Macroscopic deformation modes of origami tessellations and periodic pin-jointed trusses: the case of the eggbox - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année :

Macroscopic deformation modes of origami tessellations and periodic pin-jointed trusses: the case of the eggbox

(1, 2) , (1) , (2)
1
2

Résumé

Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms at a local scale aggregate and bring on large changes in shape, curvature and elongation at a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces. This paper characterizes the parametrization, curvature and metric of smooth surfaces that the eggbox pattern can fit asymptotically, i.e., when the eggbox unit cell parameter becomes infinitely small compared to the typical radius of curvature of the target surface. In particular, it is demonstrated that no finite region of a sphere can be fitted and a systematic method that allows to fit ruled surfaces is presented. As an application, the fitting of a one-sheeted hyperboloid is constructed.
Fichier principal
Vignette du fichier
IASS17_revised.pdf (1.13 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01691183 , version 1 (02-02-2018)

Identifiants

  • HAL Id : hal-01691183 , version 1

Citer

Hussein Nassar, Arthur Lebée, Laurent Monasse. Macroscopic deformation modes of origami tessellations and periodic pin-jointed trusses: the case of the eggbox. IASS Annual Symposium 2017 “Interfaces: architecture, engineering, science”, Sep 2017, Hambourg, Germany. ⟨hal-01691183⟩
97 Consultations
123 Téléchargements

Partager

Gmail Facebook Twitter LinkedIn More