Characterization of bijective digitized rotations on the hexagonal grid

Abstract : Digitized rotations on discrete spaces are usually defined as the composition of a Euclidean rotation and a rounding operator; they are in general not bijective. Nevertheless, it is well known that digitized rotations defined on the square grid are bijective for some specific angles. This infinite family of angles has been characterized by Nouvel and Rémila and more recently by Roussillon and Cœurjolly. In this article, we characterize bijective digitized rotations on the hexagonal grid using arithmetical properties of the Eisenstein integers.
Type de document :
Article dans une revue
Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, 〈10.1007/s10851-018-0785-1〉
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01540772
Contributeur : Kacper Pluta <>
Soumis le : jeudi 30 novembre 2017 - 15:04:54
Dernière modification le : jeudi 1 novembre 2018 - 01:18:59

Fichier

article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Kacper Pluta, Tristan Roussillon, David Cœurjolly, Pascal Romon, Yukiko Kenmochi, et al.. Characterization of bijective digitized rotations on the hexagonal grid. Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, 〈10.1007/s10851-018-0785-1〉. 〈hal-01540772v2〉

Partager

Métriques

Consultations de la notice

305

Téléchargements de fichiers

141