Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

On the Generalization of Reissner Plate Theory to Laminated Plates, Part II: Comparison with the Bending-Gradient Theory

Abstract : In the first part of this two-part paper (Lebée and Sab in On the generalization of Reissner plate theory to laminated plates, Part I: theory, doi: 10.1007/s10659-016-9581-6, 2015), the original thick plate theory derived by Reissner (J. Math. Phys. 23:184–191, 1944) was rigorously extended to the case of laminated plates. This led to a new plate theory called Generalized-Reissner theory which involves the bending moment, its first and second gradients as static variables. In this second paper, the Bending-Gradient theory (Lebée and Sab in Int. J. Solids Struct. 48(20):2878–2888, 2011 and 2889–2901, 2011) is obtained from the Generalized-Reissner theory and several projections as a Reissner–Mindlin theory are introduced. A comparison with an exact solution for the cylindrical bending of laminated plates is presented. It is observed that the Generalized-Reissner theory converges faster than the Kirchhoff theory for thin plates in terms of deflection. The Bending-Gradient theory does not converge faster but improves considerably the error estimate.
Liste complète des métadonnées

https://hal-enpc.archives-ouvertes.fr/hal-01691087
Contributeur : Arthur Lebée <>
Soumis le : mardi 23 janvier 2018 - 16:07:59
Dernière modification le : vendredi 2 octobre 2020 - 15:40:03

Identifiants

Collections

Citation

Arthur Lebée, Karam Sab. On the Generalization of Reissner Plate Theory to Laminated Plates, Part II: Comparison with the Bending-Gradient Theory. Journal of Elasticity, Springer Verlag, 2017, 126 (1), pp.67 - 94. ⟨10.1007/s10659-016-9580-7⟩. ⟨hal-01691087⟩

Partager

Métriques

Consultations de la notice

180