M. P. Calvo and J. M. Sanz-serna, The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem, SIAM Journal on Scientific Computing, vol.14, issue.4, pp.936-952, 1993.
DOI : 10.1137/0914057

J. Chabassier and S. Imperiale, Introduction and study of fourth order theta schemes for linear wave equations, Journal of Computational and Applied Mathematics, vol.245, pp.194-212
DOI : 10.1016/j.cam.2012.12.023

URL : https://hal.archives-ouvertes.fr/hal-00738324

J. Diaz and M. J. Grote, Energy Conserving Explicit Local Time Stepping for Second-Order Wave Equations, SIAM Journal on Scientific Computing, vol.31, issue.3, pp.1985-2014, 2009.
DOI : 10.1137/070709414

URL : https://hal.archives-ouvertes.fr/inria-00193160

R. C. Fetecau, J. E. Marsden, M. Ortiz, and M. West, Nonsmooth Lagrangian Mechanics and Variational Collision Integrators, SIAM Journal on Applied Dynamical Systems, vol.2, issue.3, pp.381-416, 2003.
DOI : 10.1137/S1111111102406038

URL : http://epubs.siam.org/doi/pdf/10.1137/S1111111102406038

W. Fong, E. Darve, and A. Lew, Stability of asynchronous variational integrators, Journal of Computational Physics, vol.227, issue.18, pp.8367-8394, 2008.
DOI : 10.1016/j.jcp.2008.05.017

URL : http://www.stanford.edu/group/lavxm/publications/journal-papers/FoDaLe08.pdf

O. Gonzalez and J. C. Simo, On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry, Computer Methods in Applied Mechanics and Engineering, vol.134, issue.3-4, pp.3-4197, 1996.
DOI : 10.1016/0045-7825(96)01009-2

M. Groß, P. Betsch, and P. Steinmann, Conservation properties of a time FE method. Part IV: Higher order energy and momentum conserving schemes, International Journal for Numerical Methods in Engineering, vol.18, issue.13, pp.1849-1897, 2005.
DOI : 10.1007/978-3-642-58360-5_15

E. Hairer, Variable time step integration with symplectic methods, Applied Numerical Mathematics, vol.25, issue.2-3, pp.219-227, 1997.
DOI : 10.1016/S0168-9274(97)00061-5

URL : http://www.unige.ch/math/folks/hairer/preprints/varsymp.ps

E. Hairer, Energy-preserving variant of collocation methods, J. Numer. Anal. Industr . Appl. Math, vol.5, pp.73-84, 2010.

E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration: structurepreserving algorithms for ordinary differential equations, 2006.

E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I, Nonstiff Problems, 2000.

P. Hauret and P. L. Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.37-40, pp.4890-4916, 2006.
DOI : 10.1016/j.cma.2005.11.005

URL : https://hal.archives-ouvertes.fr/hal-00111458

T. J. Hughes, W. K. Liu, and P. Caughy, Finite-Element Methods for Nonlinear Elastodynamics Which Conserve Energy, Journal of Applied Mechanics, vol.45, issue.2, pp.366-370, 1978.
DOI : 10.1115/1.3424303

A. Iserles, H. Z. Munthe-kaas, S. P. Nørsett, and A. Zanna, Lie-group methods, Acta Numerica 2000, vol.9, issue.0, pp.215-365, 2000.
DOI : 10.1017/S0962492900002154

URL : https://hal.archives-ouvertes.fr/hal-01328729

C. Kane, J. E. Marsden, and M. Ortiz, Symplectic-energy-momentum preserving variational integrators, Journal of Mathematical Physics, vol.16, issue.7, pp.3353-3371, 1999.
DOI : 10.1016/0045-7825(95)00931-0

C. Kane, J. E. Marsden, M. Ortiz, and M. West, Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems, International Journal for Numerical Methods in Engineering, vol.76, issue.10, pp.1295-1325, 2000.
DOI : 10.1090/fic/010

C. Kane, E. A. Repetto, M. Ortiz, and J. E. Marsden, Finite element analysis of nonsmooth contact, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1-2, pp.1-26, 1999.
DOI : 10.1016/S0045-7825(99)00034-1

P. Krysl and L. Endres, Explicit Newmark/Verlet algorithm for time integration of the rotational dynamics of rigid bodies, International Journal for Numerical Methods in Engineering, vol.100, issue.15, pp.2154-2177, 2005.
DOI : 10.1103/PhysRev.159.98

S. Leyendecker, J. E. Marsden, and M. Ortiz, Variational integrators for constrained dynamical systems, ZAMM, vol.60, issue.10, pp.677-708, 2008.
DOI : 10.1137/0907049

URL : http://www.cds.caltech.edu/~marsden/bib/2008/12-LeMaOr2008/LeMaOr2008.pdf

C. Mariotti, A new Leapfrog scheme for rotational motion in 3D, International Journal for Numerical Methods in Engineering, vol.90, issue.3, 2016.
DOI : 10.1002/nme.3333

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica 2001, vol.10, pp.357-514, 2001.
DOI : 10.1017/S096249290100006X

URL : http://www.cds.caltech.edu/~marsden/bib/2001/09-MaWe2001/MaWe2001.pdf

G. R. Quispel and D. I. Mclaren, A new class of energy-preserving numerical integration methods, Journal of Physics A: Mathematical and Theoretical, vol.41, issue.4, p.45206, 2008.
DOI : 10.1088/1751-8113/41/4/045206

J. Salomon, A. A. Weiss, and B. Wohlmuth, Energy-Conserving Algorithms for a Corotational Formulation, SIAM Journal on Numerical Analysis, vol.46, issue.4, pp.1842-1866, 2008.
DOI : 10.1137/060669863

URL : https://hal.archives-ouvertes.fr/hal-00363422

J. Simo and J. Oliver, A new approach to the analysis and simulation of strain softening in solids, Fracture Damage Quasibrittle Struct, pp.25-39, 1994.

B. Wohlmuth, Variationally consistent discretization schemes and numerical algorithms for contact problems, Acta Numerica, vol.6, pp.569-734, 2011.
DOI : 10.1016/j.cma.2005.06.003

URL : https://hal.archives-ouvertes.fr/hal-01382364