such fields are conserved acrosgscillore precisely let us denajea field at
resolutionA (=L/I, wherel is the observation scale abhdhe outer scale of the phenomenon as
for the fractal dimension definition). The probityibf exceeding a given threshold'y,

defined with the help of the scale invariant notidrsingularityy (the thresholds depend on
the observation scale, but not the singularity),

Prie, 2 )= A~ Eq. 2,

and the moment of ordey

(e,)=2 @ Eq. 3,

exhibit a power law relation with regards to thealation at which they are computed. As for
Eq. 1, the symbat denotes an asymptotic convergence and absorbbyslawing

prefactors. Equations 2 and 3 define respectivedycbdimension functiog(y) and the

moment scaling functiok(q), which both fully characterize the variabilityrass scales of

the field.c(y) andK(q) contain the same information and are related bggendre transform
(Parisi and Frish, 1985). Eq. 2 can be understomd the simpler notion of fractal dimension
(Eqg. 1). Indeed, an intuitive interpretation of altifractal field is that the geometrical sets
made of each portion of the field greater than githeesholds are fractal and characterized by
fractal dimensions. To be mathematically more ogsrthe notion of threshold is replaced by
the scale invariant one of singularity.

By generalizing the central limit theorem Scheried Lovejoy (1987) showed that
any conservative scale-invariant multiplicativegesses converge toward Universal
Multifractals (in a similar way as re-normalizedrsof identical and independent random
variables converge toward normal distribution asgylas their variance is defined). For

Universal Multifractals (UM), i.e. this limit behawr, K(g) and c{) functions are defined

12
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with the help of only two relevant parameters vetphysical interpretation. They are known
as UM parameterS; anda:
- C; is the mean intermittency which measures the gecsparseness of the fielc,,=0 for a
homogeneous field.
- o, is the multifractality index@< a <2) and measures how fast the intermittency evolves
when considering level of activity slightly differefrom the average one.

Great values oft andC; corresponds to strong extreme. A common tool $sessthe
extremes of a field is the scale invariant notibmaximum probable singularity
observable (Hubert et al., 1993; Douglas and BaB083; Royer et al., 2008; Gires et al.,
2014a). It is defined for a unique sample by
c(ys) =d Eq. 4
Whered is the dimension of the embedding space,d.el for time series and = 2 for
maps.

The power spectrum (Fourrier transform of the aattwelation function) of such
multifractal field exhibits a scaling relation wittave numbek:
E(k)=k™ Eq.5

wherefis the spectral slope.

3.2) Uncertainty associated with small scale rdlinfa

The purpose of this section is to explain the apginamplemented to quantify the
uncertainty associated with small scales rainfatlability, i.e. which is occurring below the 1
km x 5 min scale currently provided by the C-baadar operating in this area. The same
methodology as in Gires et al. (2013, 2014a) idémented, and only basic ideas are
explained here. Firstly, an ensemble of downscadedall fields is generated, then each

realisation is inputted into the numerical model &inally the disparities within the ensemble

13



322  of outputs, which reflect the studied uncertaiatg analysed and quantified. 100 sample
323 ensembles are used. The downscaling technique ai¢he Universal Multifractal

324 framework. It basically consists in stochasticaliytinuing a space-time cascade process that
325 has been validated on the available range of schfesresolution of the downscaled rainfall
326 field is 12 m in space and 20 s in time startimgfrthe original 1 km and 5 min of the

327 available radar data. The process has been validaten to such small scales (Gires et al.,
328 2014b).

329 The disparities among the simulated ensemblesuwanetifjed with the help of quantile
330 analysis. Let us first illustrate this with thevilautput, but the same is done for maximum
331 water depth at each pixel. For each time step (28575 and 95 % quantiles are computed,
332 and give the envelop curves 68 Qo.2s Qo.75 and Qo5 respectively. The width between
333 these curves characterizes the uncertainty intenvaimulated flow. It is quantified with the

334 help of two pseudo-coefficients of variation congzlias:

CV95'= Qo.gs (tPF ,radar )~ Qo.os (tPF radar )

335 2 * PFradar Eq 68.
CV..'= Qozs (t PF ,radar ) ~ Qozs (t PF radar )
336 75 2% PF,__ Eq 6.b
337 wherele i is the time of the peak flow simulated with the/radar data

338  (PFraga).-

339

340 3.3) Multifractal analysis of overland water depthps

341 There is no distributed data available for overlarader depth over large areas, but it
342 s possible to study the fields obtained with tkeélof numerical simulations with spatially
343 distributed rainfall as input. Maps of water de@thing runoff at the end of each 3 min

344  Multi-Hydro loop are studied.

14
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Technically, in this paper an area of 128 x 12&|sixof size 10 m x 10 m is extracted
from the map of the catchment to carry out the\aisl Both ensemble analysis (i.e.
considering all successive maps as independeigatahs of the same process and upscaling
them individually before taking the mean in Eq.ni@2l 8) and individual time step analysis
(i.e. to obtain temporal evolutions of the varipagsameters) are performed. Finally, analyses
are done in 2D on the maps but also in 1D on thewas or the lines of pixels over the
catchment, in a North-South direction and in ant-&ésst direction respectively (Fig. 5). The
purpose of this is to monitor a possible influentéhe slope over the generated runoff

scaling properties.

4) Implementation of the Multi-Hydro model on thauy-en-Josas catchment

4.1) Validation with raw radar data

The validation of the model is achieved by compathe water height measured at the
Pont-de-Pierre gauge with the simulated one. Bejoneg on authors would like to highlight
that a proper validation on this case study ispastsible given the available data, and will
therefore limit this section to checking that thedal approximately behaves well. The main
reasons for this problem are:

- Only one measuring point is available for the lehmatchment taking into account
approximately an area of 2 km

- The uncertainty associated with this water I@alge is high. Indeed, it is not operated for
accurate hydraulic measurement but to trigger ammato evacuate a music school located

nearby. The main issue is that the shape of tlee bed cross section at this point is not
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available. The width was estimated at around 1.80simg aerial photography from IGN and
an approximate measure from few meters away. lerdadcorrectly model the pipe, we used
Multi-Hydro and tested various types of conduitsafly, we chose to model the Bievre as a
circular pipe, with free surface of 2 m diametehjeh is close to the approximate
measurement. This choice is only an approximatibithvdoes not take into account the
variations in time of this shape due the fact thatbottom of the river bed is not flat and
contains moving rocks and changing vegetation.

- There is a lack of available data on initial s@turation which is one of main sources of
uncertainty and can biased runoff (see Shah e1396; Zehe et al., 2005) especially at the
beginning of the event. In this paper, dry condisiovere considered at the beginning of each
event. A sensitivity test was conducted by considea saturated soil at the beginning. A
slight increase (few percent) of simulated flow wased only during approximately the first
hour (not shown here). Having longer rainfall tisegies would enable to simulate the
catchment’'s behaviour some time before the eveshtiamt the uncertainties associated with
this issue.

- The uncertainties on the water input in the BeeRiver at the outlet the Bas-Prés storage
basin upstream the catchment are not quantified.

- Obviously there are some uncertainties on tharreadnfall measurement itself.

The simulation and measurement at the “Pont dedPipoint for the selected rainfall
events are displayed in Fig. 6. For the 09-02-28@nt we observe a clear overestimation at
the beginning of the event. For the 14-07-2010 eManti-Hydro with the radar rainfall data
reproduces well the two main peaks, but overeséstite first local maximum of rainfall
intensity and misses the second one. The 15-08-2@d® shows a greater variability in the
first half of the simulation (variations are mom@pounced on the model than on the

measurements) but reproduces well the last pen&ll¥ifor the 15-12-2011 event, the Multi-
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Hydro model reproduces well the first peak, butftoer decreases more rapidly than the
observations.

Given the available data on a limited number oinevé is difficult to attribute the
observed discrepancies to one or several of thequaly mentioned sources of uncertainty.
Proper validation would indeed require the analg§isiuch longer time series and more
accurate measurements with better position of senslevertheless, the obtained results do
not highlight strikingly wrong behaviour of simutat water heights in conduit, and enable to
partially reproduce observations. Finally, it see¢h#d for some events the simulated flows
might be too noisy compared with observed wateglgevrhis should not affect the UM
analysis that follows because the analyses caotieth this paper are spatial ones, i.e. maps
are studied and not time series so the potenfiatteshould be limited. Keeping in mind the
previously mentioned limitations, results suggkat it remains relevant to use this
implementation of Multi-Hydro with a rather coars@ m resolution for testing its sensitivity
to small scale rainfall variability and analysingface runoff with the help of multifractals.
The authors acknowledge that further investigatmmsther catchments with more

accurately validated models would be needed ty fidhfirm the findings discussed after.

4.2) Uncertainty associated with small scales adlinriability

The envelop curvesdds, Qv.25, Qo.75 and Qg5 are displayed in Fig. 7 for the 09-02-
2009 event for 5 conduits selected from upstreadotenstream, which enables to analyse
the effect of the position of the conduit withirethetwork. Link #4 corresponds to the Pont-
de-Pierre measurement, and #5 to the outlet afdte@hment. As it can be seen in Fig. 7, link
#4 and #5 are located along the Bievre River, Beg take into account the significant base
flow in the river coming from upstream the Jouydasas catchment. It means that they are

obviously less sensitive to local rainfall variatyil Similar curves were also generated for
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water height (not shown) at the Pont-de-Pierre. ddmputed uncertainty is small and
certainly does not explain the discrepancies betvggaulations and measurements noticed in
Fig. 6, which are hence not simply due to effectsnoall scale rainfall variability.

CV’'gs andCV’;5 values computed for the selected conduits (Fignd)the four events
are displayed in Table 2. As expected they decreage considering more and more
downstream conduits. There is a sharp decreaS¥’imvhen the Biévre River is reached
because the base flow of the river dampens theteffdocal small scale rainfall variability
occurring over the 3 kicatchment, but the uncertainty only associatet this effect
remains of roughly 10 % at the outlet whateverabent. The values for up-stream and mid-
stream pipes are great for all events, evelCidrs which highlights a significant impact of
small scale rainfall variability on the simulatédvi. The variability observed in the simulated
flow is basically due to the disparities in the siated downscaled rainfall fields which are
transferred through the hydrological model (see&et al. 2012 for more detailed analysis of
this issue). Small scale rainfall data is neededhtterstand better, and plan better, some local
flooding due to sewer overflows which have beerreg in some areas, notably the street
parallel to the Bievre River bed in the city (jitrth of it), There does not seem to have a
straightforward relation between the computed uag#y and the strength of the event (in
terms of maximum rainfall peak intensity over 5 jnindeed, the tendency that could be
observed on the 09-02-2010, 15-08-2010 and 15-12-P@ot a linear one as for example the
peak rainfalls are equal to approximately 7 andn?4.h* for respectively the 15-08-2010 and
15-12-2011 event while the computed uncertaintieskse) is not confirmed by the results
for the 14-07-2010 event (see Tab. 2). Finallyséhealues are comparable to the ones that
were obtained on a 1.5 Krhighly urbanised catchment located 40 Km NorthtBasthe
other side of the Paris area in Gires et al. (2RIHar this catchmen€V’gs values were

ranging from 21 to 56%, 26 to 94% and 22 to 50%nfaownstream to upstream for the same
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09-02-2009, 15-08-2010 and 15-12-2011 events réspbc(at a different location). The
values are slightly smaller for this catchment #misl is likely to be due to lower level of

imperviousness resulting in a smaller portion aifedl becoming immediately active.

In this paper, the uncertainty is computed not @mythe simulated flow, but also on
the water depth in streets. As for the flow, focleeealisation of downscaled rainfall field, the
maximum water depth over the whole simulation igaeed for each pixel. A sample is
shown in Fig. 8.a for the 15-12-2011 event. Thevkmbiot spots are visible, although with
too high values. For example, the modelled maxinmater depth reaches more than 15 cm
in the street along the Bievre River bank in thg and the parallel street just north of it
(already mentioned in the previous paragraph).®lgh some flooding is regularly reported
by citizens to the SIAVB for these streets, sudglitevas not reported for this event. In the
urbanized portion of the catchment the street nétugovisible on the maximum water depth
map, meaning the maximum values of water depth rasgpseached on the corresponding
pixels. Lower values are found on the on road&riocated on the steep portion of the
catchment because water moves faster in these &&@ae patterns and numerical values are
obtained for other realisations of the same e&ntilar plots are obtained for the other
events with lower depths for the 09-02-2009 an®&52010 (for which a lower cumulative
rainfall depth was recorded) and greater depthth®i4-07-2010 event. Then, as for the
flow analysis previously carried out, the uncertgion this maximum water depth is
computed with the help of the 5 and 95% quantibesfch pixel and a pseudo-coefficient of
variation. lllustrations of the quantiles maps stnewn in Fig. 8.b and 8.c for the 15-12-2011
event. Similar patterns are observed on the twosnraptably for the hotspots previously
mentioned which are visible on both maps. Map&\¢iks for maximum depth are displayed

in Fig. 9 for the four rainfall events. It appeérat the uncertainty is lower for the areas
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where the greatest maximum depths are found {.eoads) and is also lower for the heaviest
rainfall events. It reaches only few percents anhbttest points. The values (Fig. 9) are
anyway much smaller than those found for sewer {léable 2 and Fig. 7). This apparent
contradiction is likely to be due to the fact thatst of the rain water is properly handled by
sewers and overflows are limited for these evdntseans that for these events disparities in
local amounts will not be visible on ground level$iereas they are indeed in sewer flows
and water depths. Further investigations with heranginfall events should be carried out to
confirm or not this interpretation. The areas viith greatest uncertainty are found in gardens
for the weakest event (09-02-2009), and correspomdaces with a very small maximum

depth (smaller that 1mm), meaning that the hydiokdgelevance is not very high.

5) Multifractal characterization of overland watkapth

Multifractal analyses of overland water depth dgniainfall event are presented in
this paper for the 14-07-2010 and 15-12-2011 ewshtsh are the two heaviest ones in terms
of maximum rainfall intensity over 5 min (see Tal)e

Figure 10.a displays the spectral analysis of taeendepth for the 14-07-2011 event.
Maps of water depth for each time steps duringethent are used to carry out 2D ensemble
analyses. The quality of the scaling is low, wittofficient of determination for the linear
regression equal to 0.42. The fact that the sdesttpe is close to zergi (s found roughly
equal to 0.2) indicates that the field is conseveai.e. its mean is conserved across scales. It
is therefore possible to implement directly onfile&l a Trace Moment (TM) analysis, which
consists in assessing the validity of Eqg. 4 bytpigtit in log-log. Perfect UM fields would
lead to straight lines. Figure 10.b shows the Tieenble analysis performed over all the

time steps of the same 14-07-2011 event. Two sgatigimes can be identified: a small
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scales regime from 10 m to 80 m (right part of Bi@.b) and a large scales regime from 80 m
to 1280 m (left part of Fig. 10.b). The coefficiaitdetermination? of the linear regression

for g=1.5 in Fig. 10.b is taken as an indication ofdelity of the scaling. The scaling from
small scales (10 m - 80 m) is much more robust tbalarge scales (80 m to 1280 m), as
illustrated by the? equal to respectively 0.99 and 0.91. Given thedomality of the scaling

for large scales, UM parameter estimates will rotdported and discussed for this regime
because they are not reliable. Furthermore, sroalés are crucial for surface runoff because
it is at these scales that it is generated intalthegage system. The location of this break at
approximately 80 m indicates a possible physidarpretation. Indeed, it is the same location
as the break in the fractal analysis of the sewtnork and corresponds roughly to the inter-
distance between roads. This would mean that tkeekads driven by the influence of the
collection of water by sewer network. The more sitacaling behaviour for surface flow is
found for the scales for which the sewer networksdimot behave yet as network but as
isolated linear pipes. Before going on, it shouwdentioned that numerous pixels have very
small depth (see Fig. 8 for an illustration), fdmieh the model uncertainties might be great.
These zeros values or spurious ones close to zéraffect the scaling analysis for small
moments (typically g < 0.5) through a multifragbhlase transition (see Gires et al., 2012, for
a detailed analysis of this issue). Here the imitgeof this bias does not extend to moments
close to 1 around which the estimates of UM paramsedre carried out, meaning that they are

not affected by this issue.

Although intrinsically less robust since scalingperties are statistical ones requiring
numerous data to be properly observed, TM analyses also carried out independently on
each sampling time step of Multi-Hydro (3 min imstpaper). The purpose is to see whether

there is an impact of the current rainfall ratatofigure 11 displays for the 14-07-2010 event
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the temporal evolution of both the rainfall ratelaher? for g=1.5 in the TM analysis for the
two regimes identified in the ensemble analyses,amall (10 m — 80 m) and large scales (80
m — 1280 m). For this event, two rainfall peaksaserved, and they both result in a sudden
loss of the scaling quality, more pronounced fogdascales than small ones. For the first
peak (yellow bars on Fig. 11) the decreasg tdsts approximately 20 min, while it lasts only
few minutes for the second peak (red bars on Fjgldboth cases the quality of the scaling
behaviour improves again over few tens of minuté& physical meaning of such loss is not
clear, but could be due to a bad representatitineo$urface flow process during intense
rainfall (it might take some time to retrieve aligté&c surface flow simulation following a
sudden change in rainfall input), a bias in thengetpical repartition, or an intrinsic feature of
the process. For the latter, a possibility is thaing intense rainfall period, the surface flow
exhibits more directly the rainfall features themintrinsic ones which are retrieved once the
flow process has “adapted” to the new conditiorigs Tvould explain both the loss of scaling
quality and why scaling properties closer to rdirdaes are observed during these short
periods. Analysis with a higher resolution modelndobe needed to further investigate this
issue, which would also enable to have accessvider range of small scales.

Similar features are retrieved for the other stddivent (15-12-2011). Finally, it
should also be mentioned that similar results @ faund when performing the analysis on
the North-South or West-East 1D-samples, which mdaat the preferential slope of the
catchment (North-South) does not seem to havefluencte on the scaling features of the
simulated water depth. In terms of scaling qualiry similar results are also found with raw
radar data, or downscaled rainfall fields suggestitimited impact of small scale rainfall

variability on these features. The same downscaiogess as in section 2 is used.
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UM parameters retrieved on the maximum water dejtte computed for small
scales, and are displayed in Table 3 for the tvemts/(14-07-2011 and 15-12-2012) and for
simulations with raw radar data and also a reatisaif downscaled rainfall field witb=1.8
andC;=0.1 (other realisations yield very similar resuli&he temporal evolutions of andC,
for the 14-07-2011 event are shown in Figures 12.

It appears that the UM parameters are also affdnidde “jumps” that were noticed
onr?in Fig. 11. Indeed after an intense period, siwepease ofi and decrease @, are
noticed. These pronounced variations mean thatahes obtained with ensemble analyses
should not be over-interpreted. Nevertheless femvments can be made. First the values of
C, are much greater than the ones reported for th{bfpically 0.1-0.3 at small scale)
meaning that significant levels of water depthratech more concentrated than the rainfall
field, which reflects the influence of the physipabcesses associated with surface flow on
the transferred field, notably the flow concentratiThe most relevant one is the topography
that routes water through specific paths and témdsncentrate it. Second the values of UM
parameters are quite different between the twotev@hese differences are much greater
than the ones observed on the rainfall fields [(sleda, 2016, for a detailed analysis of these
storms) at small scales. This suggests that tige kszales rainfall pattern has a strong
influence on the retrieved parameters. Indeedidpegraphy and small scale rainfall features
are the same between the two simulations; thediffgrence is the large scale rainfall
features. Thirdly the values gfare rather similar for both events (the differenbetweerm
andC; tend to compensate themselves).

The temporal evolutions of the UM parameters ola@iby inputting raw and
downscaled rainfall data are very similar. Theatihces are slightly more pronounced on the
values computed on ensemble analysis but as pyisaid this should not be over-

interpreted given the strong variations visibléha temporal analysis. This similarity
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highlights the low influence of small scale raihfariability on the retrieved parameters
which seems to be more dependent on features at=swevith surface flow process itself or

large scale rainfall.

In order to test the sensitivity of the resultstaall scales rainfall features, synthetic
rainfall fields with various sets of known parametare used as input to Multi-Hydro
simulations. More precisely the pseudo-events ddstt 30 min with an average intensity of
10 mm/h. Three pairsi{ C;) of parameters are tested: (1.8; 0.1), (1.8; 0.a54; 0.1). Figure
13 displays the temporal evolutions of the raiesat, a andC, for water depth for the three
synthetic rainfall events.

The temporal evolution shows the same general texyydas the one observed with the
real events. A loss of scaling quality is obsergtadng the event itself, and it improves
afterwardsa andC; have a constant behaviour during the rainfall |levthiey decrease and
increase respectively after the rainfall has stdpfp@e comparison of the UM parameters for
the overland maximum water depth shows that theyad@eem to depend on the small scale
rainfall variability in this casea is constant around 1.4 whi® is constant around 0.6 during
the rainfall.ys is again constant around 1.7 on average. TheathWM parameters do not
seem to modify the structure of the overland flamg its geometrical distribution. Successive
simulations with the same parameters for synthatidall yielded same results. A physical
explanation of th€; parameter could be that during the rainfall, tindage flow is more
homogenous due to a ubiquitous input of water. WHvameters on water depth are thus
closer to the rainfall ones (smél{). However after the rain has stopped, the digpardf
simulated water depth are increased due to predornpathways (roads) or topographic

depressions where the water can accumulate. Tlageg® after the event could reflect this

24



593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

fact. The smaller values of mean that the disparities among the areas wheer veanmains
tend to decrease after the rainfall event.

This study seems to highlight the fact that UM paeterso. andC; for water depth are
rather relying on the large scale structure ofréhefall and on the catchment features, while
the maximum observable singularityis conserved for all events. Further studies could
infirm or confirm the fact thats depends on the studied catchment. The temporaltents
of the UM parameters also deeply rely on the rdindée. Synthetic events with block
structures enabled to stand out rather simple géterdencies. They become more complex
with real rainfall, when the intensity has a highemporal variability.

The temporal evolutions of the UM parameters atsbke to quantify a catchment
response time. Due to the sampling time step o$itnelations, the uncertainty associated
with the response is of 3 min. Still, it can beeatbthat in urban catchments (or semi-urban
here), the response time of water depth UM paras&iethe beginning of a rainfall or to an
important peak of intensity is almost non-existdittis is due to the presence of impervious

area over which rainfall directly transfer into fauwe runoff.

6) Conclusions

The Multi-Hydro model was implemented on the Jonydesas catchment in the Paris
area. This 3 kihsemi-urbanised catchment exhibits sharp slopesaatense area along the
Bievre River bed. It has often been damaged by npdijvial and fluvial flooding, before the
construction of storage basins along the river.phtie model was validated on this new
catchment on four rainfall events with the helghef data from a height gauge near the outlet.

Rainfall radar data with a resolution of 1km x 1krBmin was used.
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Then ensembles of downscaled rainfall fields weseduo quantify the sensitivity of
the model outputs to small scales unmeasured Havafi@ability, i.e. occurring below the
resolution of the available raw radar data. It @ppehat it is rather significant on flow
simulated in conduits with pseudo coefficients afiations ranging from 90 % upstream to
10% downstream. This confirms previous resultsinbthon a 1.5 kfflat highly urbanised
catchment also in the Paris area. The methodol@gyextended here to simulated water
depth, and it was found that the sensitivity wasimlower than for conduits’ flow. This is
likely to be due to the fact that the sewer sysemainly able to cope with the storm water
for these events limiting the amount of surfaceoftin

After using them to downscale the radar data, UsaldMultifractals are used in an
innovative way to characterize the surface floncpss -through simulated water depth for
each 10 m x 10 m pixel over 3 min time steps- dyrainfall events. UM parametemsand
C,, and the composite parameteare evaluated on the outputs of Multi-Hydro. Twalsg
regimes are identified for this field and estimades only reliable for small scales, i.e. 10m -
80m, and related to the fractal feature of the saystem which exhibits a scale break at the
same scale. There is a loss of the quality of tlaérgy during intense rainfall periods and UM
parameters get closer to rainfall ones. A possitikrpretation is that during this short period,
a mixture of the scaling behaviour of both surfdoe and rainfall is observed. After the
event scaling is improved and features more spaafsurface flow processes are retrieved
with a field strongly concentrated and variabibiyjong the wet areas dampen€gd dreater
than 1 andx smaller than 1). Small scale rainfall featuresadbseem to strongly influence
the results which depend more on large scalesalasgatio-temporal patterns for these
events which do not trigger much sewer overflow.

The conclusions found with the help of this innov@imethodology are not as

straightforward as the authors would have hopedhEuinvestigations with other rainfall
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events, other catchments, notably with denser mong network including in-sewer
measurements, should be carried out to strenghieeresults. Higher resolution models
should also be tested to extend the range of dlaitcales for the small scales regime to
obtain more reliable estimates of scaling featusesh new analysis would enable to
generalize the behaviour of the scaling and ofiNeparameters which describes the surface
flows, and eventually to link them to other geonuwedrfeatures of the catchment, such as the
fractal dimension of its impervious surface, of thads (which are the preferential path for
surface flows) or of the sewer system. This papeukl be seen as a promising first step that
hints at innovative techniques relying on scalaitance properties to analyse how the
rainfall extremes are either dampened or enhangdéyydirological models and also to
quantify the extremes at very high spatial resotuftypically 1 m) without having to run the
model at these resolutions which would requirentach time especially for real time

applications.
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Tables:
Peak
Radar rain depth Rain gauge depth intensity
Duration (min)
(mm) (mm) over 5 min
(mm/h)
09-02-2009 9.4 Unavailable 725 5.12
14-07-2010 43.2 35.2 1020 52.06
15-08-2010 27.8 20.8 1745 7.56
15-12-2011 26.2 29.6 785 24.26

Table 1: Main features for the four studied rainéafents. Cumulative depth are computed

over the whole event. For the radar data averagastie catchment are displayed.
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Event/Link | #1 #2 #3 #4 #5
09-02-2009 63 /16 35/15 10/7.2 40/1.7 28/
14-07-2010 76 /22 27113 7.1/3.6 75/3.2 34/
15-08-2010 70/ 20 38/16 26 /12 9.3/3.9 8B/
15-12-2011 60 /23 50/ 22 28 /12 11/4.1 8.8/3

Table 2:CV’gs andCV’5in % (first and second figure respectively) foe five selected

conduits and four rainfall events.

Event Rainfall input a C Vs

14-07-2010 | Raw radar data 1.55 0.62 1.52
Downscaled rainfal| 1.25 0.90 1.68

15-12-2011 | Raw radar data 0.95 1.42 1.74
Downscaled rainfal| 0.99 1.22 1.65

Table 3: UM parameters for small scales (10 m m3@omputed with the help of a 2D

analysis with either raw radar data or a realisatibdownscaled rainfall field (witb=1.8

andC;=0.1) as rainfall input for the 14-07-2010 and 52D11 events.
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803 Figure 2: Map of the land use obtained with theleéIMH-AssimTool over the Jouy-en-

804 Josas catchment for two different resolutions.
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catchment (Eq. 1 in log-log plot). The circle pasigbrrespond to the figures obtained from
the map generated with the help of MH-AssimToalatous resolutions. (b) Evaluation of

the fractal dimension of the sewer system.
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812 Figure 4: Average over the catchment of the raiméalar intensity in mm/h over 5 min time
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815 Figure 5: lllustration of the samples studied ia thultifractal analysis of overland water
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\l

direction), (c) 1D horizontal rows (W-E direction).
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