Occlusion Detection in Dense Stereo Estimation with Convex Optimization

Abstract : In this paper, we propose a dense two-frame stereo algorithm which handles occlusion in a variational framework. Our method is based on a new regularization model which includes both a constraint on the occlusion width and a visibility constraint in nonoccluded areas. The minimization of the resulting energy functional is done by convex relaxation. A post-processing then detects and fills the occluded regions. We also propose a novel dissimilarity measure that combines color and gradient comparison with a variable respective weight, to benefit from the robustness of the comparison based on local variations while avoiding the fattening effect it may generate.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

Contributeur : Pascal Monasse <>
Soumis le : lundi 5 février 2018 - 10:07:43
Dernière modification le : vendredi 10 janvier 2020 - 15:42:10
Archivage à long terme le : jeudi 3 mai 2018 - 05:40:36


Fichiers produits par l'(les) auteur(s)



Antonin Chambolle, Pascal Monasse, Pauline Tan. Occlusion Detection in Dense Stereo Estimation with Convex Optimization. ICIP'17, IEEE International Conference on Image Processing, Sep 2017, Pekin, China. ⟨10.1109/ICIP.2017.8296741⟩. ⟨hal-01700678⟩



Consultations de la notice


Téléchargements de fichiers