Macroscopic deformation modes of origami tessellations and periodic pin-jointed trusses: the case of the eggbox

Abstract : Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms at a local scale aggregate and bring on large changes in shape, curvature and elongation at a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces. This paper characterizes the parametrization, curvature and metric of smooth surfaces that the eggbox pattern can fit asymptotically, i.e., when the eggbox unit cell parameter becomes infinitely small compared to the typical radius of curvature of the target surface. In particular, it is demonstrated that no finite region of a sphere can be fitted and a systematic method that allows to fit ruled surfaces is presented. As an application, the fitting of a one-sheeted hyperboloid is constructed.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-01691183
Contributeur : Arthur Lebée <>
Soumis le : vendredi 2 février 2018 - 14:08:53
Dernière modification le : lundi 15 avril 2019 - 18:08:01
Document(s) archivé(s) le : mercredi 2 mai 2018 - 14:12:23

Fichier

IASS17_revised.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01691183, version 1

Collections

Citation

Hussein Nassar, Arthur Lebée, Laurent Monasse. Macroscopic deformation modes of origami tessellations and periodic pin-jointed trusses: the case of the eggbox. IASS Annual Symposium 2017 “Interfaces: architecture, engineering, science”, Sep 2017, Hambourg, Germany. ⟨hal-01691183⟩

Partager

Métriques

Consultations de la notice

84

Téléchargements de fichiers

40