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ABSTRACT

In this paper, we propose a dense two-frame stereo algorithm
which handles occlusion in a variational framework. Our
method is based on a new regularization model which in-
cludes both a constraint on the occlusion width and a vis-
ibility constraint in nonoccluded areas. The minimization
of the resulting energy functional is done by convex relax-
ation. A post-processing then detects and fills the occluded
regions. We also propose a novel dissimilarity measure that
combines color and gradient comparison with a variable re-
spective weight, to benefit from the robustness of the com-
parison based on local variations while avoiding the fattening
effect it may generate.

Index Terms— Stereo-matching, occlusion detection,
variational method, convex relaxation

1. INTRODUCTION

Stereo matching has been a popular research topic in com-
puter vision for many years [1], stimulated by the Middlebury
evaluation and its datasets. Two-frame stereo algorithms aim
at estimating the scene depth map given two images taken
from two different points of view and knowing the cameras
parameters and their relative position. The distance to the
camera (depth) of any 3D point which is visible from both
points of view can be deduced from the estimation of the dis-
placement of its projections from a view to the other. The
latter is called disparity.

Given a stereo pair, the disparity estimation is equivalent
to matching each pixel in the reference view to its homologue
pixel, namely the projection in the other view of the same
3D point. Without any reliable scene model, stereo matching
methods mainly rely on the visual similarity of homologue
pixels. Following Scharstein and Szeliski’s survey [1], stereo
algorithms can be classified into two families. Local methods
look for the most similar pixel given a dissimilarity measure.
However, they visually compare not only the pixels, but also
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a neighborhood, in order to make the matches more robust.
They are usually easy to implement, but lack global consis-
tency. Global methods aim at making up this loss by using
some a priori knowledge about the disparity map. In partic-
ular, they embed in an energy functional the expected prop-
erties (e.g. the global smoothness) of the scene and aim at
minimizing them. Such methods allow to exploit more in-
formation than local methods, but a serious counterpart is the
huge algorithmic complexity. Moreover, some functionals are
even not minimizable.

Unfortunately, the stereo matching problem is ill-posed.
Indeed, some pixels are only visible from one viewpoint.
Thus, they have no homologue pixel and the disparity map
is not defined everywhere. This phenomenon is called oc-
clusion. The affected pixels are said to be occluded and the
hidding object (and its pixels) are called occluding. Despite
its unavoidable occurence and the effect on the matching
process, it is often ignored, or treated as noise. However,
many methods detect the occluded areas in addition to the
disparity estimation. A simple way to proceed is to apply
a left-right-cross-check filter to detect matches which differ
when the images are switched in the matching process [2, 3].
This implies to compute two disparity maps and decouples
the disparity estimation and the occlusion detection. Other
methods rely on the uniqueness constraint (which enforces
a one-to-one matching) and/or the ordering constraint (ob-
jects keep their relative position from a view to the other) to
prevent some pixels to be matched. Such methods usually
provide a special label to mark these pixels [4, 5] and allow a
joint estimation of the disparity map and the occlusion map.

2. RELATED WORK

In 2010, Pock et al. proposed a variational method which
aims at solving the stereo matching problem [6]. The en-
ergy functional is minimized thanks to a convex relaxation
technique. However, despite the generic form considered in
the general framework, the stereo functionals handled in [6]
only have two terms, namely the data term and the smooth-
ness term. Functionals of this particular form are classical in



stereo methods, but prevent from a proper occlusion handling.
Furthermore, the variational framework enforces a dense dis-
parity estimation, which means that the occluded pixels can-
not be treated differently from non-occluded pixels and need
to be matched.

An analysis of the occlusion phenomenon [7] shows that
the occlusion obeys some specific rules. In the particular case
where the ordering constraint holds, the occlusion horizontal
size is equal in the left image to the disparity jump between
the occlusion borders. The ordering-constraint case applies as
soon as there is no object of extent less than the distance be-
tween the two camera centers. Bobick and Intille’s dynamic
programming method exploits this analysis [8] to estimate the
disparity map line by line. Therefore, no smoothness along
the columns is enforced, which leads to streak-like artefacts.
Other attempts [9] added a two-pass strategies to keep the
1D settings while adding some 2D smoothness but such ap-
proaches lead to an anisotropic smoothness treatment.

In this work, we propose a variational method which en-
forces an isotropic TV smoothness for the disparity estima-
tion, with an occlusion handling in a dense framework. We
estimate a dense disparity map which is constrained to be lin-
early interpolated in occluded areas. This constraint is man-
aged by a visibility term, which also allows occlusion detec-
tion in a second stage. An occlusion filling is then used to ex-
tend the disparity estimation in occluded areas. Our method
relies on the convex approach proposed by [6]. Unlike almost
all other methods the occlusion is handled together with the
stereo matching and not in a separate process.

3. ENERGY FUNCTIONAL

Let (IL, IR) be a pair of stereoscopic images, of rectangular
domain Ω. We make the classical assumption that they are
generated by a camera with a fronto-parallel motion, which
basically means that homologue pixels are located on the
same horizontal line. We also assume that the 1D disparity
range Idisp = [umin, umax] is known. Hence, if a pixel p ∈ IL
in the left view in nonoccluded, its homologue pixel q is
given by q = p−u(p), with u(p) ∈ Idisp, where we abusively
denote p − u = (pX − u, pY ) if p = (pX , pY ) ∈ R2. The
ordering constraint implies that qX := pX − u(p) is nonde-
creasing. Hence, the horizontal slope of u cannot exceed 1.

We consider a three-term energy functional

E(u) := Edata(u) + Esmooth(u) + Evis(u) (1)

defined on the set of differentiable functions u : Ω→ R.

3.1. Data term

The data term aims at penalizing the visual dissimilarity be-
tween two matched pixels. It is thus defined thanks to a
dissimilarity measure D(p, q), which is designed to be large
when the compared pixels p and q are not visually similar,

and small otherwise. Classical choices for D include the Ab-
solute Difference (AD), which compares the intensity (or the
color) values IL(p) and IR(q) thanks to the Euclidean norm.
The AD measure is easy to implement [10], but it is sensitive
to noise. A comparison based on local variations [11] could
be used to make it more robust. However, such a measure can
be interpreted as a block-matching, which is known to favor
fattening effect at object edges [12]. This is why we propose
a variable weighted mixed comparison, by defining

D(p, q) = α(p)DAD(p, q) +
(
1− α(p)

)
Dgrad(p, q) (2)

with DAD(p, q) := ‖IL(p)− IR(q)‖ (where ‖·‖ stands for the
Euclidean norm) andDgrad(p, q) := ‖∇IL(p)−∇IR(q)‖. The
variable weight α ∈ [0, 1] is chosen so that it is large when p
is near scene discontinuities. Since the latter are included
in the set of image discontinuities, we can for instance set
it as α(p) = (1 + Gγ ? ‖∇IROF

L ‖2(p)/a)−1 where Gγ is a
zero-centered normalized Gaussian of standard variation γ,
the symbol ? denoting the convolution product with IROF

L
a smoothed version of IL (smoothed by the Rudin-Osher-
Fatemi model of parameter β [13]) and a > 0 a parameter.
This filter aims at removing the texture, which leads to large
gradients but does not correspond to scene discontinuities.
When α is constant, (2) is close to the dissimilarity mea-
sure proposed in [2]. If we set g(x, t) := D(x, x − t) for
any (x, t) ∈ Ω× R, then the data term is given by

Edata(u) := µ

∫
Ω

g
(
x, u(x)

)
dx (3)

where µ > 0 is a weighting parameter.

3.2. Regularization term

This term encodes a smoothness a priori on the disparity
map u. We define it by the TV semi-norm since it has been
shown [14] to be a natural choice in image processing. This
regularization does not penalize sharp discontinuities, which
are expected in the disparity map. Hence, we set

Esmooth(u) := TV(u) :=

∫
Ω

|Du|. (4)

where Du = ∇u when u is smooth.

3.3. Visibility term

The occlusion analysis recalled in Section 2 ensures that if the
disparity is linearly interpolated in the occluded areas, then its
horizontal slope is equal to 1 where occlusion occurs. More-
over, the horizontal slope cannot exceed 1 elsewhere. Hence,
we introduce the visibility term below:

Evis(u) :=

∫
Ω

rvis(Du) (5)

where rvis : px = (pxX , p
x
Y ) ∈ R2 → {0; +∞} is the char-

acteristic function of (−∞, 1] × R. In other terms, rvis(p
x)

equals 0 when pxX ≤ 1 and is infinite otherwise.



4. MINIMIZATION BY CONVEX RELAXATION

Although the functional E is nonconvex, it has been proved
in [6] that its minimization can be exactly done by solving
an auxiliary convex problem. Namely, there exists a convex
functional F and a convex set C

F (1u) = E(u) with 1u(x, t) =

{
1 if u(x) ≥ t
0 otherwise.

(6)

C :=

{
v ∈ BV(Ω× [0, 1])

∣∣∣∣∀ t ≤ umin, v(x, ·) = 1
∀ t ≥ umax, v(x, ·) = 0

}
(7)

such that [6, Theorem 3.1] if v∗ is a minimizer of F over the
convex set C then, for any s ∈ [0, 1), the s-thresholded map

1{v∗>s} : (x, t) 7→

{
1 if v∗(x, t) > s

0 otherwise
(8)

is a also minimizer of F and the function us defined by

us(x) := sup
{
t ∈ R | 1{v∗>s}(x, t) = 1

}
(9)

is a global minimizer of the nonconvex functional E. The
relaxed convex problem can be shown to be equivalent to the
following the primal-dual problem, with C(p) = pxX + pt for
any p = (pxX , p

x
Y , p

t)

min
v∈C

sup
φ∈KTV(µ)

Λ∈BV(Ω;R+)

∫
Ω×R

φDv + ΛC(Dv) (10)

with KTV(µ) given in [6, Section 4.2] and Λ the Lagrange
multiplier associated to the convex constraint ∂Xv+∂T v ≤ 0
which arises when computing the visibility part of F . The
discrete counterpart of Problem (10) is given by

min
vh∈Ch

sup
φh∈Kh

TV

Λh∈(R+)NXNY NT

〈φh,∇hvh〉+ 〈Λh, δhXvh + δhT v
h〉 (11)

where the gradient operator ∇h : vh → (δhXv
h, δhY v

h, δhT v
h)

is a bounded operator, defined by the forward differences,
with a multiplicative factor 1/h where h is the data accuracy
(h = 1 for pixel accuracy, h = 0.5, 0.25, ... for subpixel accu-
racy, obtained by upsampling). It is solved by a primal-dual
algorithm [15] which alternates a projected gradient ascent on
the dual variables (φh,Λh) and projected gradient descent on
the primal variable vh, with an overrelaxation step on vh.

5. OCCLUSION HANDLING

5.1. Occlusion detection

According to the occlusion analysis, the occluded pixels are
located where the horizontal slope of uhN is 1. Hence, we
define the occlusion mask

M occ
i,j =

{
1 if (δhXu

h
N )i−1,j ≥ 1

0 otherwise.
(12)

Note the x-shift introduced in this definition. It aims at com-
pensating the systematic 1-pixel fattening that occurs on the
left side of any disparity discontinuity, since the fattened solu-
tion avoids occluded pixels to be matched to occluding pixels,
which in general do not belong to the same object.

To avoid holes in the detected occluded areas, which are
due to bad placement of the disparity variations (caused by
more favorable cost matching for instance), we enhanced the
detection thanks to a filtering. The central idea is that, if two
close pixels belonging to the same object are occluded, this
is also reasonably the case of any pixels located in-between.
This leads to the enhanced mask (with R the search radius):

M̃ occ
i,j =



1 if ∃ j −R ≤ j′′ < j < j′ ≤ j +R

and M occ
i,j′ = 1 and M occ

i,j′′ = 1

and ‖IROF
L (i, j)− IROF

L (i, j′)‖ ≤ T
and ‖IROF

L (i, j)− IROF
L (i, j′′)‖ ≤ T

M occ
i,j otherwise.

(13)

5.2. Occlusion filling

Under the current hypotheses (left-right camera motion),
if we assume that objects are only partially occluded, it is
possible to use the known disparities to guess the unknown
ones [16]. Hence, like [2], the occluded pixels are supposed
to have same disparity as the object located on their left-side:

(ũhN )i,j =


(uhN )i,j if M̃ occ

i,j = 0

(uhN )i0,j if M̃ occ
i,j = 1 and

i0 = max{i′ ≤ i | M̃ occ
i′,j = 0}.

(14)

6. EXPERIMENTAL VALIDATION

6.1. Validation of the data term

We first tested our data term on a synthetic example. The
stereo pair consists in a fixed textured background in front
of which a textured rectangle moves horizontally. Figure 1
showx the disparity estimation when using a color compari-
son, a gradient comparison, the mixed dissimilarity measure
used in [2] and our variable weighted mixed comparison. The
parameters used for α are a = 100, γ = 8 and β = 1/50.
The parameter µ is chosen equal to 50 (for image values be-
tween 0 and 255). We observed many errors with the color
single comparison, whereas the fattening effect occurs on the
right edge when the dissimilarity measure is based on a gradi-
ent comparison of constant weight. It has been removed with
our data term.

6.2. Disparity estimation and occlusion detection

We tested our methods on images from the Middlebury
benchmark1. We used Version 2 of this benchmark as it

1http://vision.middlebury.edu/stereo/eval/



Fig. 1. Fattening effect removal. From left to right: color
dissimilarity, gradient dissimilarity, mixed measure of [2], our
dissimilarity measure. In red, the estimation error.

None using M occ using M̃ occ

Tsukuba 6.09% 5.64% 5.66%
Venus 2.69% 2.28% 2.18%
Teddy 20.44% 19.64% 19.38%
Cones 15.92% 15.37% 15.62%

Table 1. Disparity estimation error.

provides occlusion maps, necessary for quantitive evalua-
tion. We evaluate the quality of the occlusion detection by
the precision and recall rates (see Tab. 2), which are re-
spectively defined as the number of correct detections over
the number of detections and the number of correct detec-
tions over the number of occluded pixels (according to the
groundtruth). The disparity estimation is evaluated thanks to
the groundtruth (see Tab. 1).

To avoid side effects of the method, which may occur on
the left and right borders of the scene, we horizontally extend
the discrete cost volume defined by ghi,j,k := g((i, j), k) by
replicating the first and last raws Nt := umax − umin times.

We compare our results with two others occlusion detec-
tors. We first ran the graph cuts method of Kolmogorov and
Zabih2 [4], which we refer to as KZ2. We also applied the
left-right-cross-check filter to the disparity maps generated
by [6], namely the TV-regularization of the cost volume gh.
Except for one pair, KZ2 did better for both precision and
recall rates. However as their method labels as occluded pix-
els for which matching is too costly, this sometimes leads to
false detections. On the opposite, our low rates are often due
to wrong placement of the detection (see for instance Venus in
Figure 2). The disparity estimation error rates are displayed
in Table 1 and at a threshold of 0.5px.

6.3. Occlusion filling

We filled the detected occlusion areas thanks to formula (14).
Columns 2 and 3 in Table 1 display the disparity estimation
error rate after the filling done from the occlusion maps given
by the first mask M occ and by the enhanced mask M̃ occ. We
chose R = 9. In all cases, the disparity estimation is im-

2We used the code found in [17].

Our method KZ2 [4] TV+LR check
Tsukuba 47.46% 60.30% 36.48%
Venus 26.06% 28.80% 14.52%
Teddy 29.38% 62.73% 20.87%
Cones 43.69% 48.85% 31.21%

Our method KZ2 [4] TV+LR check
Tsukuba 53.94% 60.61% 46.58%
Venus 46.28% 71.34% 42.74%
Teddy 61.50% 63.14% 59.25%
Cones 45.11% 41.95% 61.79%

Table 2. Occlusion detection: precision (top)/recall (bottom).

Fig. 2. Disparity map (left) and occlusion map (right). Left:
in red, the unknown disparity value and in cyan, the estima-
tion error. Right: in red, the true positive, in yellow, the false
negative and in cyan, the false positive.

proved after the occlusion filling process. Sometimes the en-
hanced mask leads to better results than the initial detection.

7. CONCLUSION

In this paper, we have proposed a variational method which
handles the occlusion phenomenon in a dense framework.
The occlusion detection is parameter-free and relies on dis-
parity slope condition when the ordering constraint is satis-
fied. A noteworthy feature of our method is that it can be
adapted to any dissimilarity measure and various smoothness
terms, which makes it very versatile.
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