Abstract : Hashin–Shtrikman type bounds are proposed for nonlinear isotropic composite conductors in two dimensions. Those bounds are obtained by combining the translation method with the idea of embedding the original two-dimensional problem in an extended problem of dimension 6. Invariance properties allow the evaluation of the bounds to be dramatically simplified. Explicit results are obtained for the problem of dielectric breakdown. Numerical results are given for two-phase composites governed by power-law energy functions. The obtained bounds are shown to improve on the linear comparison bounds of the Hashin– Shtrikman type that are delivered by the Talbot–Willis (1985) approach and the Ponte Castañeda (1991) variational method.
https://hal-enpc.archives-ouvertes.fr/hal-01477382 Contributeur : Michael PeigneyConnectez-vous pour contacter le contributeur Soumis le : lundi 27 février 2017 - 13:02:44 Dernière modification le : samedi 15 janvier 2022 - 03:49:38 Archivage à long terme le : : dimanche 28 mai 2017 - 13:07:21
B Peigney, Michaël Peigney. Bounds for nonlinear composite conductors via the translation method. Journal of the Mechanics and Physics of Solids, Elsevier, 2017, 101, pp.93 - 117. ⟨10.1016/j.jmps.2017.01.017⟩. ⟨hal-01477382⟩