The Image Curvature Microscope: Accurate Curvature Computation at Subpixel Resolution

Abstract : We detail in this paper the numerical implementation of the so-called image curvature microscope , an algorithm that computes accurate image curvatures at subpixel resolution, and yields a curvature map conforming with our visual perception. In contrast to standard methods, which would compute the curvature by a finite difference scheme, the curvatures are evaluated directly on the level lines of the bilinearly interpolated image, after their independent smoothing, a step necessary to remove pixelization artifacts. The smoothing step consists in the affine erosion of the level lines through a geometric scheme, and can be applied in parallel to all level lines. The online algorithm allows the user to visualize the image of curvatures at different resolutions, as well as the set of level lines before and after smoothing. Source Code The ANSI C++ implementation reviewed by IPOL is given in the file curv.cpp. The complete source code, code documentation, and online demo are accessible at the IPOL web page of this article 1. The level lines extraction (files levelLine.cpp, lltree.cpp) and level lines smoothing (file gass.cpp) are independent algorithms, out of the scope of this article, and details for their implementation are planned for separate IPOL publications.
Type de document :
Article dans une revue
Image Processing On Line, IPOL - Image Processing on Line, 2017, 7, pp.197-217. 〈10.5201/ipol.2017.212〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01556888
Contributeur : Pascal Monasse <>
Soumis le : vendredi 28 juillet 2017 - 15:43:08
Dernière modification le : vendredi 31 août 2018 - 09:06:03

Fichier

article.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Adina Ciomaga, Pascal Monasse, Jean-Michel Morel. The Image Curvature Microscope: Accurate Curvature Computation at Subpixel Resolution. Image Processing On Line, IPOL - Image Processing on Line, 2017, 7, pp.197-217. 〈10.5201/ipol.2017.212〉. 〈hal-01556888v2〉

Partager

Métriques

Consultations de la notice

277

Téléchargements de fichiers

120