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For linear composite conductors, it is known that the celebrated Hashin–Shtrikman bounds 
can be recovered by the translation method. We investigate whether the same conclusion 
extends to nonlinear composites in two dimensions. To that purpose, we consider two-
phase composites with perfectly conducting inclusions. In that case, explicit expressions of 
the various bounds considered can be obtained. The bounds provided by the translation 
method are compared with the nonlinear Hashin–Shtrikman-type bounds delivered by the 
Talbot–Willis (1985) [2] and the Ponte Castañeda (1991) [3] procedures.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In a seminal work [1], Hashin and Shtrikman have obtained optimal bounds on the effective conductivity of linear com-
posite conductors with statistically isotropic microstructures. Those bounds are explicit functions of the volume fractions 
and conductivities of each constitutive phase. Several methods have been proposed to extend the results of Hashin and 
Shtrikman to nonlinear composites. A first method, proposed by Talbot and Willis [2], makes uses of a homogeneous linear 
comparison medium and generalizes the variational approach introduced by Hashin and Shtrikman. A second method, due 
to Ponte Castañeda [3], employs a heterogeneous linear comparison medium, i.e. a linear comparison composite. Using that 
last method, any bound on the effective conductivity of the linear comparison composite can be used to generate a cor-
responding bound for the nonlinear composite. In particular, when the linear Hashin–Shtrikman bound is used, nonlinear 
Hashin–Shtrikman-type bounds are obtained. A third method, known has the translation method [4], has been introduced 
independently by Lurie and Cherkaev [5], Murat and Tartar [6]. Originally introduced in the linear context, that method has 
proved to be very fruitful in a lot of nonlinear homogenization problems [7–12]. For nonlinear isotropic conductors, the 
translation method has been used to obtain explicit bounds for composites governed by threshold-type energy functions 
[13,14].

The three methods mentioned above can generate nonlinear bounds of the Hashin–Shtrikman type, i.e. bounds that hold 
for the whole class of isotropic composites with prescribed volume fractions and conduction properties of the individual 
phases. As those methods are not mathematically equivalent, it is important to understand the relations between them. 
The relation between the Talbot–Willis and the Ponte Castañeda methods has been investigated in [15]: for two-phase 
composites with perfectly conducting inclusions, the two methods have been proved to give the same results if the energy 
function of the matrix satisfies a certain strong convexity condition. If that condition is violated, the Talbot–Willis method 
leads to stronger bounds than the Ponte Castañeda method. The relations with the translation method have been studied 
in [13]: Bounds obtained from the translation method have been proved to be always at least as good as those provided by 
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the Ponte Castañeda method. For two-dimensional composites governed by threshold-type energy functions, the translation 
method actually gives the same bounds as the Ponte Castañeda method. Numerical results suggest that the same conclusion 
extends to power-law composites, although a rigorous proof is still lacking.

The objective of this paper is to fill some of the gaps in the relations between the translation method and the methods 
of Ponte Castañeda, Talbot and Willis by investigating conditions under which the translation method may bring a genuine 
improvement. To that purpose, we consider two-phase composites with perfectly conducting inclusions, in two dimensions. 
The formulation of the translation method in that context is presented in Sect. 2. If the energy function of the matrix 
satisfies the strong convexity assumption introduced in [15], we prove in Sect. 3 that the translation method gives the same 
bounds as the Talbot–Willis and Ponte Castañeda methods. This confirms the numerical observations made in [13] for the 
special case of power-law composites. For the translation method to bring a genuine improvement, it is therefore necessary 
that the energy in the matrix is not strongly convex. Building on that observation, in Sect. 4 we provide an example for 
which bounds obtained from the translation method are indeed stronger than the Talbot–Willis and Ponte Castañeda bounds.

2. Bounding the effective energy via the translation method

Consider a two-dimensional inhomogeneous electric conductor occupying a domain � of unit volume. The electric field 
e and the current density j are related by the local constitutive law

j = ∂ w

∂e
(e, x) (1)

where the convex energy-density function w depends on the location x. Denoting by ē (resp. j̄ ) the spatial average of e
(resp. j), the effective constitutive law reads as [16,17]

j̄ = dweff

dē
(ē) (2)

where weff is the effective energy function of the composite material, defined by

weff(ē) = inf
e∈K (ē)

∫
�

w(e, x)dω (3)

In (3), K (ē) is the set of admissible electric fields, as defined by

K (ē) = {e : � �→R
2|e = ∇V for some V : � �→R verifying V (x) = ē·x on ∂�}

Following [5,6], a lower bound on weff can be obtained by embedding the original problem in a problem of dimension 4. 
In more detail, we introduce extended fields E(x) = (e1(x), e2(x)) obtained by considering 2 electric fields e1(x) and e2(x), 
written side by side. Introducing the extended energy

W (E, x) = w(e1, x) + w(e2, x)

as well as the extended effective energy

Weff(Ē) = weff(ē1) + weff(ē2) (4)

it can be readily seen from (3) that

Weff(Ē) = inf
E∈K(Ē)

∫
�

W (E, x)dω (5)

where Ē = (ē1, ̄e2) and K(Ē) = {(e1, e2) : ei ∈ K (ēi)}. We now proceed to bound Weff from below. To that purpose, it is 
convenient to represent extended fields E = (e1, e2) by 2 × 2 matrices, i.e.

E =
(

u1 u2
v1 v2

)

where ui and vi are the components of the electric field ei in a reference basis of R2. For any scalar α and any T in R2×2, 
consider the Legendre transform

(W − α det)∗(T , x) = sup
E

E : T − W (E, x) + α det E (6)

where E : T = tr E T and det is the determinant in R2, i.e. det E = u1 v2 − u2 v1. For any E ∈K(Ē), it follows from (6) that

W (E, x) ≥ E(x) : T + α det E(x) − (W − α det)∗(T , x) (7)
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Any E ∈K(Ē) satisfies the well-known identities 
∫
�

E(x) dω = Ē and 
∫
�

det E(x) dω = det Ē . Hence, integrating (7) over the 
domain � yields∫

�

W (E, x)dω ≥ Ē : T + α det Ē −
∫
�

(W − α det)∗(T , x)dω (8)

for any E ∈K(Ē). Taking the infimum over fields E in K(Ē) gives

Weff(Ē) ≥ Ē : T + α det Ē −
∫
�

(W − α det)∗(T , x)dω (9)

The right-hand side of (9) is thus a lower bound on the extended energy Weff. A lower bound on weff can be deduced from 
(9) if the composite is isotropic. In such case, weff indeed depends on the electric field ē only through its norm ē, i.e. there 
exists a function φeff such that weff(ē) = φeff(ē). Consequently, we have Weff(ē1, ̄e2) = φeff(ē1) + φeff(ē2) where ēi = ‖ēi‖. 
Specializing (9) to Ē of the form ēN with ē ≥ 0 and

N =
(

0 1
1 0

)

we thus obtain

weff(ē) ≥ 1

2

⎛
⎝ēN : T − αē2 −

∫
�

(W − α det)∗(T , x)dω

⎞
⎠ (10)

The best bound wᵀ(ē) delivered by the presented procedure (known as the translation method) is obtained by maximiz-
ing the right-hand side of (10) with respect to (T , α), i.e.

wᵀ(ē) = sup
T ,α

1

2

⎛
⎝ēN : T − αē2 −

∫
�

(W − α det)∗(T , x)dω

⎞
⎠ (11)

The bound wᵀ is relevant only if w(e, x) has faster than quadratic growth in e (so as to ensure that (W −α det)∗(T , x) <
∞). For an energy function w(e, x) that is quadratic in e, the bound (11) is known to coincide with the Hashin–Shtrikman 
bound [5,6].

In the rest of the paper, we consider two-phase composites constituted of perfectly conducting inclusions in a nonlinear 
matrix. At a point x in the perfectly conducting phase, the energy w(e, x) vanishes if e = 0 and is equal to +∞ if e 
= 0, 
so that (W − α det)∗(T , x) = 0. To alleviate the notations, from now on we drop the x dependence of the energy function: 
from here on, w (resp. W ) simply denotes the energy function (resp. extended energy function) of the matrix. The bound 
(11) becomes

wᵀ(ē) = sup
T ,α

wᵀ(ē; T ,α) (12)

where

wᵀ(ē; T ,α) = 1

2

(
ēN : T − αē2 − c(W − α det)∗(T )

)
(13)

In (13), c is the volume fraction of the matrix.

3. Two-phase composite with a strongly convex energy function

In this section, we assume that w is isotropic and strongly convex, in the sense that w is convex in e2. Moreover, we 
assume that w is differentiable and increasing in e with a larger than quadratic growth. An example of energy functions 
satisfying those assumptions is provided by power-law functions σ en+1 with n > 1 and σ > 0.

As a consequence of the stated assumptions on w , we can write the derivative w ′(e) as

w ′(e) = h(e)e

where h is a positive, unbounded, monotonically increasing function of the norm e. For later reference, we record the 
expression of the Talbot–Willis bound:

wTW(ē) = c w

(
ē
√

2 − c

c

)
(14)
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The result (14) can also be obtained by using the Ponte Castañeda method in conjunction with the Hashin–Shtrikman bound 
[1] for the linear comparison composite [18].

The goal of this section is to show that the translated bound (13) also coincides with (14). This is accomplished by finding 
values (τ̃ , α̃) such that wᵀ(ē; τ̃ N, α̃) = wTW(ē) and subsequently showing that the obtained values (τ̃ N, α̃) maximize the 
function (T , α) �→ wᵀ(ē; T , α).

3.1. Bounds obtained for TTT parallel to NNN

For a matrix T of the form T = τ N , we have

(W − α det)∗(τ N) = sup
E=

( u1 u2
v1 v2

) f (E;τ ,α) (15)

where

f (E;τ ,α) = τ (v1 + u2) − w(e1) − w(e2) + α(u1 v2 − u2 v1) (16)

Setting hi = h(ei), the stationarity conditions in (16) read as

−h1u1 + αv2 = 0, τ − h1 v1 − αu2 = 0
−h2 v2 + αu1 = 0, τ − h2u2 − αv1 = 0

(17)

As a result of the nonconvexity of the function f (·; τ , α), the system (17) generally admits multiple solutions. Limiting the 
discussion to the case τ , α ≥ 0, a close inspection shows that there are three branches of solutions to (17):

– branch 1 corresponds to solutions of the form

E =
(

0 v
v 0

)
with τ = h(v)v + αv (18)

Since the function v �→ h(v)v + αv is strictly increasing from 0 to ∞ (in the domain v ≥ 0), there is a unique v ≥ 0
that satisfies the relation τ = h(v)v + αv in (18). The value taken by f (·; τ , α) for the matrix E in (18) is denoted by 
f1(τ , α);

– branch 2 corresponds to solutions of the form

E =
(

0 u2
v1 0

)
with u2 
= v1, τ = h1 v1 + αu2 = h2u2 + αv1 (19)

We denote by f2(τ , α) the maximum value taken by f (·; τ , α) over E of the form (19);
– branch 3 corresponds to solutions of the form

E± =
( ±u1

τ
2α

τ
2α ±u1

)
with h

⎛
⎝

√
u2

1 + τ 2

4α2

⎞
⎠ = α (20)

Such E± exists as long as h(0) ≤ α and τ ≤ τc(α). Here τc(α) ≥ 0 is the scalar defined implicitly by

h

(
τc(α)

2α

)
= α (21)

It can easily be verified that f (E+; τ , α) = f (E−; τ , α). That common value, denoted by f3(τ , α), can be expressed in 
terms of τc(α) as

f3(τ ,α) = τ 2

2α
+ τ 2

c (α)

4α
− 2w

(
τc(α)

2α

ē

ē

)

The function (W − α det)∗(τ N) is the maximum of the three branches detailed above, i.e.

(W − α det)∗(τ N) = max
1≤i≤3

f i(τ ,α) (22)

A general explicit expression of (W −α det)∗(τ N) – holding for arbitrary values of (τ , α) and any form of the energy w
– remains out of reach. What can be proved, however, is that

(W − α det)∗(τ N) = f3(τ ,α) for 0 ≤ τ ≤ τc(α) and h(0) ≤ α (23)

Let us justify the property (23). We consider α ≥ h(0) as fixed and denote by v(τ ) ≥ 0 the solution to the equation

τ = h(v(τ ))v(τ ) + αv(τ ) (24)
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so that

f1(τ ,α) = 2τ v(τ ) − 2w

(
v(τ )

ē

ē

)
− αv(τ )2 (25)

It can easily be verified from (21) and (24) that

v(τc(α)) = τc(α)

2α

For v ≥ 0, the function v �→ h(v)v + αv is strictly increasing from 0 to ∞. Hence τ �→ v(τ ) is increasing with τ , so that

v(τ ) ≤ v(τc(α)) = τc(α)

2α
for 0 ≤ τ ≤ τc(α) (26)

Using (24) and (25), we obtain by differentiation

∂

∂τ
( f1 − f3)(τ ,α) = 2v(τ ) − τ

α
= v(τ )

α

(
α − h(v(τ ))

)
(27)

In view of (26) and recalling that h is increasing, we have h(v(τ )) ≤ h(
τc(α)

2α ) = α for τ ≤ τc(α). Hence

0 ≤ ∂

∂τ
( f1 − f3)(τ ,α) for 0 ≤ τ ≤ τc(α)

This shows that the function τ �→ ( f1 − f3)(τ , α) is increasing on [0, τc(α)]. Hence,

( f1 − f3)(τ ,α) ≤ ( f1 − f3)(τc(α),α) for 0 ≤ τ ≤ τc(α)

For τ = τc(α), it can easily be verified that the matrices E in (18) and E± in (20) coincide and are equal to τc(α)
2α N . 

Therefore, ( f1 − f3)(τc(α), α) = 0. We thus obtain that

( f1 − f3)(τ ,α) ≤ 0 for 0 ≤ τ ≤ τc(α)

A similar reasoning can be used to show that

( f2 − f3)(τ ,α) ≤ 0 for 0 ≤ τ ≤ τc(α)

Substituting in (22) gives the desired result (23). �
The property (23) allows us to evaluate the bound wᵀ(ē; τ N, α) for any (τ , α) that satisfy the conditions 0 ≤ τ ≤ τc(α)

and h(0) ≤ α. In particular, consider the special values defined by

α̃ = h

(
ē
√

2 − c

c

)
,

τ̃

2α̃
= ē

c
(28)

Since h is increasing, we necessarily have h(0) ≤ α̃. We also note from (28) and (21) that τc(α̃)/2α̃ = ē
√

2 − c/c, hence 
τc(α̃) ≥ τ̃ . Use of (23) yields

(W − α̃ det)∗(τ̃ N) = f3(τ̃ , α̃) = (4 − c)α̃

(
ē

c

)2

− 2w

(
ē
√

2 − c

c

)

Substituting in (13) gives

wᵀ(ē; τ̃ N, α̃) = 1

2

(
2τ̃ ē − α̃ē2 − cf3(τ̃ , α̃)

)
= c w

(
ē
√

2 − c

c

)
(29)

which shows that the translated bound wᵀ(ē) in (12) is at least as good as the Talbot–Willis bound wTW(ē) in (14). In the 
next section, we show that the values (τ̃ N, α̃) are in fact optimal in (12), i.e. that the translated bound wᵀ(ē) is equal to 
wTW(ē).
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3.2. Optimized bound

Observe that the bound (12) is defined by a concave optimization problem over (T , α). The function (W − α det)∗(T )

is indeed convex in (T , α), since it is defined in (6) as the pointwise supremum of a family of linear functions in (T , α). 
Hence the values of (T , α) reaching the supremum in (12) are fully characterized by the optimality conditions

1

c
(ēN,−ē2) ∈ ∂(W − α det)∗(T ) (30)

where ∂(W − α det)∗(T ) is the subdifferential of the convex function (T , α) �→ (W − α det)∗(T ). We recall that vectors 
(A, a) in the subdifferential ∂(W − α̃ det)∗(τ̃ N) are characterized by the property [19,20]

(W − α̃ det)∗(τ̃ N) + A : (T − τ̃ N) + a(α − α̃) ≤ (W − α det)∗(T ) (31)

for any (T , α).
We now show that (τ̃ N, α̃) satisfies the optimality condition (30). Let Ẽ± be the value taken by the matrix E± in (20)

for the case (τ , α) = (τ̃ , α̃), i.e.

Ẽ± = ē

c

( ±√
1 − c 1
1 ±√

1 − c

)
(32)

Since (W − α̃ det)∗(τ̃ N) = f3(τ̃ , α̃), we know that

(W − α̃ det)∗(τ̃ N) = τ̃ Ẽ+ : N + α̃ det Ẽ+ − W (Ẽ+)

For any T and α, we thus have

(W − α̃ det)∗(τ̃ N) + Ẽ+ : (T − τ̃ N) + (α − α̃)det Ẽ+ = Ẽ+ : T + α det Ẽ+ − W (Ẽ+) (33)

The right-hand side of (33) is bounded from above by (W − α det)∗(T ), hence

(W − α̃ det)∗(τ̃ N) + Ẽ+ : (T − τ̃ N) + (α − α̃)det Ẽ+ ≤ (W − α det)∗(T ) (34)

The same argument but replacing E+ with E− gives

(W − α̃ det)∗(τ̃ N) + Ẽ− : (T − τ̃ N) + (α − α̃)det Ẽ− ≤ (W − α det)∗(T ) (35)

Summing (34) and (35) and further noting that 1
2 (Ẽ+ + Ẽ−) = ē

c N and det Ẽ± = −ē2/c, we obtain

(W − α̃ det)∗(τ̃ N) + ē

c
N : (T − τ̃ N) − ē2

c
(α − α̃) ≤ (W − α det)∗(T )

which, in view of (31), can be written as

(
ē

c
N,− ē2

c
) ∈ ∂(W − α̃ det)∗(τ̃ N)

Hence (τ̃ N, α̃) satisfies the optimality conditions (30), meaning that the optimized bound wᵀ(ē) is equal to wᵀ(ē; τ̃ N, α̃). 
Since wᵀ(ē; τ̃ N, α̃) = wTW(ē), the conclusion is that the bound wᵀ obtained from the translation method coincides with 
the Talbot–Willis bound wTW.

4. Example in the not strongly convex case

In this section, we investigate an example in which the energy w in the matrix is not strongly convex, i.e. w is not 
convex in e2. More precisely, we take w as

w(e) =
{

εe if e < 1
+∞ if e ≥ 1

(36)

where ε > 0 is a fixed parameter. The composite considered is a two-dimensional version of that considered in [15] for 
comparing the Talbot–Willis and the Ponte Castañeda methods.

The Talbot–Willis bound wTW is given by

wTW(ē) =

⎧⎪⎨
⎪⎩

εē if ē ≤ c
2−c(

2−c
c

)
εē2 if c

2−c ≤ ē ≤ c√
2−c

+∞ if c√
2−c

< ē

(37)
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Fig. 1. Chart of the function (τ ,α) �→ (W − α det)∗(τ N).

The Ponte Castañeda bound wPC is given by

wPC(ē) =
{ (

2−c
c

)
εē2 if ē ≤ c√

2−c
+∞ if c√

2−c
< ē

(38)

The expressions (37) and (38) can be obtained by adapting the calculations presented in [15] to the 2D case. We now 
proceed to evaluate the bounds provided by (12) and (13). As in Sect. 3, the main difficulty lies in solving the nonconvex 
maximization problem (15) that defines the Legendre transform (W − α det)∗(T ). For the energy w in (36), the maximiza-
tion problem (15) can be solved in closed form. The resulting expression of (W − α det)∗(τ N) depends on the value of 
(τ , α) as represented in Fig. 1. In more detail, we have

(W − α det)∗(τ N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 in (I)
τ − ε in (II)
2τ − α − 2ε in (III)
τ 2

2α
+ α − 2ε in (IV)

(39)

In (39), (I)–(IV) are domains in the (τ , α) plane that are represented in Fig. 1. The common boundary between the 
domains (II) and (IV) is the elliptical arc with equation τ 2 − 2ατ + 2α2 − 2αε = 0. The boundary between the domains (I) 
and (IV) is the elliptical arc with equation τ 2 + 2α(α − 2ε) = 0.

The result (39) allows the bounds in (12) and (13) to be evaluated. As a first illustration, consider the special case τ = 2ε , 
α = ε . From (13) and (39) we have

wᵀ(ē;2εN, ε) = ε

2
(4ē − ē2 − c) (40)

It can easily be verified that ē < 1
2 (4ē − ē2 − c) if 1 −√

1 − c < ē. Hence wᵀ(ē; 2εN, ε) improves on the Talbot–Willis bound 
wTW for any ē between 1 − √

1 − c and c
2−c .

Better bounds than (40) can be obtained by fully optimizing (13) with respect to τ and α. Omitting the detail of the 
calculations, the optimal values of (τ , α) are found to depend on ē as follows:

– for ē ≤ 1 − √
1 − c, the optimal values of (τ , α) are equal to (1, 0);

– for 1 − √
1 − c ≤ ē ≤ c√

2−c
, the optimal values of (τ , α) are given by

α

ε
= 1 − ē2 − 2ē + c√

(ē2 − 2ē + c)2 + (2ē − c)2
, τ = α + √

α(2ε − α)

For those values, (τ , α) is on (II) ∩ (IV). The corresponding value of wᵀ(ē; τ N, α) is

wᵀ(ē;τ N,α) = ε

(
ē − 1

2
ē2 + 1

2

√
(ē2 − 2ē + c)2 + (2ē − c)2

)

– for c√
2−c

< ē ≤ c, the optimal bound is obtained by taking τ = 2αē/c. For α large enough, the point (τ , α) is in the 
domain (IV) so that
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Fig. 2. Comparison of the bounds in the case c = 0.8.

wᵀ(ē;τ N,α) = 1

2
α

(
ē2 2 − c

c
− c

)
+ εc (41)

Taking the limit α → ∞ in (41) gives wᵀ(ē; τ N, α) → +∞;
– for c < ē, the optimal bound is obtained by taking α = 0. For τ large enough, the point (τ , α) is in the domain (III) so 

that

wᵀ(ē;τ N,0) = τ (ē − c) + εc (42)

Taking the limit τ → ∞ in (42) gives wᵀ(ē; τ N, 0) → +∞.

In summary, the optimized bound wᵀ is given by

wᵀ(ē) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

εē if ē ≤ 1 − √
1 − c

ε

(
ē − 1

2
ē2 + 1

2

√
(ē2 − 2ē + c)2 + (2ē − c)2

)
if 1 − √

1 − c ≤ ē ≤ c√
2 − c

+∞ if
c√

2 − c
< ē

(43)

The bounds wTW, wPC and wᵀ are plotted in Fig. 2 as a function of the norm ē of the effective electric field. The 
volume fraction c of the matrix is set to 0.8. For ē ≤ 1 − √

1 − c, the bounds wTW and wᵀ coincide with the energy w
of the matrix. The most important observation is that the translation bound wᵀ strictly improves both on wTW and wPC

for 1 − √
1 − c ≤ ē ≤ c/

√
2 − c. In the limit ē → c/

√
2 − c, all the three bounds converge towards the same value εc. For 

ē > c/
√

2 − c, the three bounds are equal to +∞.

5. Concluding remarks

For two-phase composites with perfectly conducting inclusions and a strongly convex energy function, the analysis pre-
sented in Sect. 3 shows that the translation method gives the same Hashin–Shtrikman-type bounds as the Talbot–Willis and 
the Ponte Castañeda methods. It should be observed, however, that the calculations involved in the translation method are 
significantly more complicated than those involved in the Talbot–Willis and the Ponte Castañeda procedures. This is mainly 
a consequence of the embedding of the original problem in an extended problem of dimension 4, which is an essential 
ingredient of the translation method when applied to two-dimensional conductors.

Although it is rather special, the example presented in Sect. 4 shows that the translation method has the potential to 
produce nonlinear Hashin–Shtrikman-type bounds that are strictly stronger than those provided by the Talbot–Willis and the 
Ponte Castañeda methods. In that regard, it can be noted that the translation method can be used in a more general fashion 
by embedding the original problem in an extended problem of dimension higher than 4 (by considering three – or more – 
copies of the original problem). Although the calculations become even more involved, the resulting Hashin–Shtrikman-type 
bounds may improve on the Talbot–Willis and the Ponte Castañeda bounds even for strongly convex energy functions [21].
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