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BASIC MECHANICAL PROPERTIES1

OF WET GRANULAR MATERIALS: A DEM STUDY2

Vinh Du Than1, Saeed Khamseh1,

Anh Minh Tang1, Jean-Michel Pereira1, François Chevoir1, Jean-Noël Roux1

3

ABSTRACT4

We use discrete, grain-level numerical simulations of a model granular assembly, made5

of spherical balls, to investigate the influence of a small amount of an interstitial wetting6

liquid, forming capillary bridges between adjacent particles, on two basic aspects of granular7

material rheology: (i) the plastic response in isotropic compression, and (ii) the critical state8

under monotonic shear strain, and its generalization to steady, inertial flow. Tensile strength9

F0 = πΓa, in contacts between beads of diameter a joined by a small meniscus of a liquid with10

surface tension Γ, introduces a new force scale and a new dimensionless control parameter,11

P ∗ = a2P/F0, for grains of diameter a under confining stress P . Under low P ∗, as cohesion12

dominates, capillary cohesion may stabilize very loose structures. Upon increasing pressure13

P in isotropic compression, such structures gradually collapse. The resulting irreversible14

compaction is well described by the classical linear relation between logP ∗ and void ratio15

in some range, until a dense structure forms which retains its stability without cohesion as16

confinement dominates for large P ∗. In steady shear flow, with uniform velocity gradient17

γ̇ =
∂v1

∂x2

under normal stress P = σ22, the apparent internal friction coefficient, which we18

define as µ∗ =
σ12

σ22

, depends on P ∗ and inertial number (reduced shear rate) I = γ̇

√
m

aP
,19

and so does solid fraction Φ. The material exhibits, as P ∗ decreases, a strongly enhanced20

resistance to shear (larger µ∗). In the quasistatic limit, for I → 0, it is roughly predicted by a21

simple effective pressure assumption, by which the capillary forces are deemed equivalent to22
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an isotropic pressure increase applied to the dry material, as long as P ∗ ≥ 1, while the yield23

criterion approximately assumes the Mohr-Coulomb form. At lower P ∗, such models tend to24

break down as liquid bonding, causing connected clusters to survive over significant strain25

intervals, strongly influences the microstructure. Systematic shear banding is observed at26

very small P ∗.27

Keywords: granular materials, cohesion, capillary forces, effective pressure, Mohr-Coulomb,28

DEM29

INTRODUCTION30

Over the last decades our understanding of the microstructural and micromechanical31

origins of macroscopic granular material rheology have greatly benefitted from the devel-32

opment of numerical simulation methods of the so-called discrete element type (DEM), in33

which the motions and interactions of individual grains are modeled (Radjäı and Dubois34

2011). In particular, two basic concepts, which had previously been identified and exploited35

in process, chemical and geomechanical engineering, were revisited, and supported by mi-36

cromechanical interpretations. One is the random close packing (RCP) state (Cumberland37

and Crawford 1987), the configuration of a granular assembly maximizing density under the38

constraint of mutual non-interpenetrability of the grains, without any specific ordering. The39

RCP state is a stable equilibrium state of an isotropically compressed assembly of rigid,40

frictionless grains (Agnolin and Roux 2007a; Donev et al. 2005; O’Hern et al. 2003), and41

its characteristics, most notably its solid fraction, are remarkably reproducible, irrespective42

of the dynamical assembling method. Furthermore, because frictionless particle assemblies43

appear to be devoid of dilatancy – which has been explicitly checked for disks and spherical44

beads (Peyneau and Roux 2008a), and for polygonal shapes in 2D (Azéma et al. 2015) – the45

same solid fraction (about 0.64 for identical beads) is obtained on preparing, without any46

friction mobilization, packings under different, possibly anisotropic, conditions (Silbert et al.47

2002; Peyneau and Roux 2008b). In the presence of friction, many different states can be ob-48

served, varying in density and coordination number (Agnolin and Roux 2007a; Magnanimo49
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et al. 2008), even if stresses and microstructure are isotropic. The second traditional notion50

which has been revisited by DEM, with due attention to its microscopic foundations, is that51

of the critical state, in the sense of soil mechanics (Wood 1990; Mitchell and Soga 2005): the52

steady state of plastic flow attained, irrespective of the initial state, after large enough strain53

in monotonically, quasistatically sheared material. The critical state has been shown (Radjäı54

et al. 2004; Rothenburg and Kruyt 2004; Radjäı et al. 2012; Kruyt and Rothenburg 2014)55

to be an attractor state for all variables characterizing internal structure, micromorphology56

and forces, such as coordination numbers, fabric tensors or friction mobilization, as well57

as for stresses and solid fraction. Upon increasing the shear rate, the material behavior is58

affected by inertial effects, and the internal state of the homogeneously sheared material59

depends, under controlled normal stress P , on inertial number I (as defined in the abstract),60

the quasi-static critical state corresponding to the limit of I → 0. This generalization of the61

critical state to I-dependent steady homogeneous shear flows has led to the formulation of62

efficient constitutive laws for dense granular flows (Forterre and Pouliquen 2008; Andreotti63

et al. 2013), in terms of the I dependence of internal friction coefficient µ∗ and solid frac-64

tion Φ. The RCP state (or another well-controlled homogeneous isotropic packing state)65

on the one hand, and the critical state, on the other hand, correspond to the initial and66

the final states in many relevant mechanical tests – typically one starts from some isotropic67

packing, of which the RCP is an important limiting case, and one imposes a loading path68

leading to the critical state (Thornton 2000; Radjäı et al. 2004). Their interest also stems69

from their lack of dependence on many features and parameters governing contact behavior,70

especially dynamical ones, but also elastic contact stiffnesses, in the frequent case of negli-71

gible contact deflections (Roux and Chevoir 2011). On introducing new models for grains,72

with such features as rolling resistance or angularity (Azéma et al. 2013; Saint-Cyr et al.73

2012; Estrada et al. 2011), it is natural to first investigate microstructural and mechanical74

properties of RCP and critical states. Cohesive forces in contacts significantly affect both75

isotropic packings (Gilabert et al. 2007) and steady shear flows (Rognon et al. 2006).76
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The present paper states some essential results obtained by DEM simulations, for both77

isotropically compressed static assemblies, and I-dependent steady uniform shear flows, with78

special emphasis on the critical state in the limit of I → 0, in the case of a model of wet79

spherical grains. Compared to similar numerical studies in the literature (Richefeu et al.80

2006; Scholtès et al. 2009b) the ones presented here investigate looser structures, which81

could not be observed with dry grains – as evidenced in experiments with sands (Bruchon82

et al. 2013a; Bruchon et al. 2013b). While both situations should be more extensively83

studied, in more detailed publications (Khamseh et al. 2015; Than et al. 2015), in which84

thorougher investigations of microscopic aspects will be presented, some salient features of85

isotropic compression and steady shear flows are described, stressing the differences with86

dry, cohesionless materials.87

The paper is organized in the following way. Once the model material and the inter-88

actions are suitably described in the forthcoming section (“Model material and simulation89

ingredients”), the two main parts of the paper separately address these two important as-90

pects of wet granular material rheology: “Isotropic assembly and compression”, and then91

“Dense shear flow and critical states”. The final Conclusion section sums up the results and92

puts them in perspective.93

MODEL MATERIAL AND SIMULATION INGREDIENTS94

Stress and Strain Control95

Our model material is an assembly of N equal-sized spherical beads of diameter a. The96

simulation cell is a rectangular cuboid, with edges, of lengths (Lα)1≤α<3, parallel to coordi-97

nate axes, periodic in all three directions. We control all three diagonal stress components in98

isotropic compression, and wait for equilibrium conditions, as in Agnolin and Roux (2007a),99

to be satisfied within a preset tolerance. In shear tests a granular flow is imposed in direction100

1, with a gradient in direction x2, defining shear rate γ̇ =
∂v1

∂x2

. In that case, the periodic-101

ity in direction 2 is implemented through the Lees-Edwards procedure (Allen and Tildesley102
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1987), length L2 is allowed to vary in response to the enforced condition of constant normal103

stress σ22, while lengths L1 and L3 are kept fixed – as in Peyneau and Roux (2008a).104

Force Model: Elasticity and Friction105

The spherical beads are assumed to be made of a material with Young modulus E106

and Poisson ratio ν. Coulomb friction applies in the contacts, with friction coefficient µ.107

Elastic-frictional contact forces are modeled with a simplified Hertz-Mindlin-Deresiewicz108

force law (Agnolin and Roux 2007a). The normal Hertz force FN depends on contact deflec-109

tion h as110

FN =
Ẽ
√
a

3
h3/2, (1)111

in which we introduced notation Ẽ = E/(1− ν2). The adopted simplified form of tangential112

elasticity (Agnolin and Roux 2007a) involves a constant ratio (2− 2ν)/(2− ν) of tangential113

(KT ) to normal (KN) stiffnesses in contacts. Both depend on FN , as, from (1), KN =
dFN
dh
∝114

F 1/3. With such laws one should avoid spurious creation of elastic energy, and therefore KT115

is suitably rescaled in cases of decreasing normal force (Elata and Berryman 1996). Details116

on the elastic model, on the enforcement of the Coulomb condition,117

||FT || ≤ µFN , (2)118

and on the objective implementation of the force law, with due account of all possible motions119

of a pair of contacting grains, are given by Agnolin and Roux (2007a). Our simulations are120

carried out with the elastic properties of glass beads (Ẽ = 77 GPa) and the intergranular121

friction coefficient, µ, is kept equal to 0.3 in the present study.122

Estimating the typical contact deflection under confining stress P leads to the definition123

of a dimensionless stiffness parameter κ (Radjäı and Dubois 2011), such that h/a ∝ κ−1.124

For a Hertzian contact, one may use (Agnolin and Roux 2007a)125

κ = (
Ẽ

P
)2/3. (3)126
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In our shear test simulations we keep κ = 8400, corresponding to glass beads under pressure127

100 kPa. It is deemed large enough to approach the limit of rigid grains with good accuracy.128

Viscous damping terms oppose normal relative motion of contacting grains, and are129

chosen to correspond to a restitution coefficient close to zero in normal collisions. Such terms130

were shown (da Cruz et al. 2005; Peyneau and Roux 2008a) to have negligible influence in131

the slow compression steps and shear flows of the present study.132

Force Model : Capillary Attraction133

An interstitial wetting liquid, introduced in small amounts, preferentially localizes at134

contacts or between close neighboring grains, forming liquid bridges transmitting capillary135

forces. Such a liquid bridge, or meniscus, is sketched in Fig. 1. We consider a perfectly wet-136

ting liquid, with contact angle θ equal to zero. In accordance with some observations (Her-137

minghaus 2005), we assume that the menisci only form as particles come into contact. If138

contacting grains move apart from one another, and are separated by distance h, the liquid139

bridge remains stable, transmitting an h-dependent force, until the gap, h, reaches a certain140

rupture distance D0, as observed in (Kohonen et al. 2004). D0 relates to meniscus volume141

V as D0 ' V 1/3 (Lian et al. 1993; Willett et al. 2000; Pitois et al. 2000).142

The attractive force between particles separated by distance h ≤ D0 is modeled within143

the Maugis approximation (Maugis 1987), appropriate for small enough meniscus volume.144

The maximum attractive force (tensile strength) is reached for contacting particles, and145

equal, according to this model, to F0 = πaΓ (Γ is the liquid surface tension) independent of146

the meniscus volume. The capillary force varies with gap h between particle surfaces as147

FCap =



−F0 h ≤ 0

−F0[1− 1√
1+ 2V

πah2

] 0 < h ≤ D0

0 h > D0

(4)148

(One should note that h < 0 corresponds to an elastic deflection of the particles in contact,149
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and keep in mind that a nonvanishing distant force, FCap(h) with h > 0, is only possible150

if the grains have been in contact and did not move apart farther than distance D0 ever151

since). This formula is a simpler, analytical form of the toroidal approximation with the152

“gorge method” (Lian et al. 1993) for the capillary force in a meniscus. Alternative forms153

of the attractive force law (Willett et al. 2000; Soulié et al. 2006; Radjäı and Richefeu 2009)154

might actually be more accurate. We found (Khamseh et al. 2015) that the macroscopic155

results were not affected upon changing the force law, were very moderately influenced156

by saturation within the pendular range, but did significantly change upon suppressing the157

capillary hysteresis (i.e., assuming menisci to form as soon as a pair of grains approach within158

rupture distance D0). It is important to recall that the Coulomb inequality, as written in (2),159

applies to the elastic component of the normal force only, to which the negative (attractive)160

capillary term should be added. Thus, in an isolated grain pair bonded by a meniscus,161

at equilibrium the repulsive elastic force is equal to F0, and the contact may transmit a162

tangential force at most as large as µF0.163

The morphology of partially saturated granular materials depends on the liquid con-164

tent (Mitarai and Nori 2006; Kudrolli 2008). The present study, like a number of previous165

ones (Richefeu et al. 2006; Radjäı and Richefeu 2009; Scholtès et al. 2009a), is restricted to166

the pendular state of low saturations, in which the wetting liquid is confined in bonds or167

menisci joining contacting grains. Liquid saturation S is defined as the ratio of liquid volume168

Ωl to interstitial volume Ωv, the total system volume being denoted as Ω. Writing Ωg for the169

volume of all N solid grains in the system (such that Ω = Ωg + Ωv, S is related to meniscus170

volume V , solid fraction Φ = Ωg/Ω = 1−Ωv/Ω = Nπa3

6Ω
and wet coordination number z (the171

average number of liquid bonds on one grain). As the liquid volume is Ωl = zNV
2

, one has172

S =
Ωl

Ωv

=
zNV

2(1− Φ)Ω
=

3z

π

Φ

1− Φ

V

a3
. (5)173

In our study, we fix the value of meniscus volume V , equal to 10−3a3 in all results presented174
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in this paper. Such a choice does not conserve the total liquid volume (proportional to the175

varying coordination number z of liquid bonds) – but this is, as we could check (Khamseh176

et al. 2015), quite an innocuous drawback.177

The pendular state to which our model applies is relevant in some low (but not too178

small) saturation range. The upper saturation limit for the pendular state corresponds to the179

merging of the menisci pertaining to the same grain, which, considering a triangle of spherical180

grains in mutual contact, happens as soon as the filling angle ϕ (see Fig. 1) reaches π/6. The181

analytical formula for V (Lian et al. 1993), within the toroidal approximation, as a function182

of ϕ (setting h = 0, and θ = 0), then yields
V

a3
' 8.10−3. Eq. (5) then predicts a maximum183

saturation between 0.05 and 0.1, similar to experimental observations (Herminghaus 2005;184

Mitarai and Nori 2006). On the other hand, the minimum saturation Smin for bridges to185

form and join neighbouring grains might be roughly estimated upon introducing a roughness186

scale δ, assuming a liquid layer of thickness δ coats the surface of the grains, as187

Smin =
6Φδ

(1− Φ)a
. (6)188

For Φ = 0.5 and δ ∼ 10−4a, Smin is of the order of 10−3, as observed in experiments (Her-189

minghaus 2005). Using (5), and typical values of z and Φ, this sets a lower bound to meniscus190

volume, of order 10−4a3.191

Capillary attraction introduces force scale F0 in the model, whence the definition of a192

reduced pressure, comparing applied stress P (isotropic pressure in compression, or controlled193

normal stress σ22 = P for shear flows) to contact tensile strength F0, as194

P ∗ =
a2P

F0

=
aP

πΓ
. (7)195

As observed with different cohesive granular models, mostly in two dimensions (2D) (Gilabert196

et al. 2007), we expect strong effects of cohesive forces, possibly very loose equilibrium197

microstructures for P ∗ � 1, while the properties of cohesionless systems are retrieved in the198
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limit of large P ∗. Our simulations are carried out with spheres of diameter a = 0.115 mm,199

perfectly wet by water, with surface tension Γ = 7.3 × 10−2 J.m−2. For such parameter200

values, one has P ∗ = 1 for a pressure P equal to 2 kPa. While this is admittedly a rather201

low pressure for most geotechnical applications, it might be relevant in other fields (e.g.,202

in some chemical engineering process), and the results are also, beyond wet grain models,203

more generally indicative of the influence of attractive forces of small range in granular204

assemblies. Another important issue is the possible influence of the initial microstructure205

assembled under low P ∗ on the material properties under larger confining stresses. In the206

following most results are expressed in terms of dimensionless control parameters.207

ISOTROPIC ASSEMBLY AND COMPRESSION208

We studied the important irreversible configuration changes entailed by a pressure cycle209

starting with a low value of P ∗, of order 10−2 or 10−3, with an initial state that cannot210

be observed without cohesive forces. Maximum pressures are such that P ∗ � 1. Our211

parameter choice is such that κ = 114000 for P ∗ = 1 and κ = 5300 for P ∗ = 100, which is212

still high enough a value for contact deflections to be irrelevant (Roux and Chevoir 2011).213

Consequently, our results, if expressed as dimensionless quantities functions of P ∗ (κ being214

large enough to be irrelevant), may apply to systems of wet spherical grains with arbitrary215

diameter, liquid surface tension and wetting angle.216

Loose initial states217

Previous 2D simulations of cohesive systems by Gilabert et al. (2007) made it clear218

that cohesive forces play an important part in the assembling stage. It is thus necessary to219

assemble wet grains, rather than introduce liquid bridges into previously assembled dry grain220

configurations. As in the 2D studies, we found it possible to assemble low density initial221

configurations by the following procedure. First, disordered assemblies of grains (comprising222

4000 particles) with solid fraction Φ0 are prepared, using either random insertion or crystal223

melting with event-driven, energy-preserving dynamics (Agnolin and Roux 2007a). Then,224

particles are attributed random velocities, drawn according to a Gaussian distribution with225
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zero mean and variance V 2
0 , and left to interact with the force laws introduced in the previous226

section, within a periodic simulation cell of fixed size and shape. Capillary attraction induces227

the formation of clusters of grains joined by liquid bridges, and this step of the calculation is228

stopped when all particles belong to one single such cluster, and the configuration is regarded229

as sufficiently equilibrated. (Tolerances on equilibrium requirements are expressed in terms230

of typical contact force F1 as, 10−4F1 for force balance, or 10−4aF1 for torque balance – with231

F1 = F0 in the assembling stage). The structure of such initial configurations depends on232

imposed solid fraction Φ0, which we chose equal to 0.3 in the main simulation series. It233

also depends on velocity V0. The latter should be compared to the characteristic velocity234

V ∗ =

√
D0F0

m
, which is proportional to the relative velocity that is necessary to separate235

a pair of grains, overcoming the potential energy of capillary force (4). Here, choosing236

V0/V
∗ = 0.2, we could observe that the results corresponded to a low initial agitation limit.237

An important variable characterizing equilibrium configurations, the contact coordination238

number, zc, is then barely larger than 4 – the isostatic (barely rigid) value (Agnolin and239

Roux 2007a). The coordination number of distant interactions, i.e., the average number of240

non-contacting neighbors connected to one grain through a capillary meniscus, which we241

denote as zd, is equal to zero. This latter observation is explained by the capillary hysteresis:242

liquid bonds without contact only exist in pairs that have been in contact in the past. Thus,243

for low enough initial agitation velocity V0, contacts, once formed in the assembling stage,244

do not break in the constant density aggregation stage.245

Compression curves246

Loading procedure and measurements247

To study the compression of initially loose configurations, stabilized at Φ0 = 0.3 thanks to248

adhesive forces, a loading program is applied in which the isotropic pressure, P , is stepwise249

incremented, from a low value (corresponding to P ∗ = 10−3) up to P ∗ = 10000. Steps250

are uniform on a logarithmic scale (i.e., pressure is multiplied by 101/4 at each step). For251

each new value of applied pressure P, one waits for equilibrium to be approached with good252

10 Than et al., revised version, July 9, 2015



accuracy, and records the new configuration. To appreciate the irreversibility of the observed253

evolution, the loading program is a compression cycle with a decompression branch, on which254

the previously applied pressure levels are retraced back, down to the initial small value. This255

paper being only a brief account of salient behaviours in compression and in quasistatic shear256

flow, we do not present here a complete study of all properties and internal states of P ∗-257

dependent isotropic configurations. We mainly focus on solid fraction Φ, or, according to258

the soil mechanics presentation, on void ratio e = −1 + 1/Φ, and on contact (zc) and distant259

(zd) coordination numbers. A more complete parametric study (dependence on velocity260

V0, meniscus volume, or various aspects of interaction laws such as capillary hysteresis and261

possible rolling friction) is also postponed to a forthcoming, more detailed publication (Than262

et al. 2015).263

Irreversible compression264

Fig. 2(a) shows the evolution of the void ratio in the isotropic compression of a system265

of 4000 beads, with the characteristics as described in the previous sections. The loading266

curve is composed of three parts: first (regime I), in range P ∗ ≤ 0.01, the initial structure267

supports the pressure increase, and void ratio e hardly departs from its initial value (equal to268

2.33). Then, in a second stage (regime II), extending up to P ∗ ' 10, the system undergoes269

a fast compression, which becomes considerably slower at high pressures (regime III). On270

reducing P ∗, only the density change occurring within regime III is reversed. As apparent271

on the second graph, Fig. 2(b), in which the reference wet system is compared to a dry272

(cohesionless) assembly of identical grains, regime III is parallel to the compression curve273

of dry grains, in which the small compression is due to contact elasticity, and, as shown by274

Agnolin and Roux (2007b), nearly reversible (in terms of density at least). Thus regime III275

marks the end of the plastic collapse of the loose structure stabilized by capillary forces.276

The plastic compression behavior of the wet material is closely similar to the 2D results277

of Gilabert et al. (2008), and the void ratio curve in regime II might be represented with278

a linear variation with logP ∗, assuming eref is the void ratio for some reference reduced279

11 Than et al., revised version, July 9, 2015



pressure, P ∗ref:280

e− eref = −λ log
P ∗

P ∗ref

. (8)281

Coefficient λ ' 0.36 successfully describes the curve in interval 0.04 ≤ P ∗ ≤ 2. Eq. 8 is clas-282

sically used in soil mechanics for cohesive systems (Mitchell and Soga 2005). Upon unloading283

and reloading at various pressure levels along the compression curve, it is observed (as shown284

in Fig. 3) that a plastic response (irreversible structural rearrangement with density change)285

under isotropic pressure will be observed only if the maximum pressure the system has been286

subjected to in the past (the “overconsolidation pressure” of soil mechanics) is exceeded.287

This maximum pressure value appears to fully characterize the history dependence of the288

system in isotropic compression.289

Coordination numbers290

In the compression cycle, the coordination numbers of contact (zc) and distant (zd) inter-291

actions are shown in Fig. 4. Compared to density changes, those of the contact coordination292

number are remarkably small, as it increases from nearly 4 to about 4.8 after the full pres-293

sure cycle. As to the coordination number of menisci between distant grains, it starts at294

zero, due to the absence of contact opening in the assembling stage with small agitation295

velocity. Its increase to 2 in the course of irreversible compression signals the failure of the296

contact structure: the network gets rearranged as old contacts break, and are replaced by297

menisci connecting receding grain pairs, and new contacts form. The small change in zc is298

the net effect of contact creations and destructions. The final increase of zc, accompanied by299

a decrease of zd, in regime III (high pressures) is caused by the elastic compression, closing300

the gaps between non-contacting pairs, as in dry systems (Agnolin and Roux 2007b). We301

could check that the coordination numbers remain very nearly constant along the reversible302

paths of Fig. 3, which corresponds to unperturbed contact and meniscus networks.303

Because of the capillary hysteresis of meniscus formation and breakage, only a proportion304

of neighbour pairs within rupture distance D0 (defined in the presentation of the force model,305
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in connection with Eq. 4), are connected by a liquid bridge. This proportion is initially zero,306

it increases with P ∗, peaking at 70% in regime II, decreasing to about 55% in the denser307

systems (similar to the value ∼ 50% reported in the experiments by Kohonen et al. (2004)).308

Effect of drying or of saturating309

In practice, one may act on a wet system by changing its saturation. The most drastic310

change should be obtained on entirely suppressing the capillary cohesion, either by drying,311

or by completely saturating the intergranular voids by the liquid. In numerical simulations,312

one may simply remove all capillary forces, leaving only the interactions present in a dry313

system. It is interesting to observe the effects of such an ideal transformation, carried out314

at various points along the irreversible compression curve. Fig. 5 shows the resulting void315

ratio evolution, if the system is deprived of capillary forces immediately before unloading at316

different pressure levels. This ideal drying or saturation step produces a sudden collapse (a317

brutal compression step), unless all irreversible compression has already taken place (as for318

points F and G on Fig. 5). (More gradual collapse due to progressive imbibition is reported319

in some experiments (Bruchon et al. 2013b)). In such a case, one may remove all capillary320

forces, as their mechanical role, at high P ∗, is negligible. Remarkably, the final state after321

decompression keeps the same density, whether or not the system has been deprived of322

capillary cohesion.323

DENSE SHEAR FLOW AND CRITICAL STATE324

Model Parameters325

The results reported here pertain to the same reference systems studied in isotropic326

compression, with N = 4000, friction coefficient µ = 0.3 in the contacts, meniscus volume327

V = 10−3a3. While stiffness number κ is fixed, reduced pressure takes values P ∗ = ∞ (i.e.,328

the dry case), 10, 5, 2, 1, 0.436 and 0.1. The investigated range of I values (varying from329

10−4 to 0.562 by factors of
√

10) enables an accurate determination of the quasistatic limit,330

as well as an assessment of inertial effects.331
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We focus on situations in which a uniform steady state might be identified under constant332

macroscopic shear rate γ̇, after a transient stage (of a few unit strains at most). This turns out333

to exclude small values of P ∗: we could record homogeneous state parameters for P ∗ = 0.436,334

but only partial information was gathered on the material state under P ∗ = 0.1, since such335

systems flow inhomogeneously, localizing the velocity gradient within a narrow shear band336

(save for a restricted range of I values of order 0.01).337

Constitutive laws338

Restricting their measurement to the higher values of P ∗, we measure the (apparent)339

macroscopic friction coefficient µ∗ =
σ12

σ22

, and solid fraction Φ, in steady homogeneous shear340

flows, with the results shown in Fig. 6. As in some published results (Rognon et al. 2006;341

Rognon et al. 2008), obtained in 2D with a model of cohesive disks, lower P ∗ values increase342

µ∗ and decrease the density of the sheared material. One may note, though, that the effect343

on µ∗ is considerably larger in the 3D assembly of wet particles: even for P ∗ = 1, when the344

attractive forces and the confining ones are of similar magnitude, the quasistatic internal345

friction coefficient, compared to its dry value (P ∗ = ∞), µ∞0 = 0.335, nearly doubles, at346

about 0.61. It reaches 0.867 ± 0.003 at P ∗ = 0.436. In addition to the values shown in the347

figure, limited data are available for P ∗ = 0.1, in a range of I (of order 0.01) for which shear348

banding does not occur. Such I values are close enough, judging from the I dependence of349

µ∗ at different P ∗ levels, to the quasistatic limit of I → 0. We could then measure µ∗ ' 1.62350

and Φ ' 0.435.351

As suggested by Rognon et al. (2006), for each P ∗, a power law fit can describe the I352

dependence of µ∗ and Φ, as in a number of studies of dry granular flows (Hatano 2007;353

Peyneau and Roux 2008a):354

µ∗ = µ∗0 + CIα (9)355

The data are compatible with a P ∗-independent value of exponent α, α ' 0.8, while coeffi-356

cient C decreases for smaller P ∗. In comparison with µ∗, the solid fraction changes relatively357
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little as a function of both P ∗ and I in the investigated range. Both quantities tend to depart358

slower from their quasistatic limit for I → 0 as cohesive effects get stronger (for smaller P ∗).359

Void ratios e0 = −1 + 1/Φ0 in the P ∗-dependent critical states are compared to the360

values eiso(P ∗) obtained in direct isotropic compression (normally consolidated states) in361

Fig. 7. The difference eiso − e0 is a decreasing function of P ∗, but remains positive, and362

critical states are denser than isotropically compressed ones (this also applies to dry grains,363

P ∗ = ∞ – see the inserted subplot of Fig. 7). All normally consolidated isotropic states364

should therefore be regarded as loose: they have to contract under shear before approaching365

the critical state.366

Internal States, Microscopic Aspects367

Coordination numbers368

Coordination numbers are shown in Fig. 8, as functions of P ∗ for different I, showing369

a quasistatic limit to be closely approached at small I. A comparison to isotropic states370

obtained in compression (Fig. 4) reveals, unlike for the density, quite similar values of both371

zc and zd at given P ∗. The number of contacts does not change much with P ∗, while the372

number of distant interactions tends to increase with P ∗. Faster flows (larger I values) tend373

to break contacts, which results in smaller zc values, an effect partly compensated by the374

increase of zd: menisci survive contact openings with separation distances below D0.375

Contributions to stresses376

Throughout the studied parameter range, stresses in the flow are dominated by force377

contributions:378

σαβ =
1

Ω

∑
i<j

Fα
ijr

β
ij, (10)379

the sum running over all pairs i, j of grains interacting by force Fij, rij pointing from the380

center of i to the center of j. This suggests a decomposition into contributions of different381

interactions. One may, e.g., isolate the contribution of distant interactions (σd
αβ) and contact382

interactions (σc
αβ), the latter being split into the contributions of tangential forces (σT

αβ) and383
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normal ones (σN,c
αβ ):384

σαβ = σc
αβ + σd

αβ = σN,c
αβ + σT

αβ + σd
αβ (11)385

Alternatively, one may split force Fij into its tangential and normal components, and386

isolate, in the latter, the capillary force from the elastic one. This results in a decomposition387

of stresses into the contribution σNe
αβ of normal elastic forces in contacts, the one of tangential388

contact forces, σT
αβ, and that of capillary forces, σcap

αβ , the latter incorporating both contacts389

and distant interactions through liquid bridges:390

σαβ = σNe
αβ + σT

αβ + σcap
αβ . (12)391

To understand the large values of σ12 observed at small P ∗, one may use Eq. 11, in which392

all terms of the sum have the same sign. Distant interactions contribute at most (for small393

P ∗) 8% of the sum. Tangential forces account for about 18% of the total at P ∗ = 0.436,394

decreasing to 10% for P ∗ = 10. Thus the essential contribution to shear stress is that of395

normal contact forces, σN,c
12 .396

For normal stresses, it is instructive to use decomposition (12). Capillary forces are397

attractive, and thus contribute negatively to σ22 = P , as shown in Fig. 9. As the contribution398

of tangential forces is vanishingly small, normal elastic forces have to compensate the effect399

of σcap
22 , whence

σNe
22

σ22

> 3 for P ∗ = 0.436. Remarkably, the contribution of capillary forces to400

shear stress, which is also opposite to that of normal repulsive forces, remains modest:
σcap

12

σ12

401

evolves from about −0.12 at P ∗ = 0.436 to −0.03 at P ∗ = 10.402

Following a number of recent micromechanical studies of granular materials (Peyneau403

and Roux 2008b; Azéma and Radjäı 2014), one may relate stresses σN
αβ due to normal forces404

to fabric and force anisotropy parameters, an approach that we do not pursue any further405

here (more indications are provided by Khamseh et al. (2015)).406
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Age of contacts and menisci.407

One remarkable feature by which systems with capillary cohesion differ in shear flow from408

dry granular assemblies is the distribution of contact and interaction ages, expressed in terms409

of strain intervals. Thus Fig. 10 shows that the same pairs of grains may stay in interaction,410

joined by a meniscus, over several units of strain, the more often the lower P ∗. Those411

distribution functions decay exponentially for large values, with a characteristic time growing412

from 1.1γ̇−1 for P ∗ = 10 to 1.7γ̇−1 for P ∗ = 0.436 – contrasting with the corresponding decay413

time for the contact age distribution in a dry cohesionless system (P ∗ =∞), which is about414

0.12γ̇−1 for I = 0.1. Interestingly, contact lifetimes might also exceed a few strain units415

but are considerably smaller, and, unlike meniscus lifetimes, decrease for increasing I in416

the investigated range. Whereas pairs of dry grains tend to come into contact if oriented417

within the compression quadrants of the shear flow, and then separate once in the extension418

quadrant, grains connected by liquid bonds tend to form clusters that survive tumbling419

motions in the average shear flow over notable strain intervals. Upon increasing I, although420

contacting pairs separate more easily, they tend to remain joined by menisci. Qualitatively,421

such a feature might explain the slow I dependence of µ∗ and Φ in strongly cohesive systems,422

and should be related to the reduced fabric anisotropy at small P ∗, as well as to the influence423

of meniscus volume or force range D0 (Khamseh et al. 2015).424

Effective Pressure Approach425

Although the discussion of the different contributions to shear stress σ12 does not lead to426

an explanation of the observed large values of µ∗, the large tensile contribution of capillary427

forces to normal stress (Fig. 9) provides a clue. One may write428

σcap
22

= −βσ22 , (13)429

with a coefficient β ranging, in the quasistatic limit, from about 0.15 (P ∗ = 10) to 2.1430

(P ∗ = 0.436). (If the result for P ∗ = 0.1 and I ∼ 0.01 is added β then reaches about 7.2).431
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Incidentally, the independence of coefficient β on inertia parameter I for I ≤ 0.1 confirms432

that the rheological effect of liquid bonds is not easily disrupted by collisions in the presence433

of moderate inertial effects, as noticed from the distribution of their ages in the previous434

section.435

One may invoke the concept of effective pressure to describe the effect of capillary forces436

on the shear resistance of the material: the attractive forces create larger repulsive elastic437

reactions in the contact, corresponding to an effective pressure equal to (1 + β)P . (Note438

that one ignores here the small contribution of capillary forces to shear stress). One assumes439

then that the shear behavior of the material is identical to that of a dry material under440

such effective normal stress σeff
22

. This approach leads to the following prediction for the441

P ∗-dependent quasistatic friction coefficient µ∗0:442

µ∗0 = (1 + β)µ∞0 , (14)443

in which µ∞0 denotes the quasistatic internal friction coefficient for dry grains, P ∗ =∞.444

The performance of the simple effective pressure prediction for the P ∗ dependence of µ∗0445

is visualized in Fig. 11. Although the global increase of µ∗0 is captured, it is overestimated for446

the smallest P ∗ values (P ∗ = 1 and below). The relative error in the prediction of µ∗0, using447

the exact, measured value of β, is about 5% at P ∗ = 10, increasing to 20% at P ∗ = 0.436 (and448

the value of µ∗0 for P ∗ = 0.1, about 1.62, from the data for I ∼ 0.01 is largely overestimated,449

at 2.7). Thus, the effective stress approach provides a rough estimate for internal friction450

increase at small P ∗, but becomes inaccurate in the strong cohesion regime. It cannot be451

exact for various reasons: while the mechanical properties are supposed to be the same once452

effective stresses are applied to the dry material, the density is different in the dry and453

the wet case (with Φ varying between 0.525 and 0.596 as P ∗ grows from 0.436 to infinity);454

capillary forces also contribute to shear stress, the force network is bound to be different,455

etc.456
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Mohr-Coulomb Model for Critical States457

Coefficient β might actually be predicted as follows. From Eq. 10, one may relate (Agnolin458

and Roux 2007a) the average pressure, P = trσ/3, to the average normal force 〈FN〉 for all459

interactions, and to the average, 〈FNh〉d, over pairs in distant interaction, of the product of460

force by distance h ≤ D0:461

P =
Φz

πa2
〈FN〉+

Φzd

πa3
〈FNh〉d (15)462

As normal stress differences are small, ratio
P
σ 22

only slightly differs from 1 (about 0.95) at463

small I. In formula 15, the second term of the r.h.s. might be neglected, as it contributes464

less than 2% of the pressure. Contacts (zc, on average, per grain) carry capillary force −F0,465

while distant forces (zd per grain) average to a fraction of −F0. From (15) the capillary466

contribution to pressure P is bracketed as −ΦzF0

πa2
≤ Pcap ≤ −ΦzcF0

πa2
, in which z denotes467

the total coordination number, z = zc + zd. Dividing by σ22 , one obtains:468

− Φz

πP ∗
≤ P

cap

σ22

≤ − Φzc
πP ∗

. (16)469

Ignoring the small difference between Pcap and σcap
22

, (16) provides an estimate of coefficient470

β defined in (13). Thus the value of β for reduced pressure P ∗ = 0.436 is predicted between471

1.9 and 2.3 (and for P ∗ = 0.1, it should reach about 8). Relation 16 also suggests that β is472

roughly proportional to 1/P ∗:473

β ' b/P ∗, with
zcΦ

π
≤ b ≤ zΦ

π
. (17)474

Given the moderate variations of coordination numbers and density with P ∗ in the investi-475

gated range, one might choose a constant coefficient b in (17). Eq. 14 , on multiplying by476

σ22, then takes the form of a Mohr-Coulomb relation:477

σ12 = c+ µ∗1σ22 . (18)478
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This relation, a classical criterion for plastic failure (Wood 1990; Biarez and Hicher 1993;479

Richefeu et al. 2006; Andreotti et al. 2013), defines a macroscopic cohesion c, and an internal480

friction coefficient µ∗1, valid in simple shear for whatever normal stress σ22 . Here, assuming a481

constant coefficient b in (17), the Mohr-Coulomb relation is predicted to hold with the same482

value of internal friction as in the dry case, µ∗1 = µ∞0 , while macroscopic cohesion c is given483

by484

c =
bµ∞0 F0

a2
=
bπµ∞0 Γ

a
(19)485

This estimate of the macroscopic cohesion in the Mohr-Coulomb sense is very similar to486

the one obtained by Richefeu et al. (2006), by a different route. In Fig. 11, the prediction487

of static friction coefficient µ∗0 as a function of 1/P ∗ using β as deduced from (17), with488

coefficient b equal to the middle point of the specified interval, viz. b = (zc+z)Φ
2π

, is shown to489

perform quite well for P ∗ ≥ 1, failing at small P ∗, when the effective stress approach with490

the exact value of β fails too.491

In general, assuming a Mohr-Coulomb criterion for critical states to apply with a P ∗-492

independent value of cohesion c implies, upon dividing (18) by σ22 = P ∗F0/a
2, that the493

quasistatic friction coefficient µ∗0 should vary linearly with 1/P ∗:494

µ∗0 =
σ12

σ22

= µ∗1 +
a2c

F0P ∗
(20)495

The Mohr-Coulomb representation of yield stresses might thus be used as an approximation496

for P ∗ ≥ 1, with a2c/F0 ' 0.27 , but the observed sublinear increase of µ∗0 with 1/P ∗497

in Fig. 11 (see the result for P ∗ = 0.436, and the subplot including value µ∗0 ' 1.6 for498

P ∗ = 0.1) clearly precludes the definition of unique values of macroscopic cohesion and499

friction coefficient according to (18) for smaller pressures.500

CONCLUSIONS501

We now provide a quick summary of the main results on both compression and steady502

shear flow, and end with a discussion, in which perspectives for future work are evoked.503
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Isotropic Compression504

Model wet granular assemblies exhibit the same striking differences with cohesionless sys-505

tems under compression that the simpler, mostly 2D models of the recent literature: stability506

of loose structures under low P ∗, plastic behaviour in isotropic compression with hardening507

expressed by the overconsolidation pressure, linear variation of void ratio with logP in some508

range – a qualitative behaviour common to many cohesive particulate materials. Compar-509

isons with experimental observations are possible. Although the sensitivity of the results to510

quite a few model features still needs to be assessed, one may tentatively conclude that the511

final state, obtained after sufficient overconsolidation, should be independent of the initial512

configurations and of some aspects of the compression procedure. This state is not affected513

by the removal of capillary forces, and may be regarded as the result of an ideal, homoge-514

neous and isotropic version of the moist tamping assembling process (Frost and Park 2003;515

Benahmed et al. 2004). It is looser (see Figs. 2(b) and 5) than directly compressed packs of516

dry grains, and could qualify as a reference loose state.517

Shear Flow and Critical States518

The main rheological influence of capillary adhesion on critical state and shear flow is a519

strong increase of shear resistance (or apparent friction µ∗ ) as P ∗ decreases, even though520

as P ∗ reaches values of order 0.1, the strong localization tendency hinders the identification521

of constitutive laws for homogeneous flow. Meanwhile, density and coordination numbers522

variations with P ∗ are slower. In the presence of capillary forces, clusters of particles joined523

by liquid bridges may survive strain intervals of several units, and the compressive role of524

attractive forces is not as immediately disturbed as the one of the externally applied normal525

stress upon increasing shear rate and inertial effects. A simple effective stress approach526

may quantitatively account for the shear resistance trend in good approximation as long as527

P ∗ ≥ 1. The Mohr-Coulomb criterion approximately describes critical states in the same528

reduced pressure range, but is no longer applicable at lower P ∗. Many results (regarding,529

in particular, normal stress differences, fabric anisotropy, sensitivity to meniscus volume... )530
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are deferred to a more detailed paper submitted by some of the present authors (Khamseh531

et al. 2015). A major concern, the shear banding instability affecting low P ∗ shear flows,532

should certainly be addressed in a systematic study as well.533

Discussion534

Our simple model of wet grains reveals many new behaviors, compared to dry materials,535

and provides means for a critical review of macroscopic phenomenological laws (compres-536

sion curve, Mohr-Coulomb criterion). While some phenomena were already explored in 2D537

cohesive models, modeling more realistic 3D systems reveals quantitative differences (e.g.,538

a much stronger enhancement of shear resistance), and should permit experimental con-539

frontations (Pierrat et al. 1998; Richefeu et al. 2006). The present paper did not discuss540

the influence of liquid saturation within the pendular range, and our model with constant541

meniscus volume does not strictly maintain a fixed water content in the material. Such542

issues are discussed separately for compression (Than et al. 2015) and shear flow (Khamseh543

et al. 2015) in forthcoming publications. We could check that a correction of the model in544

which capillary forces are slightly more accurately described does not significantly change545

the results. Similarly, a correction of meniscus volume to ensure a constant total liquid546

volume brings only hardly noticeable changes to compression or shear behavior. Rheological547

properties vary moderately through the pendular range (Khamseh et al. 2015) (with a very548

small density change and a variation of about 20% of µ∗0 at P ∗ = 0.436).549

A more serious limitation of our model is its inability to deal with saturations exceeding550

the pendular regime. Numerical models for higher saturation levels, resorting, e.g., to a551

lattice Boltzmann discretization of the interstitial liquid, are currently being developed (De-552

lenne et al. 2015). Even in the small saturation range, though, the results for compression553

and shear show that the material behavior is considerably enriched compared to dry granular554

systems. One obvious, broad perspective is the exploration of the large unknown territory555

that separates isotropically assembled states from critical states, the simulation of deviatoric556

loads and the assessment of the applicability of macroscopic models of cohesive soils. It557
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would be interesting to explore the effects of resistance to rolling, due to surface asperities,558

on the material behavior in the presence of capillary cohesion. Even a small rolling resis-559

tance was observed to have important effects on the behavior of cohesive systems in two560

dimensions (Gilabert et al. 2008). It might be viewed as a first step towards the modeling of561

non-spherical objects (Estrada et al. 2011), but the geometry of liquid bridges joining objects562

with flat or angular surfaces might entail different force laws, and the effects of capillarity563

should be investigated in such cases.564
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Cumberland, D. and Crawford, R. (1987). The Packing of Particles. Elsevier, Amsterdam.591

24 Than et al., revised version, July 9, 2015



da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., and Chevoir, F. (2005). “Rheophysics592

of dense granular materials: discrete simulation of plane shear flows.” Phys. Rev. E, 72,593

021309.594
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APPENDIX II. NOTATION684

The following symbols are used in this paper:685

686

a = spherical grain diameter;

α = exponent of power law expressing internal friction increase with I;

b = proportionality coefficient relating β to 1/P ∗;

β = ratio of capillary contribution to total normal stress in shear flow;

C = coefficient of Iα for power law increase of µ∗;

c = macroscopic cohesion according to Mohr-Coulomb criterion;

D0 = rupture distance of liquid bridge;

Ẽ = Modulus appearing in Hertz law;

e = void ratio;

e0 = void ratio in critical state;

eiso = void ratio in isotropic compression;

F0 = maximum capillary tensile force through liquid bridge;

Φ = solid fraction;

Φ0 = solid fraction in critical state;

Φiso = solid fraction in isotropic compression;

ϕ = filling angle in liquid meniscus;

Γ = surface tension of nonsaturating interstitial liquid;

γ̇ = shear rate;

h = distance between particles or contact deflection;

I = inertial number;

κ = dimensionless contact stiffness number;

m = grain mass;

687
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µ = intergranular friction coefficient;

µ∗ = apparent internal, macroscopic friction coefficient;

µ∗1 = internal friction coefficient according to Mohr-Coulomb criterion;

µ∞0 = internal friction coefficient in critical state for dry grains;

Ω = total sample volume;

Ωl = liquid volume;

P = controlled stress: isotropic pressure in compression, normal stress σ22 in shear flow;

P ∗ = dimensionless, reduced pressure;

P = mean pressure;

S = saturation;

σαβ = stress tensor;

σeff
αβ = effective stress tensor;

σcap
αβ = contribution of all capillary forces to stress tensor;

σT
αβ = contribution of tangential forces to stress tensor;

σN
αβ = contribution of normal forces to stress tensor;

σc
αβ = contribution of contact forces to stress tensor;

σNe
αβ = contribution of normal, elastic contact forces to stress tensor;

σN,c
αβ = contribution of capillary forces in contacts to stress tensor;

σd
αβ = contribution of distant capillary forces to stress tensor;

V = meniscus volume;

V0 = initial mean quadratic agitation velocity, in assembling stage;

V ∗ = characteristic velocity, associated with attractive force;

zc = coordination number of contacts;

zd = coordination number of distant interactions;

z = total coordination number.

688
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FIG. 1. A meniscus between two spherical grains of diameter a = 2R, with distance h
between solid surfaces, filling angle ϕ, contact angle θ.
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FIG. 2. (a) Effect of cycle of pressure (in dimensionless form) on void ratio. The
straight line fits the curve for intermediate P ∗ values. (b) Same curve, compared to
result obtained with dry, cohesionless grains (bottom curve, crosses joined by dark
line), with pressure in kPa, for glass beads with a = 0.115 mm, wet by water.
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FIG. 3. Effect of different (isotropic) unloading and reloading histories on void ratio.
The system does not rearrange along unloading paths BB′, CC ′, DD′, EE ′, which are
reversible. Path 5 causes plastic response in section CE, along which pressure increases
beyond its past maximum. The primary curve (path 4) is then retraced.
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FIG. 6. (a) Internal friction coefficient µ∗ and (b) solid fraction Φ versus I for different
values of P ∗.
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FIG. 7. Main plot: void ratios in primary isotropic compression, eiso (square dots), and
in critical state, e0 (crosses with error bars) versus logP ∗. Inset: detail of variations
of solid fraction Φiso in isotropic compression (square dots), and Φ0, in critical state
(crosses), for large P ∗ (including the dry case of infinite P ∗), versus 1/P ∗. Dashed
lines are drawn to guide the eye.

39 Than et al., revised version, July 9, 2015



-2

-1

0

1

2

3

4

5

0.1 1 10

1

2

3

4

5

6

7

z
c

z
d

P
*

I = 10
-3

10
-2

10
-1

0.178

0.316

0.562

FIG. 8. Coordination numbers of contacts zc (left axis, upper curves) and of distant
interactions zd (right axis, bottom curves), versus reduced pressure for different values
of I.

40 Than et al., revised version, July 9, 2015



-2.4

-2

-1.6

-1.2

-0.8

-0.4

 0

 1  10

σ
2
2

ca
p
/σ

2
2

P
*

I = 10
-3

10
-2

10
-1
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FIG. 11. Apparent quasistatic friction coefficient µ∗0 versus 1/P ∗ – showing the value of
µ∞0 for 1/P ∗ = 0. Square dots: numerical results (error bars are smaller); (red) crosses:
predictions of (14), with exact coefficient β; (blue) circles: same with estimated β.
Dotted lines: Mohr-Coulomb models, predicted from (19) (upper line), or fitted to the
data in range P ∗ ≥ 1 (lower straight line). Inset: measured µ∗0 versus 1/P ∗ , including
data point for P ∗ = 0.1, with Mohr-Coulomb fit to P ∗ ≥ 1 data.
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