J. F. Vincent, Adaptive Structures?Some Biological Paradigms Adaptive Structures: Engineering Applications, pp.261-285, 2008.
DOI : 10.1002/9780470512067.ch10

C. Thill, Morphing skins. The Aeronautical Journal, pp.117-139, 1129.
DOI : 10.1017/s0001924000002062

D. Wagg, Adaptive structures: engineering applications, 2008.
DOI : 10.1002/9780470512067

J. Dumais and Y. Forterre, ???Vegetable Dynamicks???: The Role of Water in Plant Movements, Annual Review of Fluid Mechanics, vol.44, issue.1, pp.453-478, 2012.
DOI : 10.1146/annurev-fluid-120710-101200

Y. Forterre, Slow, fast and furious: understanding the physics of plant movements, Journal of Experimental Botany, vol.64, issue.15, p.230, 2013.
DOI : 10.1093/jxb/ert230

URL : https://hal.archives-ouvertes.fr/hal-01432052

R. Stahlberg, The phytomimetic potential of three types of hydration motors that drive nastic plant movements, Mechanics of Materials, vol.41, issue.10, pp.41-1162, 2009.
DOI : 10.1016/j.mechmat.2009.05.003

I. Burgert and P. Fratzl, Actuation systems in plants as prototypes for bioinspired devices, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.32, issue.4577, pp.367-1541, 1893.
DOI : 10.1007/BF00704840

I. Burgert and T. Keplinger, Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis, Journal of Experimental Botany, vol.64, issue.15, p.255, 2013.
DOI : 10.1093/jxb/ert255

URL : https://academic.oup.com/jxb/article-pdf/64/15/4635/18043879/ert255.pdf

I. Burgert and P. Fratzl, Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls, Integrative and Comparative Biology, vol.49, issue.1, pp.69-79, 2009.
DOI : 10.1093/icb/icp026

T. Speck and I. Burgert, Plant Stems: Functional Design and Mechanics, Annual Review of Materials Research, vol.41, issue.1, pp.169-193, 2011.
DOI : 10.1146/annurev-matsci-062910-100425

P. T. Martone, Mechanics without Muscle: Biomechanical Inspiration from the Plant World, Integrative and Comparative Biology, vol.50, issue.5, pp.888-907, 2010.
DOI : 10.1093/icb/icq122

URL : https://academic.oup.com/icb/article-pdf/50/5/888/1811522/icq122.pdf

K. J. Niklas, Plant biomechanics: an engineering approach to plant form and function, 1992.

S. Barbarino, A Review of Morphing Aircraft, Journal of Intelligent Material Systems and Structures, vol.23, issue.12, pp.823-877, 2011.
DOI : 10.1177/1045389X10393157

F. Fiorito, Shape morphing solar shadings: A review. Renewable and Sustainable Energy Reviews, pp.863-884, 2016.
DOI : 10.1016/j.rser.2015.10.086

P. Ouyang, Micro-motion devices technology: The state of arts review. The International Journal of Advanced Manufacturing Technology, pp.5-6, 2008.

X. Lachenal, S. Daynes, and P. M. Weaver, Review of morphing concepts and materials for wind turbine blade applications. Wind Energy, pp.283-307, 2013.

T. K. Barlas and G. Van-kuik, Review of state of the art in smart rotor control research for wind turbines, Progress in Aerospace Sciences, pp.1-27, 2010.
DOI : 10.1016/j.paerosci.2009.08.002

S. Daynes and P. M. Weaver, Review of shape-morphing automobile structures: concepts and outlook, Proceedings of the Institution of Mechanical Engineers, pp.227-1603, 2013.
DOI : 10.1177/1045389X11399943

F. Greco, V. Mattoli, G. Ciofani, and A. Menciassi, Introduction to Active Smart Materials for Biomedical Applications, Piezoelectric Nanomaterials for Biomedical Applications, pp.1-27, 2012.
DOI : 10.1007/978-3-642-28044-3_1

C. Dawson, J. F. Vincent, and A. Rocca, How pine cones open, Nature, vol.390, issue.6661, pp.668-668, 1997.
DOI : 10.1038/37745

A. Kanthal, Thermostatic Bimetal Handbook, 1996.

S. Patek, Linkage mechanics and power amplification of the mantis shrimp's strike, Journal of Experimental Biology, issue.20, pp.210-3677, 2007.

J. D. Currey, The mechanical adaptations of bones
DOI : 10.1515/9781400853724

R. D. Preston, The physical biology of plant cell walls, 1974.

T. I. Baskin, ANISOTROPIC EXPANSION OF THE PLANT CELL WALL, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.203-222, 2005.
DOI : 10.1146/annurev.cellbio.20.082503.103053

P. B. Green, Mechanism for Plant Cellular Morphogenesis, Science, vol.138, issue.3548, pp.1404-1405, 1962.
DOI : 10.1126/science.138.3548.1404

R. Van-der-sman, Hyperelastic models for hydration of cellular tissue. Soft matter, pp.7579-7591, 2015.

T. I. Baskin, Disorganization of Cortical Microtubules Stimulates Tangential Expansion and Reduces the Uniformity of Cellulose Microfibril Alignment among Cells in the Root of Arabidopsis, PLANT PHYSIOLOGY, vol.135, issue.4, pp.2279-2290, 2004.
DOI : 10.1104/pp.104.040493

J. Dumais, S. R. Long, and S. L. Shaw, The Mechanics of Surface Expansion Anisotropy in Medicago truncatula Root Hairs, PLANT PHYSIOLOGY, vol.136, issue.2, pp.3266-3275, 2004.
DOI : 10.1104/pp.104.043752

L. J. Gibson, The hierarchical structure and mechanics of plant materials, Journal of The Royal Society Interface, vol.60, issue.2, p.20120341, 2012.
DOI : 10.1016/j.actamat.2012.03.007

M. Warner, B. Thiel, and A. Donald, The elasticity and failure of fluid-filled cellular solids: Theory and experiment, Proceedings of the National Academy of Sciences, pp.1370-1375, 2000.
DOI : 10.1006/anbo.1998.0732

M. Probine and R. Preston, : II. MECHANICAL PROPERTIES OF THE WALLS, Journal of Experimental Botany, vol.13, issue.1, pp.111-127, 1962.
DOI : 10.1093/jxb/13.1.111

H. Spatz, L. Kohler, and K. Niklas, Mechanical behaviour of plant tissues: composite materials or structures?, Journal of Experimental Biology, vol.202, issue.23, pp.3269-3272, 1999.

J. H. Kroeger, R. Zerzour, and A. Geitmann, Regulator or Driving Force? The Role of Turgor Pressure in Oscillatory Plant Cell Growth, PLoS ONE, vol.147, issue.4, p.18549, 2011.
DOI : 10.1371/journal.pone.0018549.s001

L. Zhao, Elastic Properties of the Cell Wall of Aspergillus nidulans Studied with Atomic Force Microscopy, Biotechnology Progress, vol.23, issue.1, pp.292-299, 2005.
DOI : 10.1128/jb.173.1.197-203.1991

C. Wang, L. Wang, and C. Thomas, Modelling the Mechanical Properties of Single Suspension-Cultured Tomato Cells, Annals of Botany, vol.93, issue.4, pp.443-453, 2004.
DOI : 10.1093/aob/mch062

S. Lakkad and J. Patel, Mechanical properties of bamboo, a natural composite. Fibre Science and Technology, pp.319-322, 1981.

L. A. Mihai, K. Alayyash, and A. Goriely, Paws, pads and plants: the enhanced elasticity of cell-filled load-bearing structures, Proc. R. Soc. A. 2015
DOI : 10.1016/j.ijnonlinmec.2014.10.006

K. J. Niklas, Mechanical Behavior of Plant Tissues as Inferred from the Theory of Pressurized Cellular Solids, American Journal of Botany, vol.76, issue.6, pp.929-937, 1989.
DOI : 10.2307/2444549

P. S. Nobel, Physicochemical and environmental plant physiology, 1999.

J. Philip, Propagation of Turgor and Other Properties Through Cell Aggregations., PLANT PHYSIOLOGY, vol.33, issue.4, p.271, 1958.
DOI : 10.1104/pp.33.4.271

G. W. Koch, The limits to tree height, Nature, vol.428, issue.6985, pp.428-851, 2004.
DOI : 10.1038/nature02417

J. Knippers and T. Speck, Design and construction principles in nature and architecture, Bioinspiration & Biomimetics, vol.7, issue.1, p.15002, 2012.
DOI : 10.1088/1748-3182/7/1/015002

M. Elices, Structural biological materials: design and structure-property relationships, 2000.

J. W. Dunlop and P. Fratzl, Biological Composites, Annual Review of Materials Research, vol.40, issue.1, pp.1-24, 2010.
DOI : 10.1146/annurev-matsci-070909-104421

J. Aizenberg, Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale, Science, vol.309, issue.5732, pp.275-278, 2005.
DOI : 10.1126/science.1112255

J. Keckes, Cell-wall recovery after irreversible deformation of wood, Nature Materials, vol.2, issue.12, pp.810-813, 2003.
DOI : 10.1038/nmat1019

G. E. Fantner, Sacrificial Bonds and Hidden Length: Unraveling Molecular Mesostructures in Tough Materials, Biophysical Journal, vol.90, issue.4, pp.1411-1418, 2006.
DOI : 10.1529/biophysj.105.069344

URL : https://doi.org/10.1529/biophysj.105.069344

L. E. Malvern, Introduction to the Mechanics of a Continuous Medium, 1969.

Y. Nishizaki, Effects of anoxia and red light on changes induced by blue light in the membrane potential of pulvinar motor cells and leaf movement in Phaseolus vulgaris L. Plant and cell physiology, pp.31-591, 1990.

T. Rodrigues and S. Machado, The Pulvinus Endodermal Cells and their Relation to Leaf Movement in Legumes of the Brazilian Cerrado, Plant Biology, vol.27, issue.4, pp.469-477, 2007.
DOI : 10.1083/jcb.4.4.475

M. L. Stanton and C. Galen, Blue light controls solar tracking by flowers of an alpine plant, Plant, Cell and Environment, vol.25, issue.8, pp.16-983, 1993.
DOI : 10.1007/BF00378737

J. M. Christie and A. S. Murphy, Shoot phototropism in higher plants: New light through old concepts, American Journal of Botany, vol.100, issue.1, pp.35-46, 2013.
DOI : 10.3732/ajb.1200340

URL : http://www.amjbot.org/content/100/1/35.full.pdf

A. Schwartz and D. Koller, Diurnal Phototropism in Solar Tracking Leaves of Lavatera cretica, PLANT PHYSIOLOGY, vol.80, issue.3, pp.778-781, 1986.
DOI : 10.1104/pp.80.3.778

E. Werker and D. Koller, Structural Specialization of the Site of Response to Vectorial Photo-Excitation in the Solar-Tracking Leaf of Lavatera cretica, American Journal of Botany, vol.74, issue.9, pp.1339-1349, 1987.
DOI : 10.2307/2444312

A. Schwartz and D. Koller, Phototropic response to vectorial light in leaves of Lavatera cretica L. Plant physiology, pp.61-924, 1978.

M. Dicker, Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants, Bioinspiration & Biomimetics, vol.9, issue.3, p.36015
DOI : 10.1088/1748-3182/9/3/036015

P. Fleurat-lessard and R. L. Satter, Relationships between structure and motility ofAlbizzia motor organs: Changes in ultrastructure of cortical cells during dark-induced closure, Protoplasma, vol.120, issue.1, pp.72-79, 1985.
DOI : 10.1007/BF01273238

W. Mayer, Mechanics of circadian pulvini movements in Phaseolus coccineus L., Planta, vol.12, issue.3, pp.381-390, 1985.
DOI : 10.1007/BF00395147

B. S. Hill and G. P. Findlay, The power of movement in plants: the role of osmotic machines. Quarterly reviews of biophysics, pp.14-173, 1981.

A. G. Volkov, Mimosa pudica: Electrical and mechanical stimulation of plant movements. Plant, cell & environment, pp.163-173, 2010.

J. M. Skotheim and L. Mahadevan, Physical Limits and Design Principles for Plant and Fungal Movements, Science, vol.308, issue.5726, pp.1308-1310, 2005.
DOI : 10.1126/science.1107976

K. Song, E. Yeom, and S. J. Lee, Real-time imaging of pulvinus bending in Mimosa pudica Scientific reports, 2014.

N. Moran, Rhythmic leaf movements: physiological and molecular aspects, in Rhythms in Plants, pp.57-95, 2015.
DOI : 10.1007/978-3-540-68071-0_1

G. Roblin, MIMOSA PUDICA: A MODEL FOR THE STUDY OF THE EXCITABILITY IN PLANTS, Biological Reviews, vol.53, issue.2, pp.135-153, 1979.
DOI : 10.1111/j.1469-8137.1952.tb05196.x

J. Fromm and W. Eschrich, Transport processes in stimulated and non-stimulated leaves of Mimosa pudica, Trees, vol.2, issue.1, pp.7-17, 1988.

M. Moshelion, Plasma Membrane Aquaporins in the Motor Cells of Samanea saman Diurnal and Circadian Regulation. The Plant Cell, pp.727-739, 2002.

H. Piéron, Du rôle de la mémoire dans les rythmes biologiques. Revue Philosophique de la France et de l'Étranger, pp.17-48, 1909.

M. I. Miah and A. Johnsson, Effects of light stimulion Desmodium Gyrans lateral leaflet movement Rhythms, 2004.

A. Dai, Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity, Journal of Geophysical Research: Atmospheres, vol.81, issue.D10, p.107, 2002.
DOI : 10.1175/1520-0477(2000)081<0677:SARNGN>2.3.CO;2

E. Couturier, Folding of an opened spherical shell, Soft Matter, vol.23, issue.no. 2, pp.8359-8367
DOI : 10.1007/BF00181275

E. Katifori, Foldable structures and the natural design of pollen grains, Proceedings of the National Academy of Sciences, pp.7635-7639, 2010.
DOI : 10.1093/jxb/erg242

E. Couturier, Folded isometric deformations and banana-shaped seedpod, Proc. R. Soc. A. 2016
DOI : 10.1260/0266-3511.30.3-4.287

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5014095/pdf

B. Bar-on, Structural origins of morphing in plant tissues, Applied Physics Letters, vol.105, issue.3, p.33703, 2014.
DOI : 10.1016/j.probengmech.2009.12.001

J. Heslop-harrison, An Interpretation of the Hydrodynamics of Pollen, American Journal of Botany, vol.66, issue.6, pp.737-743, 1979.
DOI : 10.2307/2442418

J. Heslop-harrison, Pollen Walls as Adaptive Systems, Annals of the Missouri Botanical Garden, vol.66, issue.4, pp.813-829, 1979.
DOI : 10.2307/2398920

O. A. Volkova, E. E. Severova, and S. V. Polevova, Structural basis of harmomegathy: evidence from Boraginaceae pollen. Plant systematics and evolution, pp.1769-1779, 2013.

H. Halbritter and M. Hesse, Principal modes of infoldings in tricolp(or)ate Angiosperm pollen, Grana, vol.1, issue.1, pp.1-14, 2004.
DOI : 10.1080/00173130150503759

L. D. Landau and E. Lifshitz, Course of Theoretical Physics, Theory of Elasticity, vol.7, issue.3, p.109, 1986.

S. Armon, Geometry and Mechanics in the Opening of Chiral Seed Pods, Science, vol.94, issue.13, pp.1726-1730, 2011.
DOI : 10.1103/PhysRevLett.94.138101

I. Shtein, R. Elbaum, and B. Bar-on, The Hygroscopic Opening of Sesame Fruits Is Induced by a Functionally Graded Pericarp Architecture, Frontiers in Plant Science, vol.9, issue.1712, pp.2016-2023
DOI : 10.1038/nmeth.2089

Y. Forterre and J. Dumais, Generating helices in nature. science, pp.1715-1716, 2011.
DOI : 10.1126/science.1210734

URL : https://hal.archives-ouvertes.fr/hal-01432082

R. Elbaum, The Role of Wheat Awns in the Seed Dispersal Unit, Science, vol.316, issue.5826, pp.316-884, 2007.
DOI : 10.1126/science.1140097

L. Duigou, A. , and M. Castro, Evaluation of force generation mechanisms in natural, passive hydraulic actuators Scientific reports, pp.2016-2022

N. E. Stamp, Self-Burial Behaviour of Erodium Cicutarium Seeds, The Journal of Ecology, vol.72, issue.2, pp.611-620, 1984.
DOI : 10.2307/2260070

N. E. Stamp, Efficacy of Explosive vs. Hygroscopic Seed Dispersal by an Annual Grassland Species, American Journal of Botany, vol.76, issue.4, pp.555-561, 1989.
DOI : 10.2307/2444350

E. Reyssat and L. Mahadevan, Hygromorphs: from pine cones to biomimetic bilayers, Journal of The Royal Society Interface, vol.17, issue.7024, p.20090184, 2009.
DOI : 10.1617/13791

URL : http://rsif.royalsocietypublishing.org/content/royinterface/6/39/951.full.pdf

S. Vogel, Glimpses of creatures in their physical worlds, 2009.
DOI : 10.1515/9781400833863

R. D. Deegan, Finessing the fracture energy barrier in ballistic seed dispersal, Proceedings of the National Academy of Sciences, pp.5166-5169, 2012.
DOI : 10.2307/2845737

M. Hayashi, K. L. Feilich, and D. J. Ellerby, The mechanics of explosive seed dispersal in orange jewelweed (Impatiens capensis), Journal of Experimental Botany, vol.60, issue.7, p.70, 2009.
DOI : 10.1093/jxb/erp070

P. E. Hulme and E. T. Bremner, Assessing the impact of Impatiens glandulifera on riparian habitats: partitioning diversity components following species removal, Journal of Applied Ecology, vol.16, issue.Supplement 1, pp.43-50, 2006.
DOI : 10.1098/rstb.1994.0091

J. Perrins, A. Fitter, and M. Williamson, Population Biology and Rates of Invasion of Three Introduced Impatiens Species in the British Isles, Journal of Biogeography, vol.20, issue.1, pp.33-44, 1993.
DOI : 10.2307/2845737

D. J. Beerling and J. M. Perrins, Impatiens Glandulifera Royle (Impatiens Roylei Walp.), The Journal of Ecology, vol.81, issue.2, pp.367-382, 1993.
DOI : 10.2307/2261507

H. Meyer, Applications of Physics to Archery. arXiv preprint

K. Lunau, A new interpretation of flower guide colouration: Absorption of ultraviolet light enhances colour saturation, Plant Systematics and Evolution, vol.88, issue.1-2, pp.51-65, 1992.
DOI : 10.1007/BF00937735

R. D. Phillips, Caught in the act: pollination of sexually deceptive trap-flowers by fungus gnats in Pterostylis (Orchidaceae), Annals of Botany, vol.113, issue.4, pp.629-641, 2014.
DOI : 10.1093/aob/mct295

J. D. Thomson and R. Plowright, Pollen carryover, nectar rewards, and pollinator behavior with special reference to Diervilla lonicera, Oecologia, vol.197, issue.1, pp.68-74, 1980.
DOI : 10.1007/BF00346968

L. B. Thien and B. G. Marcks, (Orchidaceae), Canadian Journal of Botany, vol.50, issue.11, pp.50-2319, 1972.
DOI : 10.1139/b72-300

M. Reith, New insights into the functional morphology of the lever mechanism of Salvia pratensis (Lamiaceae) Annals of Botany, pp.393-400, 2007.

E. Kronestedt and B. Walles, Anatomy of the Strelitzia reginae flower (Strelitziaceae), Nordic Journal of Botany, vol.73, issue.3, pp.307-320, 1986.
DOI : 10.2307/2442204

B. Meeuse and S. Morris, Sex life of flowers, 1984.

J. Lienhard, Flectofin: a hingeless flapping mechanism inspired by nature, Bioinspiration & Biomimetics, vol.6, issue.4, p.45001, 2011.
DOI : 10.1088/1748-3182/6/4/045001

S. Schleicher, Bio-inspired compliant mechanisms for architectural design: transferring bending and folding principles of plant leaves to flexible kinetic structures, 2015.

J. Lienhard, Abstraction of plant movements for deployable structures in architecture, Proceedings of the 6th Plant Biomechanics Conference, 2009.

U. Bauer, With a Flick of the Lid: A Novel Trapping Mechanism in Nepenthes gracilis Pitcher Plants, PLoS ONE, vol.16, issue.6, p.38951, 2012.
DOI : 10.1371/journal.pone.0038951.s003

U. Bauer, Mechanism for rapid passive-dynamic prey capture in a pitcher plant, Proceedings of the National Academy of Sciences, pp.13384-13389, 2015.
DOI : 10.1146/annurev.en.40.010195.001131

L. Adamec, Photosynthetic characteristics of the aquatic carnivorous plant Aldrovanda vesiculosa, Aquatic Botany, vol.59, issue.3-4, pp.297-306, 1997.
DOI : 10.1016/S0304-3770(97)00054-5

L. Adamec, Rootless aquatic plant Aldrovanda vesiculosa: physiological polarity, mineral nutrition, and importance of carnivory, Biologia Plantarum, vol.43, issue.1, pp.113-119, 2000.
DOI : 10.1023/A:1026567300241

T. Iijima and T. Sibaoka, Action potential in the trap-lobes of Aldrovanda vesiculosa. Plant and cell physiology, pp.1595-1601, 1981.

T. Sibaoka, Physiology of Rapid Movements in Higher Plants, Annual Review of Plant Physiology, vol.20, issue.1, pp.165-184, 1969.
DOI : 10.1146/annurev.pp.20.060169.001121

J. D. Ackerman, Mechanisms and evolution of food-deceptive pollination systems in orchids, Lindleyana, vol.1, issue.2, pp.108-113, 1986.

A. Dafni, Mimicry and Deception in Pollination, Annual Review of Ecology and Systematics, vol.15, issue.1, pp.259-278, 1984.
DOI : 10.1146/annurev.es.15.110184.001355

C. Darwin, The various contrivances by which orchids are fertilised by insects, 1888.
DOI : 10.5962/bhl.title.60877

C. A. Lehnebach, A. W. Robertson, and D. Hedderley, Pollination studies of four New Zealand terrestrial orchids and the implication for their conservation, New Zealand Journal of Botany, vol.57, issue.2, pp.467-477, 2005.
DOI : 10.1016/0169-5347(93)90007-C

G. Findlay and N. Findlay, Anatomy and movement of the column in Stylidium, Functional Plant Biology, vol.2, issue.4, pp.597-621, 1975.

V. K. Sharma, T. K. Bardal, and A. Johnsson, Light-Dependent Changes in the Leaflet Movement Rhythm of the Plant Desmodium gyrans, Zeitschrift f??r Naturforschung C, vol.58, issue.1-2, pp.81-86, 2003.
DOI : 10.1515/znc-2003-1-215

G. Findlay, Generation of torque by the column of Stylidium, Functional Plant Biology, issue.93, pp.271-286, 1982.

P. Sydenham and G. Findlay, The Rapid Movement of the Bladder of Utricularia Sp, Australian Journal of Biological Sciences, vol.26, issue.5, pp.1115-1126, 1973.
DOI : 10.1071/BI9731115

O. Vincent, Ultra-fast underwater suction traps, Proceedings of the Royal Society B: Biological Sciences, vol.90, issue.1, pp.278-2909, 1720.
DOI : 10.1016/j.aquabot.2008.07.007

URL : https://hal.archives-ouvertes.fr/hal-00567016

Y. Forterre, How the Venus flytrap snaps, Nature, vol.185, issue.7024, pp.433-421, 2005.
DOI : 10.1046/j.1365-313X.2001.01350.x

URL : https://hal.archives-ouvertes.fr/hal-01432204

R. Yang, A mathematical model on the closing and opening mechanism for venus flytrap, Plant Signaling & Behavior, vol.3, issue.8, pp.968-978, 2010.
DOI : 10.4161/psb.3.10.6041

V. S. Markin, A. G. Volkov, and E. Jovanov, Active movements in plants, Plant Signaling & Behavior, vol.104, issue.10, pp.778-783, 2008.
DOI : 10.1016/S0022-0728(99)00497-0

A. G. Volkov, Kinetics and Mechanism of Dionaea muscipula Trap Closing, PLANT PHYSIOLOGY, vol.146, issue.2, pp.694-702, 2008.
DOI : 10.1104/pp.107.108241

A. G. Volkov, Venus flytrap biomechanics: Forces in the Dionaea muscipula trap, Journal of Plant Physiology, vol.170, issue.1, pp.25-32, 2013.
DOI : 10.1016/j.jplph.2012.08.009

J. Böhm, The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake, Current Biology, vol.26, issue.3, 2016.
DOI : 10.1016/j.cub.2015.11.057

S. P. Timoshenko and J. M. Gere, Theory of elastic stability, 2009.

D. Hodick and A. Sievers, On the mechanism of trap closure of Venus flytrap (Dionaea muscipula Ellis), Planta, vol.14, issue.1, pp.32-42, 1989.
DOI : 10.1007/BF00395768

J. L. Pons, Emerging actuator technologies: a micromechatronic approach, 2005.
DOI : 10.1002/0470091991

URL : http://doi.org/10.1002/0470091991

J. Jiang and E. Mockensturm, A Motion Amplifier Using an Axially Driven Buckling Beam: I. Design and Experiments, Nonlinear Dynamics, vol.8, issue.4, pp.391-409, 2006.
DOI : 10.1007/s11071-006-0762-x

W. J. Jack, Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Materials and Structures, vol.10, issue.6, p.1115, 2001.

D. Zhang, Advanced Mechatronics and MEMS Devices
DOI : 10.1007/978-1-4419-9985-6

M. F. Ashby, Materials selection in mechanical design, Le Journal de Physique IV, vol.03, issue.C7, 2004.
DOI : 10.1051/jp4:1993701

URL : https://hal.archives-ouvertes.fr/jpa-00251707

E. Chambers, Cyclopaedia: Or an Universal Dictionary of Arts and Sciences (etc.) -London, D. Midwinter 1741-1743

E. F. Prechtl and S. R. Hall, Design of a high efficiency, large stroke, electromechanical actuator, Smart Materials and Structures, p.13, 1999.
DOI : 10.1088/0964-1726/8/1/002

M. Takatsuka and H. Ohmori, Dynamic Structural Analysis of Deployment of Scissors Structure in Space, International Journal of Space Structures, vol.33, issue.4, pp.1-13, 2013.
DOI : 10.1016/j.engstruct.2011.01.014

K. Korkmaz, Generation of a New Type of Architectural Umbrella, International Journal of Space Structures, vol.20, issue.1, pp.35-41, 2005.
DOI : 10.1260/0266351054214371

C. D. Lott, Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator. Sensors and Actuators A: Physical, pp.239-250, 2002.

H. Masching and K. Bletzinger, Parameter free structural optimization applied to the shape optimization of smart structures. Finite Elements in Analysis and Design, pp.33-45, 2016.

J. Ueda, T. W. Secord, and H. H. Asada, Large Effective-Strain Piezoelectric Actuators Using Nested Cellular Architecture With Exponential Strain Amplification Mechanisms, IEEE/ASME Transactions on Mechatronics, vol.15, issue.5, pp.770-782, 2010.
DOI : 10.1109/TMECH.2009.2034973

T. Sinn, D. Hilbich, and M. Vasile, Inflatable shape changing colonies assembling versatile smart space structures, Acta Astronautica, vol.104, issue.1, pp.45-60, 2014.
DOI : 10.1016/j.actaastro.2014.07.015

V. Charpentier, S. Adriaenssens, and O. Baverel, Large Displacements and the Stiffness of a Flexible Shell, International Journal of Space Structures, vol.29, issue.5, pp.3-4, 2015.
DOI : 10.1007/s00158-004-0468-y

S. Flores, E. I. , M. I. Friswell, and Y. Xia, Variable stiffness biological and bio-inspired materials, Journal of Intelligent Material Systems and Structures, vol.278, issue.1705, pp.529-540, 2013.
DOI : 10.1007/978-1-4020-6250-6

J. Juuti, Mechanically amplified large displacement piezoelectric actuators. Sensors and Actuators A: Physical, pp.225-231, 2005.
DOI : 10.1016/j.sna.2004.11.016

N. Lobontiu and E. Garcia, Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms, Computers & Structures, vol.81, issue.32, pp.81-2797, 2003.
DOI : 10.1016/j.compstruc.2003.07.003

Y. Feng, Fabrication of an electro-thermal micro-gripper with elliptical cross-sections using silver-nickel composite ink. Sensors and Actuators A: Physical, pp.106-112, 2016.

D. H. Kim, Y. C. Park, and S. Park, Design and fabrication of twisting-type thermal actuation mechanism for micromirrors. Sensors and Actuators A: Physical, pp.79-87, 2010.

. Sunfolding, Available from: http://www.sunfolding.com/products, pp.2017-2018, 2014.

T. Ninomiya, MEMS-based hydraulic displacement amplification mechanism with completely encapsulated liquid. Sensors and Actuators A: Physical, pp.277-282, 2011.
DOI : 10.1016/j.sna.2009.07.002

C. J. Gantes, Deployable structures: analysis and design, 2001.

C. J. Gantes and E. Konitopoulou, Geometric design of arbitrarily curved bi-stable deployable arches with discrete joint size, International Journal of Solids and Structures, vol.41, issue.20, pp.41-5517, 2004.
DOI : 10.1016/j.ijsolstr.2004.04.030

S. Turcaud, An excursion into the design space of biomimetic architectured biphasic actuators, International Journal of Materials Research, vol.102, issue.6, pp.607-612, 2011.
DOI : 10.3139/146.110517

URL : https://hal.archives-ouvertes.fr/hal-00693776

K. Jeong, Three-dimensional actuators transformed from the programmed two-dimensional structures via bending, twisting and folding mechanisms, Journal of Materials Chemistry, vol.121, issue.12, pp.6824-6830, 2011.
DOI : 10.1021/ja9903476

S. Pal and H. Xie, Analysis and simulation of curved bimorph microactuators, Microtech Conference and Expo (Nanotech 2010, 2010.

M. L. Dano and M. W. Hyer, SMA-induced snap-through of unsymmetric fiber-reinforced composite laminates, International Journal of Solids and Structures, vol.40, issue.22, pp.40-5949, 2003.
DOI : 10.1016/S0020-7683(03)00374-3

E. Kebadze, S. D. Guest, and S. Pellegrino, Bistable prestressed shell structures, International Journal of Solids and Structures, vol.41, issue.11-12, pp.11-12, 2004.
DOI : 10.1016/j.ijsolstr.2004.01.028

C. Kang, J. Lee, and J. Han, Development of bi-stable and millimeter-scale displacement actuator using snap-through effect for reciprocating control fins, Aerospace Science and Technology, vol.32, issue.1, pp.131-141, 2014.
DOI : 10.1016/j.ast.2013.11.007

A. B. Suma, F. Van-herwijnen, and J. C. , 3D Adaptable Building Skin: Adaptive Space as a Guide through a Corridor, International Journal of Space Structures, vol.22, issue.3, pp.169-177, 2007.
DOI : 10.1007/978-1-4615-9074-3

S. Reichert, A. Menges, and D. Correa, Meteorosensitive architecture: Biomimetic building skins based on materially embedded and hygroscopically enabled responsiveness, Computer-Aided Design, vol.60, pp.50-69, 2015.
DOI : 10.1016/j.cad.2014.02.010

A. Lebée and A. Lebée, From Folds to Structures, a Review, International Journal of Space Structures, vol.8, issue.3, pp.55-74, 2015.
DOI : 10.4028/www.scientific.net/AMM.548-549.1627

S. Schleicher, A methodology for transferring principles of plant movements to elastic systems in architecture, Computer-Aided Design, vol.60, pp.105-117, 2015.
DOI : 10.1016/j.cad.2014.01.005

N. P. Bende, Geometrically controlled snapping transitions in shells with curved creases, Proceedings of the National Academy of Sciences, pp.11175-11180, 2015.
DOI : 10.1126/science.1107976

URL : http://www.pnas.org/content/112/36/11175.full.pdf

S. Li and K. Wang, Fluidic origami with embedded pressure dependent multi-stability: a plant inspired innovation, Journal of The Royal Society Interface, vol.24, issue.111, pp.12-20150639, 2015.
DOI : 10.1103/PhysRevLett.114.055503

URL : http://rsif.royalsocietypublishing.org/content/royinterface/12/111/20150639.full.pdf

R. Peakall, Responses of Male Zaspilothynnus trilobatus Turner Wasps to Females and the Sexually Deceptive Orchid it Pollinates, Functional Ecology, vol.4, issue.2, pp.159-167, 1990.
DOI : 10.2307/2389335

J. Alcock, sp. (Hymenoptera: Thynninae), Journal of Natural History, vol.11, issue.4, pp.629-636, 2000.
DOI : 10.1071/BT9830383

J. Drummond, Remarks on the roots of some of the terrestrial Orchideae of Australia found in the neighbourhood of the Swan River. Gardener's Magazine, 1838, pp.425-429

S. D. Hopper and A. P. Brown, Australia's wasp-pollinated flying duck orchids revised (Paracaleana: Orchidaceae) Australian Systematic Botany, pp.211-244, 2006.
DOI : 10.1071/sb05020

K. L. Davies and M. Stpiczy?ska, Labellar anatomy and secretion in Bulbophyllum Thouars (Orchidaceae: Bulbophyllinae) sect. Racemosae Benth. & Hook. f., Annals of Botany, vol.114, issue.5, p.153, 2014.
DOI : 10.1093/aob/mcu153

URL : https://academic.oup.com/aob/article-pdf/114/5/889/17068832/mcu153.pdf

D. Jones, A Complete Guide to Native Orchids of Australia, Including the Island Territories, 2006.