Microbranching instability using a variational phase-field model

Abstract : Many aspects of the microbranching instability [1] are not fully understood such as the difference of crack patterns observed in PMMA on one hand and glass or brittle gels on the other hand [2]. In this work, we simulate the microbranching instability of fast propagating cracks using a variational phase-field approach and show that three-dimensional effects are fundamental for understanding the origin of this instability. In particular, following on a previous work regarding the branching mechanism in 2D phase-field simulations [3], we show that microbranching does not occur in 2D simulations or for very thin 3D samples and that different microbranching regimes are obtained when increasing the sample thickness, ranging from translationally invariant across the thickness and quasi-periodic patterns to localized microbranching events driven by complex 3D dynamics (cf. Figure). We further show that the transition between these different regimes is controlled by the value of the regularization length scale inherent to the phase-field modelling of brittle fracture.
Type de document :
Documents associés à une manifestation scientifique, support de présentation orale, résumé
CFRAC 2017 Fifth International Conference on Computational Modeling of Fracture and Failure of Materials and Structures, Nantes, France. 2017
Liste complète des métadonnées

Littérature citée [3 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01625627
Contributeur : Jérémy Bleyer <>
Soumis le : vendredi 27 octobre 2017 - 22:42:28
Dernière modification le : jeudi 11 janvier 2018 - 06:25:23
Document(s) archivé(s) le : dimanche 28 janvier 2018 - 16:02:22

Fichier

abstract_microbranching.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01625627, version 1

Collections

Citation

Jeremy Bleyer, Jean-François Molinari. Microbranching instability using a variational phase-field model. CFRAC 2017 Fifth International Conference on Computational Modeling of Fracture and Failure of Materials and Structures, Nantes, France. 2017. 〈hal-01625627〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

5