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Abstract 9 

The present work aims at modeling the thermal conductivity of fractured materials using 10 

homogenization-based analytical and pattern-based numerical methods. These materials are 11 

considered as a network of cracks distributed inside a solid matrix. Heat flow through such 12 

media is perturbed by the crack system. The problem of heat flow across a single crack is 13 

firstly investigated. The classical Eshelby’s solution, extended for the calculation of the 14 

conductivity of a mixture of an ellipsoidal inclusion in an infinite homogeneous matrix, gives 15 

an analytical solution of temperature discontinuity across a non-conducting penny-shape 16 

crack. This solution is then validated by the numerical simulation based on the finite 17 

elements method.  The numerical simulation allows analyzing the effect of crack conductivity. 18 

The problem of a single crack is then extended to media containing multiple cracks. 19 

Analytical estimations for effective thermal conductivity, that take into account the interaction 20 

between cracks and their spatial distribution, are developed for the case of non-conducting 21 

cracks. Pattern-based numerical method is then employed for both cases non-conducting 22 

and conducting cracks. In the case of non-conducting cracks, numerical and analytical 23 

methods, both account for the spatial distribution of the cracks, fit perfectly. In the case of 24 

conducting cracks, the numerical analyzing of crack conductivity effect shows that highly 25 

conducting cracks weakly affect heat flow, and the effective thermal conductivity of fractured 26 

media.  27 
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1. Introduction 30 

Thermal conductivity is an important geophysical property of rocks and largely investigated in 31 

geo-sciences such as, nuclear waste disposal, geothermal production, CO2 storage, 32 

hydrocarbon formation processes, etc (Tang and Cui, 2009; Tang et al., 2008; Cui et al, 33 

2011). This parameter is generally affected by natural cracks distributed in the geomaterials. 34 

The homogenization-based analytical approach has been confirmed to be a powerful tool to 35 

estimate effective properties of heterogeneous materials (Eshelby, 1957; Mori and Tanaka, 36 

1973; Giraud et al., 2007; Zimmerman, 1989). The macroscopic mechanical properties is 37 

affected by the properties of each phase in the mixture, the shape and the orientation of the 38 

particles as well as the stress acting on the considered materials. Nguyen and colleagues  39 

successfully employed this technique for the simulation of effective viscoelastic properties of 40 

fractured media (Nguyen et al., 2011, Nguyen, 2014a; Nguyen et al., 2015c) and effective 41 

elastic properties and electrical conductivity of sandstone (Nguyen, 2014b, Nguyen et al, 42 

2015a,b). 43 

Besides, the numerical approach based on the pattern-based method (PBM) is also used to 44 

simulate overall properties of heterogeneous materials (Bornert, 1996; Stolz and Zaoui, 45 

1991). This approach is more powerful than the classical numerical finite element method 46 

(FEM) that simulates the whole representative elementary volume (REV) of the medium, in 47 

term of calculation time. Actually, the PBM considers a morphologically representative 48 

pattern (MRP) of the medium instead of the REV. For the case of fractured media, MRP 49 

contains only one crack whereas REV contains a whole system of micro-cracks (Pouya et 50 

al., 2013; Camacho and Ortiz, 1996). However, by managing the boundary condition and the 51 

shape of the MRP, the pattern-based method allows accounting for the interaction between 52 

cracks and their spatial distribution (Nguyen and Dormieux, 2014). 53 
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This paper focuses on the thermal conductivity of fractured materials based on 54 

homogenization-based analytical method and PBM. The problem of heat flow through a 55 

medium containing a single crack is firstly considered. The classical Eshelby’s theory, 56 

extended for the conductivity of a mixture of an ellipsoidal inclusion in an infinite 57 

homogeneous matrix, gives an analytical solution of temperature discontinuity across a non-58 

conducting penny-shape crack. This analytical solution is then compared with the numerical 59 

simulation based on PBM. The effect of crack conductivity is also analyzed with the help of 60 

the numerical simulation. Secondly, the problem of single crack is extended to a medium 61 

containing multiple cracks. Analytical estimations of effective thermal conductivity for the 62 

case of non-conducting cracks, that accounts the interaction between the cracks and their 63 

spatial distribution, are developed. PBM is then employed for both cases, non-conducting 64 

and conducting cracks.  65 

Notations 66 

 𝑨 is the second order temperature field localization tensor 67 

 𝟏 is the second order unit tensor 68 

 [𝑇] is the temperature jump across a crack 69 

 [𝑡] is the dimensionless temperature jump across a crack 70 

 ∇𝑇 is the temperature gradient 71 

 z is the position vector of a point 72 

 𝑓 is the volume fraction 73 

 𝐶 is the conductivity 74 

 𝑄 is the anisotropic parameters of the inclusion 75 

 𝑋 and 𝑋𝑑 are the aspect ratio of the cracks and of the spatial distribution of the cracks 76 

respectively 77 

The exponents and index 78 

 𝑠 is for the solid phase 79 

 𝑐 is for crack 80 
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 𝑇 is for transversal component of the transversely isotropic tensors 81 

 𝑁 is for normal component of the transversely isotropic tensors    82 

 𝑚𝑡 is for Mori-Tanaka scheme 83 

 𝑐𝑤 is for Castañeda-Willis scheme 84 

2. Heat flow across a single crack 85 

One considers a basic problem of a single crack in a homogenous medium under a far-field 86 

homogenous temperature gradient condition: ∀z → ∞: 𝑇 =  ∇𝑇. z (see Fig. 1). Heat flow is 87 

locally perturbed around the crack due to the contrast between the conductivity of the crack 88 

and that of the surrounding solid matrix. Temperature is discontinued across the crack.  89 

 90 

Figure1: Single crack in homogenous medium under far-field homogeneous temperature 91 

gradient boundary condition. 92 

Note that for penny-shape crack, an extension of Eshelby’s theory (Eshelby, 1957) for the 93 

problem of heat flow yields a temperature field localization tensor 𝑨 that is determined by 94 

(Giraud, 2007; Nguyen, 2014): 95 

  𝑨 =
𝐶𝑠

(1 − 𝑄)𝐶𝑠 + 𝑄𝐶𝑐
(𝟏 − 𝑒3⨂𝑒3) +

𝐶𝑠

2𝑄𝐶𝑠 + (1 − 2𝑄)𝐶𝑐
𝑒3⨂𝑒3 (1) 

where 𝐶𝑠 (resp. 𝐶𝑐) is the conductivity of the solid matrix (resp. the conductivity of the crack), 96 

𝑒3 the unit normal to the crack plan, and 𝑄  the geometry factor defined by: 97 

∀z → ∞: 𝑇 =  ∇𝑇. z 

Crack 
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𝑄 =

1

2
−

√1 − 𝑋2 − 𝑋 arctan (
√1 − 𝑋2

𝑋 )

2(1 − 𝑋2)3/2
 

(2) 

with 𝑋 is the aspect ratio of the crack (ratio between the width and the diameter of the crack, 98 

see also Dormieux, 2006).Thus, for penny-shape crack we have: 𝑋 → 0 and 99 

  𝑄 ≈
𝜋

4
𝑋 (3) 

Introducing eq. (3) into eq. (1) yields: 100 

  𝑨 =
𝐶𝑠

(1 −
𝜋
4 𝑋)𝐶𝑠 +

𝜋
4 𝑋𝐶𝑐

(𝟏 − 𝑒3⨂𝑒3) +
𝐶𝑠

𝜋
2

𝑋𝐶𝑠 + (1 −
𝜋
2

𝑋) 𝐶𝑐

𝑒3⨂𝑒3 (4) 

The local temperature gradient inside the crack, ∇𝑇𝑐 is homogeneous and is linearly related 101 

to the far-field temperature gradient (Fig. 1) as: 102 

  ∇𝑇𝑐 = 𝑨. ∇𝑇 (5) 

Its component normal to the crack plan is expressed as: 103 

  ∇𝑇𝑐,3 =
𝐶𝑠

𝜋
2 𝑋𝐶𝑠 + (1 −

𝜋
2 𝑋) 𝐶𝑐

∇𝑇3 (6) 

According to this solution, the temperature jump across the crack [𝑇] is calculated as: 104 

  [𝑇] = ∇𝑇𝑐,3𝑑 = (
𝐶𝑠

𝜋
2 𝑋𝐶𝑠 + (1 −

𝜋
2 𝑋) 𝐶𝑐

∇𝑇3) 𝑑 (7) 

where 𝑑 is the distance between two crack’s lips at the considering point. Suppose that the 105 

crack has a spheroidal shape, 𝑑 is calculated by: 106 

  𝑑 = 2𝑋ℓ√1 − (
𝜌

ℓ
)

2

 (8) 

where ℓ and 𝜌 are the radius of the crack and the distance to the crack’s center, respectively. 107 

The combination of (7) and (8) yields: 108 
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  [𝑇] = (
𝐶𝑠

𝜋
2

𝑋𝐶𝑠 + (1 −
𝜋
2

𝑋) 𝐶𝑐

∇𝑇3) 2𝑋ℓ√1 − (
𝜌

ℓ
)

2

 (9) 

It is convenient to introduce also the following dimensionless temperature discontinuity: 109 

  [𝑡] =
[𝑇]

∇𝑇3

1

ℓ
= (

2𝑋𝐶𝑠

𝜋
2 𝑋𝐶𝑠 + (1 −

𝜋
2 𝑋) 𝐶𝑐

) √1 − (
𝜌

ℓ
)

2

 (10) 

For the case of conducting crack, i.e. 𝐶𝑐 > 0, the limit 𝑋 → 0 (penny-shape crack) yields [𝑡] →110 

0. More precisely, there is no temperature jump across a penny-shape conducting crack. For 111 

the case of non-conducting penny-shape crack (𝐶𝑐 = 0), equation (10) is simplified (see also 112 

Sevostianov, 2006; Vu et al., 2015) as: 113 

  [𝑡] =
4

𝜋
√1 − (

𝜌

ℓ
)

2

 (11) 

The maximum value of [𝑡] = 4/𝜋 is found at the center of the crack (𝜌 = 0). The analytical 114 

solution (11) could be considered as a reference to compare with the numerical simulation. 115 

Considering the FEM approach for the simulation of this basic problem of heat flow across a 116 

single crack, a vertical cylinder containing a horizontal penny-shape crack is analyzed (Fig. 117 

2). Unit vertical temperature gradient is applied on the boundary of the cylinder: 𝑇 =  e3. z. 118 

The dimension of the cylinder is chosen large enough to ensure the far-field boundary 119 

condition. The calculation is performed in axis symmetric model thank to the symmetry of the 120 

problem.  121 
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 122 

Figure 2: Numerical simulation of heat flow across a single crack: geometry and boundary 123 

conditions.  124 

In this model, the crack is defined by a thin horizontal domain with a given conductivity. Zero 125 

conductivity is chosen for the crack’s domain when modeling a non-conducting crack. The 126 

thickness of the crack domain is chosen small enough to ensure the convergence of the 127 

results. It is verified that, a ratio between the thickness and the radius of the crack smaller 128 

than 0.005 is enough. The mesh is refined around the crack, therefore a too small crack’s 129 

thickness will unnecessarily raise the calculation time. The simulation is carried out by using 130 

FEM codes Cast3M (Bentejac and Hourdequin, 2005). Fig. 3 displays the mesh (in axis 131 

symmetric model), the temperature distribution in the whole domain (left side) and the local 132 

vertical temperature gradient across the crack (right side).  133 

𝑇 =  e3. z 

 e3 ℓ 

𝑇 =  e3. z 

𝑇 =  e3. z 
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 134 

 135 

Figure 3: Numerical simulation of heat flow across a single crack: (a) temperature 136 

distribution; (b) Local temperature gradient across the crack.  137 

In the particular case of non-conducting crack, the numerical simulation of the temperature 138 

jump across the crack is compared with the analytical solution given by the eq. (11). Fig. 4 139 

shows the dimensionless temperature discontinuity along the crack radius. A perfect fit 140 

between the numerical and the analytical approaches can be observed. 141 

Note that the solution given by eq. (11) is for non-conducting crack such as open and dry 142 

crack. However fluid saturated or partially saturated crack and closed crack are conducting. 143 

Fig. 4 shows also the effect of the relative conductivity of the crack and of the surrounding 144 

solid matrix on the temperature jump across the crack. For 𝐶𝑐/𝐶𝑠 ≈ 0.1, the temperature jump 145 

is negligible. For the case of water saturated cracks in rocks (based on data given by Clauser 146 

and Huenges, 1995): 𝐶𝑐/𝐶𝑠 = 𝐶𝑤𝑎𝑡𝑒𝑟/𝐶𝑠 ≈ 0.1 ÷ 0.3. For this case, cracks do not affect the 147 

heat flow across the crack in its normal direction. 148 

The basic solutions developed for heat flow across a single crack will be employed and 149 

generalized in the following to simulate the effective conductivity of a domain containing 150 

multiple cracks. 151 

(a) 

Local mesh 

around the 

crack 

(b) 



9 
 

 152 

Figure 4: Temperature jump across the crack: numerical simulation (the points) and 153 

analytical result using eq. (10) (continuous line). 154 

3. Effective thermal conductivity of cracked media 155 

This section is dedicated to deriving the effective conductivity of media containing multiple 156 

cracks. First, the analytical homogenization-based approaches for the case of non-157 

conducting penny-shape cracks is summarized. Second, a pattern-based numerical 158 

approach for both non-conducting and conducting cracks is developed. For non-conducting 159 

penny-shape crack, the numerical simulation is compared and constrained with the analytical 160 

estimations. The effect of crack conductivity on the effective conductivity of the whole 161 

fractured domain is considered at the end of this section. 162 

3.1. Homogenization-based approaches 163 

The analytical solution (11) of temperature discontinuity across a single crack is a key issue 164 

for the estimation of effective thermal conductivity for fractured media. For the case of 165 

horizontal parallel cracks in an isotropic homogeneous matrix, the effective conductivity of 166 

the medium is transversely isotropic and has on two components: conductivity in the normal 167 

[𝑡] 

[𝜌/ℓ] 

𝑐𝑐/𝑐𝑠 = 0 

𝑐𝑐/𝑐𝑠 = 0.002 

𝑐𝑐/𝑐𝑠 = 0.01 

𝑐𝑐/𝑐𝑠 = 0.1 
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direction to the plan of the cracks (𝑒3) and transversal conductivity. The classical Mori-168 

Tanaka’s approach, accounting the fracture interaction, gives (Mori and Tanaka, 1973; 169 

Giraud et al., 2007; Nguyen, 2014): 170 

  

𝐶𝑚𝑡
𝑁 = 𝐶𝑠 + 𝑓𝑐(𝐶𝑐 − 𝐶𝑠)𝑎𝑁((1 − 𝑓𝑐) + 𝑓𝑐𝑎𝑁)

−1
 

𝐶𝑚𝑡
𝑇 = 𝐶𝑠 + 𝑓𝑐(𝐶𝑐 − 𝐶𝑠)𝑎𝑇((1 − 𝑓𝑐) + 𝑓𝑐𝑎𝑇)

−1
 

(12) 

where 𝐶𝑚𝑡
𝑁  and 𝐶𝑚𝑡

𝑇  are the normal and transversal conductivity respectively, 𝑎𝑁 and 𝑎𝑇 the 171 

two corresponding components of the localization tensor defined by eq. (4) 172 

  𝑎𝑁 =
𝐶𝑠

𝜋
2 𝑋𝐶𝑠 + (1 −

𝜋
2 𝑋) 𝐶𝑐

;  𝑎𝑇 =
𝐶𝑠

(1 −
𝜋
4

𝑋)𝐶𝑠 +
𝜋
4

𝑋𝐶𝑐

 (13) 

The volumetric fraction of the crack is defined by 173 

  𝑓𝑐 =
4𝜋

3
𝑁𝛿ℓ2 =

4𝜋

3
𝜖𝑋 

(14) 

 

where 𝑁 is the number of cracks in a unit volume of the medium, 𝛿 = 𝑋ℓ is haft of the crack’s 174 

width, 𝜖 = 𝑁ℓ
3
 is the crack density parameter (see also Budiansky and O’connell, 1976). 175 

As discussed in previous section, there is no temperature jump across a penny-shape 176 

conducting crack, i.e. the penny-shape conducting cracks do not affect the effective 177 

conductivity of the medium. Considering now the case of non-conducting penny-shape 178 

cracks 𝐶𝑐 = 0 and then substituting (13), (14) into (12) yields:  179 

  𝐶𝑚𝑡
𝑁 = 𝐶𝑠 (1 +

8

3
𝜖)

−1

;  𝐶𝑚𝑡
𝑇 = 𝐶𝑠 (15) 

For the case of random orientation distribution of the crack, the conductivity of the whole 180 

domain is isotropic:  181 

  𝐶𝑚𝑡 =
𝐶𝑚𝑡

𝑁 + 2𝐶𝑚𝑡
𝑇

3
=

𝐶𝑠

3
(2 + (1 +

8

3
𝜖)

−1

) (16) 

The effective conductivity of fractured media can be now estimated for both parallel and 182 

random orientation distribution of cracks, by employing (15) and (16). These results account 183 
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for the interaction between the cracks but they are limited to the case of non-conducting 184 

cracks. More importantly, these solutions do not account for the spatial distribution of the 185 

cracks (see Castañeda and Willis, 1995; Bornert et al., 1996). 186 

To take into consideration the spatial distribution of the cracks, the results obtained by 187 

Gruescu et al. (2007), an extension of the study of Castañeda and Willis (1995), for thermal 188 

conductivity 𝐶𝑐𝑤 of a system of matrix and spheroidal inclusions are considered. A spheroidal 189 

distribution of the inclusions was supposed (Fig. 5b). 190 

  

𝐶𝑐𝑤
𝑁 = 𝐶𝑚 + 𝑓𝐼𝑇𝐼

𝑁 (1 − 𝑓𝐼𝑇𝐼
𝑁

1 −
𝜋
2

𝑋𝑑

𝐶𝑚
)

−1

 

𝐶𝑐𝑤
𝑇 = 𝐶𝑚 + 𝑓𝐼𝑇𝐼

𝑇 (1 − 𝑓𝐼𝑇𝐼
𝑇

𝜋
4 𝑋𝑑

𝐶𝑚
)

−1

 

(17) 

with 191 

  𝑇𝐼
𝑁 = (

1

𝐶𝐼 − 𝐶𝑚 
+

1 −
𝜋
2

𝑋

𝐶𝑚
)

−1

;  𝑇𝐼
𝑇 = (

1

𝐶𝐼 − 𝐶𝑚 
+ 

𝜋
4

𝑋

𝐶𝑚
)

−1

 (18) 

where 𝐶𝑚 and 𝐶𝐼 are the conductivity of the matrix and of the inclusions respectively, 𝑓𝐼 is the 192 

volume fraction of the inclusions, 𝑋𝑑 is the aspect ratio of the distribution which equal to the 193 

aspect ratio of the MRP (Fig. 6b) (Castañeda and Willis,1995). A parameter 𝑋𝑑 = 1 194 

corresponds to a spherical distribution (Fig. 5a) and a parameter 𝑋𝑑 → 0 corresponds to a 195 

aligned distribution. 196 
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 197 

 Figure 5: Spatial distribution of cracks: spherical distribution (a) and aligned distribution (b).  198 

Applying eq. (17) for the case of inclusions are non-conducting cracks: 𝐶𝐼 = 𝐶𝑐 = 0 and 𝐶𝑚 =199 

𝐶𝑠: 200 

  
𝐶𝑤𝑐

𝑁 = 𝐶𝑠 −
8𝐶𝑠

3
𝜖 (1 +

8

3
𝜖 (1 −

𝜋

2
𝑋𝑑))

−1

 

𝐶𝑤𝑐
𝑇 = 𝐶𝑠 

(19) 

For the case of random orientation distribution of the crack: 201 

  𝐶𝑐𝑤 =
𝐶𝑐𝑤

𝑁 + 2𝐶𝑐𝑤
𝑇

3
= 𝐶𝑠 −

8𝐶𝑠

9
𝜖 (1 +

8

3
𝜖 (1 −

𝜋

2
𝑋𝑑))

−1

 (20) 

Note that, for the particular case of aligned distribution of the cracks (the cracks lay closely in 202 

the horizontal direction) 𝑋𝑑 → 0, (19) and (20) tend to (15) and (16): 203 

  lim
𝑋𝑑→0

𝐶𝑤𝑐
𝑁 = 𝐶𝑠 (1 −

8

3
𝜖 (1 +

8

3
𝜖)

−1

) = 𝐶𝑠 (1 +
8

3
𝜖)

−1

 (21) 

Analytical formulations (19) and (20) appear to be powerful to evaluate effective properties of 204 

fractured materials. However they are limited to non-conducting penny-shape cracks. In the 205 

next section, a numerical pattern-based approach will be proposed to deal with both the 206 

spatial distribution and the conductivity of the cracks. 207 

3.2. Numerical pattern-based method 208 

(a) (b) 
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PBM is developed to simulate heat flow and effective thermal conductivity of micro-cracked 209 

media. This method considers a MRP that, as described by Bornert et al. (1996), is a sub-210 

domain containing a single crack that represents the microstructure of the whole domain (see 211 

Fig. 6b). In the numerical simulation, an equivalent domain formed by the MRP surrounded 212 

by an infinite matrix solid is considered (Nguyen and Dormieux, 2014) (Fig. 6c). The 213 

temperature boundary condition applied on the equivalent domain is: ∀z → ∞: 𝑇𝑜 =  ∇𝑇𝑜. z. To 214 

account for the interaction between the cracks, the equivalent temperature gradient ∇𝑇𝑜 is 215 

chosen to ensure that the average temperature of the MRP is equal to the macroscopic 216 

temperature gradient applied on the initial medium that was noted by ∇𝑇 (see Mori and 217 

Tanaka, 1973). The numerical simulation of the equivalent problem is similar to the problem 218 

presented in the section 2. By using the FEM code Cast3M, the temperature and the heat 219 

flux field in the whole equivalent domain can be obtained.  220 

 221 

Figure 6: MRP (b) of a fractured medium (a) and its equivalent medium for numerical 222 

simulation (c).  223 

The macroscopic heat flux is calculated by taking the average over the MRP inside the 224 

equivalent domain. 225 

Initial medium Equivalent medium 

MRP 

∀z → ∞: 𝑇 =  ∇𝑇. z ∀z → ∞: 𝑇𝑜 =  ∇𝑇𝑜. z 

(a) 

(b) 

c) 
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  𝐹 =
1

𝑉𝑀𝑅𝑃
∫ 𝑓

𝑀𝑅𝑃

𝑑𝑉 (22) 

Then the effective conductivity is calculated, for the case of parallel cracks, by: 226 

  𝐶𝑁 =
𝐹3

∇𝑇3
; 𝐶𝑇 = 𝐶𝑠 (23) 

and for random orientation distribution of cracks by: 227 

  𝐶 =
𝐶𝑁 + 2𝐶𝑇

3
 (24) 

Fig. 7 shows a comparison between the numerical simulation obtained by current method 228 

and the analytical solutions derived in previous section, for the case of parallel non-229 

conducting cracks. A perfect fit between the numerical approach and the analytical approach 230 

(eq. (19)) can be observed. It is to note that both approaches consider the spatial distribution 231 

of the cracks. Two distribution was considered: 𝑋𝑑 = 0.1 and 𝑋𝑑 = 0.05. The numerical 232 

results also show that, as presented in eq. (21), when 𝑋𝑑 tends to zero the conductivity tends 233 

to that obtained by the Mori-Tanaka method (eq. (15)).  234 

 235 

Figure 7: Comparison between the numerical PBM and the analytical homogenization-based 236 

approach. 237 

Crack density 𝜖 

cN

𝑐𝑠
 

Numerical simulation Xd = 0.05 

Numerical simulation Xd = 0.1 

Analytical solution Xd = 0.05 

Analytical solution Xd = 0.1 

Mori − Tanaka 
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Note that, differently from the analytical solutions, the numerical method also allows the 238 

simulation of the effective conductivity media containing conducting cracks. Fig. 8 shows the 239 

effect of the crack conductivity on the overall conductivity of the medium. The simulation 240 

suggests that, for 𝐶𝑐/𝐶𝑠 ≥ 0.1, the effect of cracks on the overall conductivity of the fractured 241 

media is weak.  242 

 243 

Figure 8: Effect of crack conductivity and crack density on overall conductivity of fractured 244 

media: numerical simulations. 245 

4. Conclusions 246 

Firstly, heat flow across a single crack is analyzed by both analytical and numerical methods. 247 

A closed-form solution is derived for the temperature jump across a single non-conducting 248 

crack under homogeneous gradient far-field boundary condition. This analytical formulation is 249 

then validated by the FEM simulation. The effect of crack conductivity on the temperature 250 

discontinuity is also analyzed by the numerical method. It is shown that for crack of high 251 

conductivity (for example water saturated crack), the temperature jump across the crack can 252 

be negligible and the crack affects weakly the heat flow through the whole medium. 253 

Secondly, the basic result of heat flow across a single crack is extended for the case of 254 

multiple cracks. Homogenization-based analytical approaches and PBM are employed to 255 

Crack density 𝜖 

 
𝐶𝑁

𝐶𝑠
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simulate effective thermal conductivity of fractured materials. Both isotropic and transversely 256 

isotropic (parallel cracks) cases are considered. The spatial distribution of the cracks is also 257 

taken into account in the analytical and numerical methods. In the particular case of non-258 

conducting crack, the numerical and analytical methods fit perfectly together. When the 259 

distribution of the crack is aligned, both approaches tend to the analytical solution developed 260 

based on the Mori-Tanaka scheme. 261 

The numerical PBM allows also the simulation of the effect of the crack conductivity on the 262 

overall conductivity of the fractured media. It is demonstrated that, for cracks with 263 

conductivity equal to of about 10% of the conductivity of the surrounding solid matrix (for 264 

example water saturated rocks), the effect of the cracks system on the overall conductivity of 265 

the fractured media can be negligible. 266 

References 267 

Tang, A. M., & Cui, Y. J. (2009). Modelling the thermo-mechanical volume change behaviour 268 

of compacted expansive clays. arXiv preprint arXiv:0904.3614. 269 

Tang, A. M., Cui, Y. J., & Le, T. T. (2008). A study on the thermal conductivity of compacted 270 

bentonites. Applied Clay Science, 41(3), 181-189. 271 

Bentejac, F., & Hourdequin, N. (2005). TOUTATIS: An Application of the Cast3m Finite 272 

Element Code for PCI Three-Dimensional Modelling. In Pellet-Clad Interaction in Water 273 

Reactor Fuels. 274 

Bornert, M. (1996). A generalized pattern-based self-consistent scheme. Computational 275 

Materials Science, 5(1), 17-31. 276 

Bornert, M., Stolz, C., & Zaoui, A. (1996). Morphologically representative pattern-based 277 

bounding in elasticity. Journal of the Mechanics and Physics of Solids, 44(3), 307-331. 278 

Budiansky, B., & O'connell, R. J. (1976). Elastic moduli of a cracked solid. International 279 

Journal of Solids and Structures, 12(2), 81-97. 280 



17 
 

Camacho, G. T., & Ortiz, M. (1996). Computational modelling of impact damage in brittle 281 

materials. International Journal of solids and structures, 33(20), 2899-2938. 282 

Castañeda, P. P., & Willis, J. R. (1995). The effect of spatial distribution on the effective 283 

behavior of composite materials and cracked media. Journal of the Mechanics and Physics 284 

of Solids, 43(12), 1919-1951. 285 

Clauser, C., & Huenges, E. (1995). Thermal conductivity of rocks and minerals. Rock physics 286 

& phase relations: A handbook of physical constants, 105-126. 287 

Cui, Y. J., Tang, A. M., Qian, L. X., Ye, W. M., & Chen, B. (2011). Thermal-mechanical 288 

behavior of compacted GMZ Bentonite. Soils and foundations,51(6), 1065-1074. 289 

Dormieux, L., Kondo, D., & Ulm, F. J. (2006). Microporomechanics. John Wiley & Sons. 290 

Eshelby, J. (1957). The determination of the elastic field of an ellipsoidal inclusion and 291 

related problems. Proc. R. Soc. London, A 241, 376–396. 292 

Giraud, A., Gruescu, C., Do, D. P., Homand, F., & Kondo, D. (2007). Effective thermal 293 

conductivity of transversely isotropic media with arbitrary oriented ellipsoidal 294 

inhomogeneities. International Journal of Solids and Structures, 44(9), 2627-2647. 295 

Gruescu, C., Giraud, A., Homand, F., Kondo, D., & Do, D. P. (2007). Effective thermal 296 

conductivity of partially saturated porous rocks. International Journal of Solids and 297 

Structures, 44(3), 811-833. 298 

Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of 299 

materials with misfitting inclusions. Acta metallurgica, 21(5), 571-574. 300 

Nguyen, ST (2014a). Micromechanical approach for electrical resistivity and conductivity of 301 

sandstone. Journal of Applied Geophysics, 111, 135-140. 302 

Nguyen, ST (2014b) Generalized Kelvin model for micro-cracked viscoelastic 303 

materials. Engineering Fracture Mechanics, 127, 226-234. 304 

Nguyen, S. T., & Dormieux, L. (2014). Propagation of micro-cracks in viscoelastic materials: 305 

Analytical and numerical methods. International Journal of Damage Mechanics, 306 

1056789514539715. 307 



18 
 

Nguyen, ST, Dormieux, L, Le Pape, Y & Sanahuja, J (2011) A Burger model for the effective 308 

behavior of a microcracked viscoelastic solid. International Journal of Damage Mechanics, 309 

20(8), 1116-1129. 310 

Nguyen, ST, Vu, MH, & Vu, MN (2015a). Extended analytical approach for electrical 311 

anisotropy of geomaterials. Journal of Applied Geophysics, 123, 211-217. 312 

Nguyen, S. T., Vu, M. H., & Vu, M. N. (2015b). Equivalent porous medium for modeling of the 313 

elastic and the sonic properties of sandstones. Journal of Applied Geophysics, 120, 1-6. 314 

Nguyen, TN, Nguyen, ST, Vu, MH, & Vu, MN (2015c). Effective viscoelastic properties of 315 

micro-cracked heterogeneous materials. International Journal of Damage Mechanics, 316 

1056789515605557. 317 

Pouya, A., Vu, M. N., Ghabezloo, S., & Bendjeddou, Z. (2013). Effective permeability of 318 

cracked unsaturated porous materials. International Journal of Solids and Structures, 50(20), 319 

3297-3307. 320 

Stolz, C., & Zaoui, A. (1991). Analyse morphologique et approches variationnelles du 321 

comportement d'un milieu élastique hétérogène. Comptes rendus de l'Académie des 322 

sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l'univers, Sciences de la 323 

Terre, 312(3), 143-150. 324 

Vu, M. N., Nguyen, S. T., Vu, M. H., Tang, A. M., To, V. T. (2015). Heat conduction and 325 

thermal conductivity of 3D cracked media. International Journal of Heat and Mass Transfer 326 

89, 1119-1126. 327 

Zimmerman, R. W. (1989). Thermal conductivity of fluid-saturated rocks. Journal of 328 

Petroleum Science and Engineering, 3(3), 219-227. 329 

 330 


