Low-rank approximation of linear parabolic equations by space-time tensor Galerkin methods

Abstract : We devise a space-time tensor method for the low-rank approximation of linear parabolic evolution equations. The proposed method is a stable Galerkin method, uniformly in the discretization parameters, based on a Minimal Residual formulation of the evolution problem in Hilbert--Bochner spaces. The discrete solution is sought in a linear trial space composed of tensors of discrete functions in space and in time and is characterized as the unique minimizer of a discrete functional where the dual norm of the residual is evaluated in a space semi-discrete test space. The resulting global space-time linear system is solved iteratively by a greedy algorithm. Numerical results are presented to illustrate the performance of the proposed method on test cases including non-selfadjoint and time-dependent differential operators in space. The results are also compared to those obtained using a fully discrete Petrov--Galerkin setting to evaluate the dual residual norm.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01668316
Contributeur : Alexandre Ern <>
Soumis le : mercredi 10 octobre 2018 - 15:35:55
Dernière modification le : vendredi 12 octobre 2018 - 01:13:07

Fichier

paper_rev_hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01668316, version 2

Citation

Thomas Boiveau, Virginie Ehrlacher, Alexandre Ern, Anthony Nouy. Low-rank approximation of linear parabolic equations by space-time tensor Galerkin methods. 2018. 〈hal-01668316v2〉

Partager

Métriques

Consultations de la notice

42

Téléchargements de fichiers

7