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On Melan’s theorem in temperature-dependent
viscoplasticity

Michaël Peigney

Abstract In plasticity, Melan’s theorem is a well-known result that is both of the-
oretical and practical importance. That theorem applies to elastic-plastic structures
under time-dependent loading histories, and gives a sufficient condition for the plas-
tic dissipation to remain bounded in time. That situation is classically referred to as
shakedown. Regarding fatigue, shakedown corresponds to the most favorable case
of high-cycle fatigue. The original Melan’s theorem rests on the assumption that the
material properties remain constant in time, independently on the applied loading.
Extending Melan’s theorem to time fluctuating elastic moduli is a long standing is-
sue. The main motivation is to extend the range of applications of Melan’s theorem
to thermomechanical loading histories with large temperature fluctuations: In such
case, the variation of the elastic properties with the temperature cannot be neglected.
In this contribution, an extension of Melan’s theorem to elastic-viscoplastic materi-
als with time-periodic elastic moduli is presented. Such a time-dependence may for
instance result from time-periodic temperature variations. An illustrative example is
presented and supported by numerical results obtained from incremental analysis.

1 Introduction

For elastic-perfectly plastic structures under prescribed loading histories, the well-
known Melan’s theorem [1, 2, 3] gives a sufficient condition for the evolution to
become elastic in the large-time limit. That situation is classically referred to as
shakedown. Intuitively, shakedown means that the plastic strain tends to a limit as
time tends to infinity. The Melan’s theorem has the distinctive property of being
path-independent, i.e. independent on the initial state of the structure. For a param-
eterized loading history, Melan’s theorem gives bounds on the domain of load pa-
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Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, Ecole des Ponts ParisTech, IFST-
TAR, F-77455 Marne la Vallée, France, e-mail: michael.peigney@polytechnique.org

1
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rameters for which shakedown occurs. Regarding fatigue design, shakedown corre-
sponds to the most beneficial regime of high-cycle fatigue, as opposed to the regime
of low-cycle fatigue which typically occurs if the plastic strain does not converge to-
wards a stabilized value [4]. The shakedown theory has been the object of numerous
developments, regarding both extensions of the original theorem to various nonlin-
ear behaviors [5, 6, 7, 8, 9, 10] and numerical methods for assessing the shakedown
limits in the space of load parameters [11, 12, 13, 14, 15, 16, 17].

This chapter is concerned with extensions of the Melan’s theorem to situations in
which the elastic moduli are fluctuating in time, for instance as a result of imposed
temperature variations. Whereas the case of temperature-dependent yield limits is
well understood [18], the case of temperature-dependent elastic moduli remains a
long standing issue and has been the object of several conjectures [19, 20, 21, 22].
The main difficulty is that the proof used in the original Melan’s theorem – as well as
in most of its knows extensions – crucially relies on some monotonicity properties
that are lost when the elastic moduli are allowed to vary in time. For instance, in the
case of constant elastic moduli, the distance between two solutions (as measured by
the energy norm) is always decreasing with time [6], which is no longer true when
the elastic moduli vary in time (see. [23] for some example). A shakedown theorem
has recently been proposed for elastic-perfectly plastic materials with time-periodic
elastic properties [23]. The statement and proof of that theorem differ significantly
from the case of constant material properties. A salient result is that time fluctuations
of the elastic moduli need to be not too large for shakedown to occur in a path-
independent fashion.

In this contribution, we aim at extending the result of [23] to elastic-viscoplastic
materials with time fluctuating elastic moduli. The proof presented in [23] for
elastic-perfectly plastic materials makes use of the fact that the stress remains in
the elasticity domain, which is not necessarily the case in viscoplasticity. In partic-
ular, the initial residual stress can be chosen as arbitrarily large, so that the stress is
expected to remain outside (and possibly far away from) the elasticity domain – at
least on some time interval. This chapter is organized as follows: In Sect. 2, starting
from the local constitutive relations and the equilibrium equations, we derive the
differential equation that governs quasistatic evolutions of the residual stress. We
comment on the special (and important) case of elastic solutions. Sect. 3 is devoted
to the statement and proof of a shakedown theorem for elastic-viscoplastic mate-
rials with time-periodic material properties, that is the main result of this chapter.
An illustrative example is presented in Sect. 4 and supported by numerical results
provided by incremental analysis. Some concluding remarks follow.

2 Quasistatic evolutions of an elastic-viscoplastic medium

Consider an elastic-viscoplastic body occupying a domain Ω in the reference config-
uration. Under the assumption of infinitesimal strains, the strain tensor ε is derived
from the displacement u by
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ε =
1
2
(∇u+∇

T u).

The total strain ε , stress σ and plastic strain ε p at position x and time t satisfy the
constitutive equations

ε(x, t) = L(x, t) : σ(x, t)+ εθ (x, t)+ ε p(x, t), (1)

ε̇
p(x, t) = φ

′(σ(x, t),x, t), (2)

where φ is the dissipation potential, taken in the form

φ(σ ,x, t) =
α

2
|σ −PC (x, t)σ |2. (3)

In (1), L is the (symmetric positive definite) elastic moduli tensor and εθ is the
thermal strain tensor. The double product : in (1) denotes contraction with respect
to the last two indexes, i.e. (L : σ)i j = ∑k,l Li jklσ lk.

In (3), C (x, t) is the elasticity domain of the material (assumed to be closed and
convex), α > 0 is a viscosity parameter (assumed to be independent on (x, t) for
simplicity) and PC (x, t) denotes the projection of C (x, t). The norm | · | in (3) is

defined by |σ |=
√

∑i, j σ2
i j for any symmetric tensor σ .

As mentioned in Sect. 1, the space and time dependence of L, εθ and C may
reflect imposed variations of the temperature. For instance, the elastic moduli L
of most materials depend on the temperature θ , what can be written as L = L(θ).
For imposed variations θ(x, t) of the temperature, the elastic moduli tensor vary as
L(θ(x, t)) and can thus be regarded as a function of space and time.

Assuming quasi-static evolutions, the stress field σ satisfies the equilibrium
equations

divσ + f = 0 in Ω , σ ·n = T on ∂ΩT , (4)

where f (x, t) are body forces imposed in the domain Ω and T (x, t) are tractions
prescribed on a part ∂ΩT of the boundary ∂Ω . Prescribed displacements v(x, t) are
imposed on ∂Ωu = ∂Ω −∂ΩT .

2.1 Evolution equation for the residual stress

We now use Eqs. (1-4) to derive the equation governing the evolution of the stress
field. The space E of stress fields is chosen as a subspace of symmetric second-order
tensor fields with square-integrable components, which is known to be a Hilbert
space for the scalar product

〈σ ,σ ′〉=
∫

Ω

σ(x) : σ
′(x)dω.
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The associated norm is denoted by ‖ ‖, i.e. ‖σ‖=
√
〈σ ,σ〉.

Consider the so-called fictitious elastic response (uE ,σE), i.e. the response of the
system if it were purely elastic, defined by

ε
E = L : σ

E + εθ ,

ε
E =

1
2
(∇uE +∇

T uE),

divσ
E + f = 0 in Ω ,

σ
E ·n = T on ∂ΩT ,

uE = v on ∂Ωu. (5)

The stress field σ can be written as σ = σE +ρ where ρ is the residual stress
field and belongs to the vectorial space H⊂ E of self-equilibrated fields, defined by

H = {ρ ∈ E : divρ = 0 in Ω , ρ ·n = 0 on ∂ΩT}. (6)

Let K0(t) and K(t) be the convex subsets of E defined as

K0(t) = {σ ∈ E : σ(x, t) ∈ C (x, t) ∀x ∈Ω}, K(t) =K0(t)−σ
E(t). (7)

The set K0(t) is the set of stress fields that are everywhere in the elasticity domain of
the material. The set K(t) is the translated of K0 by −σE(t). Note that K0 is inde-
pendent on time t if the yield parameters are. Under suitable regularity assumptions
on ( f ,T ,v), it can proved that the sets H and K(t) are closed in E [24].

For an arbitrary ρ ′ ∈K(t), it follows from (1) that∫
Ω

(ρ ′−ρ) :
d(ε− εE)

dt
dω =

∫
Ω

(ρ ′−ρ) :
d
dt
(L : ρ)dω +

∫
Ω

(ρ ′−ρ) : φ
′(σ)dω.

(8)
Using (5-6) together with the principle of virtual power shows that the left-hand side
of (8) is equal to zero. Hence

−
∫

Ω

(ρ ′−ρ) :
d
dt
(L(x, t) : ρ)dω =

∫
Ω

(ρ ′−ρ) : φ
′(σ ,x, t)dω. (9)

The function
Φ(σ , t) =

∫
Ω

φ(σ ,x, t)dω

is convex, positive, and vanishes on K0(t). It is a classical result [25] that

Φ(σ , t) =
α

2
‖σ −PK0(t)

σ‖2, Φ
′(σ , t) = α(σ −PK0(t)

σ) (10)

where PK0(t)
: E 7→ E denotes the projection on K0(t) (for the scalar product 〈·, ·〉).

It follows from (10) that
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Ω

(ρ ′−ρ) : φ
′(σ)dω = 〈ρ ′−ρ,Φ ′(σ)〉= 〈ρ ′−ρ,α(σ −PK0(t)

σ)〉.

Further observing that σ−PK0(t)
σ = ρ−PK(t)ρ , we obtain from (9) that ρ satisfies

− d
dt
(L(x, t)ρ) ∈ α(ρ−PK(t)ρ)+H⊥ (11)

where H⊥ is the orthogonal of H in E.
Eq. (11) can be simplified by projecting it on H. To that purpose, set L(t) = πL

where π : E 7→H is the orthogonal projector on H. Eq. (11) becomes

− d
dt
(L(t)ρ) = α(ρ−πPK(t)ρ). (12)

Since the elastic moduli tensor L(x, t) is symmetric positive definite, it can easily be
verified that L(t) is self-adjoint and positive definite. Starting from a given initial
state ρ(t = 0), the evolution of the stress field in H is governed by the ordinary
differential equation (12). The uniqueness of the stress rate ρ̇ has been proved in
[26].

2.2 Elastic solutions

In the following we study the asymptotic behavior of solutions to (12) as t→∞. We
only consider the case where L(t), K(t) are periodic in time (with the same period
T ) and the dimension of H is finite. A central role is played by elastic solutions
of (12), i.e. solutions without any plastic yielding. Such an elastic solution ρ∗(t)
necessarily lies in K(t) at each time t, and therefore satisfies

d
dt
(L(t)ρ∗(t)) = 0, ρ∗(t) ∈K(t)∩H ∀t ∈ [0,T ] (13)

Our main objective is to examine conditions under which every solution of (12)
converges towards an elastic solution in the large time limit. A first requisite is
obviously that elastic solutions do exist, i.e. that⋂

0≤t≤T

L(t)K(t) 6= /0. (14)

Even when the elastic moduli are time-independent, the condition (14) is not suf-
ficient to obtain results on the asymptotic behavior. Loosely speaking, a minimal
requirement is the existence of an elastic solution that remains ’strictly inside’ the
elastic domain. In the case of time-independent elastic moduli, that notion of ’strictly
inside’ is captured by the Melan’s condition defined as follows
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Melan’s condition (standard form): There exists an elastic solution ρ∗ and some
m > 1 such that ρ∗(x, t)+mσE(x, t) ∈ C (x, t) ∀(x, t) ∈Ω × [0,T ].

Let B(ρ∗,r) denotes the ball of center ρ∗ and radius r in E (for the norm ‖ ·‖). In
the following, we consider a strong version of Melan’s condition, defined as follows:

Melan’s condition (strong version): There exists an elastic solution ρ∗ and some
r > 0 such that H∩B(ρ∗(t),r) ∈K(t) ∀t ∈ ×[0,T ].

When the dimension of H is finite, the strong and standard versions of Melan’s
condition are equivalent. This is no longer true in infinite dimension (the strong
version, as its names suggests, is more restrictive).

3 Shakedown theorem

Let us fix some notations and assumptions to be used in the remainder:

• µ(t) denotes an arbitrary non-negative differentiable function such that inft µ(t)>
0. We set

L0(t) = L(t)/µ(t), M0(t) = L−1
0 (t) = µ(t)M(t). (15)

with M(t) = L(t)−1.
• The set πK(t) remains bounded1 i.e. there exists a constant M such that

‖πρ
′‖ ≤M for all t and ρ

′ ∈K(t). (16)

• The elastic operator L(t) is assumed to remain bounded in H, i.e. there exists a
constant C such that

|||L(t)||| ≤C (17)

for all t ∈ [0,T ]. In (17), |||·||| denotes the norm operator in H, i.e. |||L(t)||| =
supρ ′∈H,‖ρ ′‖=1 ‖L(t)ρ

′‖. We note that (17) is satisfied if the local elastic mod-
uli L(x, t) remain bounded [23]. Similarly, the operator M(t) is assumed to be
bounded.

• We introduce a measure γ(0,T ) of the time-fluctuations of the elastic moduli,
defined as

γ(0,T ) =
∫ T

0
|||Ṁ0(t)|||dt =

∫ T

0
|||µ(t)Ṁ(t)+ µ̇(t)M(t)|||dt. (18)

The objective of this section is to prove Theorem 1 below.

1 It can observed that πK(t) is bounded if the C (x, t) is.
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Theorem 1. If
(i) the Melan’s condition is satisfied by some (ρ∗,r);

(ii) the elastic moduli are such that

γ(0,T )
inf µ

<
r

2CM
;

then the residual stress converges towards an elastic solution, whatever the
initial state is.

In that theorem, condition (ii) sets restriction on the time variations of the elastic
moduli. Setting such a restriction is necessary to obtain global convergence results:
One can indeed find counterexamples in which condition (i) is fulfilled and some
solutions of (12) do not become elastic in the large time limit [23].

The statement of Theorem 1 above is quite similar to that obtained in perfect
plasticity [23]. The proof, however, is more complicated and detailed in the follow-
ing. To clarify the exposition, the proof is broken down in 3 separate steps, covered
by Sect. 3.1-3.3 below. Compared to perfect plasticity, an additional difficulty is
that the stress is not restricted to remain in the elasticity domain. For instance, the
initial stress can be chosen as arbitrarily large. It can be proved, however, that the
stress is bounded at large time: This is the object of Lemma 1, Sect. 3.1. The next
step consists in proving that, for large time, the variation of some elastic energy is
controlled by the plastic dissipation, in a sense that is defined in Lemma 2, Sect. 3.2.
The claimed result follows from those two lemmas, as detailed in Sect. 3.3.

In all that follows, ρ(t) denotes an arbitrary solution of (12).

3.1 Bound on the stress field

Let η(t) = L(t)ρ(t). The object of the following lemma is to prove that, for large
time, η(t) is bounded by some constant M′ that can be chosen as arbitrarily close to
CM.

Lemma 1. For any M′>CM, there exists t0≥ 0 such that ‖η(t)‖≤M′ for all t ≥ t0.

Proof. We have

d
dt
‖η(t)‖2 =−2α〈ρ−πPK(t)ρ,η(t)〉

=−2α〈η(t),M(t)η(t)〉+2α〈πPK(t)ρ,η(t)〉.
(19)

Since L(t) is symmetric positive definite, we have |||L(t)|||= maxi λi where {λi} are
the eigenvalues of L(t). The relation (17) implies that λi ≤C for all i. Since M(t) is
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positive definite with eigenvalues {1/λi}, it follows that

〈η(t),M(t)η(t)〉 ≥min
i

1
λi
‖η(t)‖2 ≥ ‖η(t)‖2

C
.

Moreover, using Cauchy-Schwarz inequality together with (16), we find

2α〈πPK(t)ρ,η(t)〉 ≤ 2α‖πPK(t)ρ‖ · ‖η(t)‖ ≤ 2αM‖η(t)‖.

Substituting in (19) gives

d
dt
‖η(t)‖2 ≤−2

α

C
‖η(t)‖2 +2αM‖η(t)‖. (20)

Setting G(t) =max(M2C2,‖η(t)‖2), Eq. (20) implies that G is decreasing with time
t. It can indeed easily be verified from (20) that G is right-differentiable and satisfies
G′+(t)≤ 0 for all t, where G′+(t) is the right-derivative of G.

If ‖η(t0)‖ ≤CM for some time t0, then it directly follows from the monotonicity
of G that ‖η(t)‖ ≤ CM for any t ≥ t0, which proves the claim. Now consider the
case where ‖η(t)‖>CM for all time t. Dividing (20) by ‖η(t)‖, we have

1
‖η(t)‖

d
dt
‖η(t)‖2 = 2

d
dt
‖η(t)‖ ≤ −2

α

C
‖η(t)‖+2αM. (21)

Using the differential form of Gronwall’s lemma, (21) implies that

‖η(t)‖ ≤ ‖η(t0)‖e−αt/C +CM(1− e−αt/C). (22)

The right-hand side of (22) varies between ‖η(t0)‖ and CM in a monotonic fashion.
Choosing for instance

t0 =
C
α
| log
‖η(0)‖−CM

M′−CM
|,

Eq. (22) implies that ‖η(t)‖ ≤M′ for all t ≥ t0, which proves the claim. ut

3.2 Variation of the elastic energy

Consider the positive function f defined as

f (t) =
1
2
〈τ(t),L0(t)τ(t)〉. (23)

where τ(t) = µ(t)(ρ(t)−ρ∗(t)). The function f is referred to as the elastic energy.
The aim of this section is to establish Lemma 2 below, which bounds the variation
f (a+T )− f (a) for large time a.

Lemma 2. Let (M′, t0) satisfying Lemma 1. For any a≥ t0 we have
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f (a+T )− f (a)≤
(
2M′γ(0,T )− r inf µ

)∫ a+T

a
‖η̇(t)‖dt. (24)

Proof. We have

ḟ (t) = 〈τ(t),L0(t)τ̇(t)〉+
1
2
〈τ(t), L̇0(t)τ(t)〉. (25)

Recalling that d(L(t)ρ∗(t))/dt = 0, Eq.(25) can be rewritten as ḟ (t)= 〈τ(t), η̇(t)〉+
H(t) with

H(t) =−1
2
〈τ(t), L̇0(t)τ(t)〉. (26)

Integrating on the time interval [a,a+T ], we obtain

f (a+T )− f (a) =
∫ a+T

a
〈τ(t), η̇(t)〉dt +

∫ a+T

a
H(t)dt. (27)

In the right-hand side of (27), the first term is an irreversible contribution associ-
ated with the plastic dissipation whereas the second term is a reversible contribu-
tion associated with the time fluctuations of the elastic moduli. In the following,
we bound those two terms separately, starting with the irreversible contribution
−
∫ a+T

a 〈τ(t), η̇(t)〉dt. To that purpose, we use a reasoning that is quite similar to
that used in [23] for perfect plasticity.

We first note from (12) that η̇(t) = −πΦ ′(ρ(t)+σE(t), t). Since Φ is convex,
positive and vanishes in K0(t), we have

0≤Φ(ρ(t)+σ
E(t), t)≤ 〈η̇(t),ρ ′(t)−ρ(t)〉 for all ρ

′ ∈K(t)∩H. (28)

The strong Melan’s condition implies that ρ∗(t)−rη̇/‖η̇‖ is in K(t)∩H. Hence
(28) gives

0≤ 〈η̇(t),ρ∗(t)− r
η̇

‖η̇‖
−ρ(t)〉= 〈η̇(t),ρ∗(t)−ρ(t)〉− r‖η̇(t)‖,

i.e. 〈η̇(t),ρ(t)−ρ∗(t)〉 ≤ −r‖η̇(t)‖. Hence∫ a+T

a
〈τ(t), η̇(t)〉dt ≤−r(inf µ)

∫ a+T

a
‖η̇‖dt. (29)

Bounding the reversible contribution
∫ a+T

a H(t)dt requires a little more effort.
We have

τ(t) = L−1
0 (t)(η(t)−η(a)+ s) (30)

where
s = L(a)(ρ(a)−ρ∗(a)) (31)
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is independent on t. Substituting the expression (30) in (26) and using the fact that
L0(t) is self-adjoint, we find

H(t) =−1
2
〈(η(t)−η(a)+ s),L−1

0 (t)L̇0(t)L−1
0 (t)(η(t)−η(a)+ s)〉.

Observing that L−1
0 (t)L̇0(t)L−1

0 (t) =−Ṁ0(t) yields

H(t) =
1
2
〈(η(t)−η(a)+ s),Ṁ0(t)(η(t)−η(a)+ s)〉. (32)

Since s does not depend on t and M0(t) is T−periodic, the integration of (32) on
the time interval [a,a+T ] gives∫ a+T

a
H(t)dt =

1
2

∫ a+T

a
〈η(t)−η(a),Ṁ0(t)(η(t)−η(a)+2s)〉dt. (33)

Using now the Cauchy-Schwarz inequality and the definition of the norm operator,
we obtain

〈η(t)−η(a),Ṁ0(t)(η(t)−η(a)+2s)〉≤ ‖η(t)−η(a)‖·|||Ṁ0(t)|||·‖η(t)−η(a)+2s‖.

Since η(t)−η(a)+2s = η(t)+η(a)−2L(a)ρ∗(a), we have

‖η(t)−η(a)+2s‖ ≤ ‖η(t)‖+‖η(a)‖+2‖L(a)ρ∗(a)‖.

Lemma 1 gives ‖η(t)‖ ≤M′ and ‖η(a)‖ ≤M′. Since ρ∗(a) ∈K(a)∩H, we have
‖L(a)ρ∗(a)‖ ≤CM as a consequence of (16-17). Hence

‖η(t)−η(a)+2s‖ ≤ 2M′+2CM ≤ 4M′. (34)

We also have, for t ∈ [a,a+T ],

‖η(t)−η(a)‖= ‖
∫ t

a
η̇(t ′)dt ′‖ ≤

∫ t

a
‖η̇(t ′)‖dt ′ ≤

∫ a+T

a
‖η̇(t ′)‖dt ′. (35)

Substituting (34-35) in (33) and using the definition (18) of γ(0,T ), we obtain∫ a+T

a
H(t)dt ≤ 2M′γ(0,T )

∫ a+T

a
‖η̇(t)‖dt (36)

Replacing (29) and (36) in (24) gives the desired result. ut
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3.3 Proof of the theorem

We are now in a position to prove Theorem 1. By condition (i), one can pick M′ >
CM such that γ(0,T )

inf µ
< r

2M′ . Using Lemma 1 we such M′, there exists t0 such that
‖η(t)‖ ≤M′ for t ≥ t0. Let now N0 ∈ N be such that N0T ≥ t0. For i≥ N0, Lemma
2 gives

f ((i+1)T )− f (i)≤−m
∫ (i+1)T

iT
‖η̇(t)‖dt

where m= r(inf µ)−2M′γ(0,T ) is non-negative by (ii). Summing over i=N0, · · · ,N
and recalling that f is positive, we find∫ NT

N0T
‖η̇(t)‖dt ≤ 1

m
f (N0T ).

Taking the limit N→∞ shows that the integral
∫ S

0 ‖η̇(t)‖dt converges as S−→+∞.
Since E is a Hilbert space, it follows that η(t) also converges towards a limit η∞ as
t −→+∞. That limit η∞ is in H because H is closed in E. Setting ρ∞(t) =M(t)η∞

and recalling that M(t) is bounded, we have ρ(t)−ρ∞(t)−→ 0 as t→ ∞. We now
check that ρ∞(t) is an elastic solution, i.e. satisfies (13). The definition of ρ∞(t)
rightly gives d(L(t)ρ∞(t))/dt = 0, but the fact that ρ∞(t) ∈ K(t) calls for some
justification. Noting by (12) that η̇(t) =−α(ρ(t)−πPK(t)ρ(t)), we have

‖ρ∞(t)−πPK(t)ρ∞(t)‖≤
1
α
‖η̇(t)‖+‖ρ(t)−ρ∞(t)‖+‖πPK(t)ρ(t)−πPK(t)ρ∞(t)‖.

It is a classical result that the projection operator on a closed convex set is a con-
tractive mapping [25], hence ‖πPK(t)ρ(t)−πPK(t)ρ∞‖ ≤ ‖ρ(t)−ρ∞(t)‖ and

‖ρ∞(t)−πPK(t)ρ∞(t)‖ ≤
1
α
‖η̇(t)‖+2‖ρ(t)−ρ∞(t)‖.

Recall that ρ(t)− ρ∞(t) = M(t)(η(t)− η∞). Since M(t) is bounded, there is a
constant K such that ‖ρ(t)−ρ∞(t)‖ ≤ K‖η(t)−η∞‖. Therefore,

‖ρ∞(t)−πPK(t)ρ∞(t)‖ ≤
1
α
‖η̇(t)‖+2K‖η(t)−η∞(t)‖.

Integrating on the time interval [iT,(i+1)T ] and observing that ρ∞(t) and K(t) are
T−periodic, we obtain∫ T

0
‖ρ∞(t)−πPK(t)ρ∞(t)‖dt ≤ 1

α

∫ (i+1)T

iT
‖η̇(t)‖dt +2K

∫ (i+1)T

iT
‖η(t)−η∞‖dt.

Since
∫

∞

0 ‖η̇(t)‖dt < ∞, we have
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iT
‖η̇(t)‖dt −→ 0 as i−→ ∞.

Moreover, since η(t) converges towards η∞, we also have∫ (i+1)T

iT
‖η(t)−η∞‖dt −→ 0 as i−→ ∞.

It follows that ‖ρ∞(t)−πPK(t)ρ∞(t)‖ = 0 on [0,T ], i.e. ρ∞(t) = πPK(t)ρ∞(t) on

[0,T ]. Therefore, we have PK(t)ρ∞(t) = ρ∞(t)+ q with q ∈H⊥. By the definition
of the projection it follows that

〈ρ∞(t)−PK(t)ρ∞(t),ρ
′−PK(t)ρ∞〉 ≤ 0

for any ρ ′ ∈K(t). In particular, choosing ρ ′ = ρ∗(t) ∈K(t)∩H we find

−〈q,ρ∗(t)−ρ∞(t)−q〉= ‖q‖2 ≤ 0

hence q = 0, i.e. PK(t)ρ∞(t) = ρ∞(t) or equivalently ρ∞(t) ∈K(t). This completes
the proof that ρ∞(t) is an elastic solution. Since ρ∞(t)−ρ(t) −→ 0 as t → ∞, the
convergence of ρ(t) towards an elastic solution is obtained.

Remark: It is interesting to compare Theorem 1 with the analog result obtained
in [23] for elastic-perfectly plastic materials. In [23], a condition analog to (ii) was
formulated, with the factor 2 in (ii) replaced by a factor 3. That factor 3 results from
Eq. (46) in [23], which – using the present notations – states that ‖η(t)−η(a)+
2s‖ ≤ 6CM. Using a reasoning similar to that used in Eq. (34), one can actually
observe that ‖η(t)−η(a)+2s‖≤ 4CM, which leads to an improved factor 2 instead
of a factor 3.

There is also a more subtle difference between Theorem 1 above and the results
in [23], regarding the definition of the constant M. In Theorem 1, M is a bound on
πK(t) whereas in [23] M is a bound on K(t)∩H. We have K(t)∩H ⊂ πK(t) but
the inclusion is generally strict.

4 Illustrative example

As an illustration of Theorem 1, consider the problem of an elastic-viscoplastic
plate under cyclic thermal loading. The plate is stress-free in the e3 direction and
is in frictionless contact with rigid walls in the (e1,e2) directions (Fig. 1). Length
units are chosen such that the plate has unit volume. The constitutive material is
homogeneous and the dissipation potential φ of the Perzyna type

φ(σ) =
1
α
〈J2−σy〉2+ (37)
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where α is a viscosity parameter, σy is the yield strength, J2 =
√

3/2|σ− (trσ/3)I|
is the second invariant of the deviatoric stress, and 〈x〉+ = max(0,x) denotes the
positive part of a scalar x. The potential (37) can be put in the format (3) by setting
C (x, t) = {σ : J2 ≤ σy}.

Because of the rigid walls in the e1 and e2 directions, thermal dilatation may
result in high compressive stress and plastic flow. In the following we are interested
in bounding the temperature fluctuations θ for which shakedown occurs.

Fig. 1 An elastic-viscoplastic
plate under a cyclic tem-
perature θ(t). The plate is
constrained in the e1 and e2
directions.

θ(t)

e3

e1

e2

4.1 Temperature-independent elastic moduli

Using the plane stress assumption, we consider a 2-dimensional model of the prob-
lem. If the imposed temperature field θ as well as the initial state ε p(t = 0) are
uniform – which is assumed in the following – then the fields ε p, ε and σ remain
uniform at all time. The space E is thus chosen as the 3-dimensional space of tensors
σ with a matrix representation of the form

σ =

σ11 σ12 0
σ12 σ22 0
0 0 0

 (38)

in the basis (e1,e2,e3). The space H of residual stresses is the subspace of E consti-
tuted by uniform fields ρ of the form

ρ =

ρ1 0 0
0 ρ2 0
0 0 0

 . (39)

The purely elastic stress response σE(t) of the plate is given by

σ
E =

 f E(t) 0 0
0 f E(t) 0
0 0 0

 (40)

where f E(t) =−E(t)εθ (t)/(1−ν(t)). It can easily be verified that
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K0 = {σ ∈ E : σ
2
11 +σ

2
22−σ11σ22 +6σ

2
12 ≤ σ

2
y }, (41)

πK0 = {ρ ∈H : ρ
2
1 +ρ

2
2 −ρ1ρ2 ≤ σ

2
y }. (42)

Let (E1,E2) be the orthonormal basis of H defined by E1 = diag(1,0,0) and E2 =
diag(0,1,0). The set πK0 in (42) is a solid ellipsoid with axes E1+E2 and E1−E2.
The set πK(t) = π(K0−σE(t)) is obtained by a time-dependent translation of πK0
in the E1 +E2 direction (Fig. 2).

Setting σθ = supt |σE(t)|, it can easily be verified that ∩tπK(t) is non empty as
long as σθ ≤ σy. More precisely, ∩tπK(t) contains B(0,r)∩H where B(0,r) is the
ball centered at the origin with a radius r given by

r =


σy

√
2
3
−
(

σθ

σy

)2

if 0≤ σθ

σy
≤ 2

3
,

σy
√

2(1− σθ

σy
) if 2

3 ≤
σθ

σy
≤ 1.

(43)

Since ρ = 0 is an elastic solution to the evolution problem, it can be deduced from
Theorem 1 (or from the standard form of Melan’s theorem) that shakedown occurs
if σθ ≤ σy.

ρ1

ρ2

Fig. 2 The set πK(t) is a solid ellipsoid obtained by translation of the ellipsoid πK0 (shown
in dotted lines) in the (1,1) direction. Shown in solid lines are the extreme locations of πK(t),
corresponding to f E(t) =±σθ . The filled ball centered at the origin is included in πK(t) for all t.
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4.2 Temperature-dependent elastic moduli

Let us now use Theorem 1 to estimate the shakedown limit in the case of non con-
stant elastic moduli. Applying Theorem 1 requires to evaluate the constants M, C in
(16-17) as well as the scalar γ(0,T ) defined in (18).

It can be verified from (42) that any σ in πK0 satisfies ‖σ‖ ≤
√

2σy. Hence any
σ in πK(t) satisfies

‖σ‖ ≤
√

2σy +‖σE(t)‖ ≤
√

2(σy +σθ ).

The constant M in (16) can thus be chosen as

M =
√

2(σy +σθ ). (44)

Recall that L(t)ρ is defined as the projection of L(t) : ρ on H. In the present
case, we have

L(t)ρ =
1

E(t)

ρ1−νρ2 0 0
0 ρ2−νρ1 0
0 0 0

 .

Hence the matrix representation of L in the basis (E1,E2) is given by

L(t) =
1

E(t)

(
1 −ν

−ν 1

)
.

The operator L(t) being symmetric, its norm operator |||L(t)||| is equal to maxi |λi|
where {λi} are the eigenvalues of L(t). A simple calculation gives

|||L(t)|||= 1+ν(t)
E(t)

. (45)

Set
νmin = inf

t
ν(t), νmax = sup

t
ν(t), Emin = inf

t
E(t), Emax = sup

t
E(t).

From (45) we have |||L(t)||| ≤ 1+νmax
Emin

for all t. Hence the constant C in (17) can be
chosen as

C =
1+νmax

Emin
. (46)

In order to calculate γ(0,T ), we note that

M(t) = L−1(t) =
E(t)

1−ν2(t)

(
1 ν

ν 1

)
.

Choosing µ(t) = 1/ trM(t) as suggested in [23], we get

µ(t) =
1−ν2(t)

2E(t)
, M0(t) =

1
2

(
1 ν

ν 1

)
, Ṁ0(t) =

1
2

(
0 ν̇

ν̇ 0

)
.



16 Michaël Peigney

It follows that |||Ṁ0(t)|||= 1
2 |ν̇ | and

γ(0,T ) =
1
2

∫ T

0
|ν̇ |dt.

Using the values of M and C defined in (44) and (46) respectively, we obtain
from Theorem 1 that shakedown occurs if

1+νmax

Emin

∫ T
0 |ν̇ |dt

inft
1−ν2(t)

E(t)

≤ r√
2(σy +σθ )

(47)

where r is the function of σθ defined in (43). The left-hand side of (47) is a function
of the fluctuations of the elastic moduli, whereas the right-hand side is a function of
the loading σθ . Observing that (1−ν2(t))/E(t) ≥ (1−ν2

max)/Emax, it can be seen
that a sufficient condition for Eq. (47) to be satisfied is

1
1−νmax

Emax

Emin

∫ T

0
|ν̇ |dt ≤ r√

2(σy +σθ )
. (48)

Assume that ν̇ vanishes only when ν(t) = νmin or ν(t) = νmax, i.e. ν(t) grows mono-
tonically from νmin to νmax and then decreases monotonically from νmax to νmin, in
a periodic fashion. In such case, we have∫ T

0
|ν̇ |dt = 2(νmax−νmin)

and the inequality (48) reduces to

(νmax−νmin)

1−νmax

Emax

Emin
≤ r

2
√

2(σy +σθ )
. (49)

For fixed values of Emax/Emin, the shakedown limit σθ
SD is defined at the largest

value of σθ that satisfies (49). The shakedown limit σθ
SD is plotted in Fig. 3 as a

function of Emax/Emin, for several values of νmax−νmin. The maximum value νmax
is set to 0.3 for all the curves in Fig. 3. First consider the case νmax−νmin = 0 : What-
ever the value of Emax/Emin, the shakedown limit is equal to σy and thus coincides
with the value obtained in Sect. 4.1 for temperature-independent elastic moduli.
When νmax− νmin increases, the shakedown limit decreases rapidily. For instance,
the shakedown limit is approximatively equal to 0.6σy in the case of a 20% variation
of E and ν around nominal values (E0,ν0 = 0.3). For common metals, the Young
modulus E decreases with the temperature, while the Poisson ratio increases [27].
The Young modulus is more sensitive to temperature variations than the Poisson ra-
tio. To put things in perspective, a 20% variation of the Young modulus E in steels
would typically correspond to temperatures fluctuating between 0 ˚ C and 500 ˚ C
[28].
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Fig. 3 Shakedown limit as
a function of Emax/Emin,
plotted for several values of
νmax−νmin. Case νmax = 0.3.
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0.015

0.03

0.045

0.06

Emax/Emin

σ
θ SD
/σ

y

4.3 Incremental analysis

As a further illustration of Theorem 1, we use incremental analysis to solve (12)
for given loading history and fluctuations of the elastic moduli. The functions
f E(t) , E(t) and ν(t) are taken as f E(t) = σθ sinωt, E(t) = E0(1− 0.2sin2

ωt),
ν(t) = ν0(1+0.2sin2

ωt) with E0/σy = 10 and ν0 = 0.3. For such parameters, the
shakedown limit σθ

SD as provided by Eq. (49) is approximatively equal to 0.6σy.
The differential equation (12) is solved numerically using a Runge-Kutta scheme
with variable step size. In Fig. 4 is shown the evolution of the plastic strain in
the case σθ = 0.5σy, i.e. below the shakedown limit. The initial state is taken as
ρ1(t = 0) =σy, ρ2(t = 0) = 2σy. In accordance with the results of Sect. 4.2, the plas-
tic strain converges towards a limit as t→ ∞. Theorem 1 ensures that such behavior
occurs for all inital states ρ1(t = 0), ρ2(t = 0). In Fig. 5 is plotted the evolution of
‖ε p(t)‖ (solid line). A fast decrease is observed for small time: This is the meaning
of Lemma 1 introduced in Sect. 3.1. In dashed line is plotted the exponental upper
bound on ‖ε p(t)‖ that is deduced from Eq. (22) .

5 Concluding remarks

The shakedown theorem presented in this chapter gives a sufficient condition for
the evolution to become elastic in the large time limit, whatever the initial state is.
Loosely speaking, that theorem states that if the loading is not too large (in the sense
of condition (i)) and the time-fluctuations of the elastic moduli are not too large (in
the sense of condition (ii)), then shakedown occurs immaterial of the initial state.
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Fig. 4 Evolution of the plastic
strain for a loading below the
shakedown limit. Case ρ1(t =
0) = σy, ρ2(t = 0) = 2σy.
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Fig. 5 Evolution of ‖ε p(t)‖
(blue solid line) and com-
parison with the exponential
upper bound provided by Eq.
(22) (red dotted line).
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We emphasize again that setting a restriction on the time-fluctuations of the elastic
moduli is essential to ensure that shakedown occurs in a path-independent fashion.

It can be observed that Theorem 1 is independent on the viscosity parameter α .
This is consistent with the case of constant elastic moduli: the shakedown behavior
is essentially determined by the elasticity domain of the material (as long as the
dissipation φ satisfies standard assumptions such as convexity).

For the sake of simplicity, the viscosity parameter α has been assumed to be
independent on (x, t) but there is no difficulty in extending Theorem 1 to non con-
stant viscosities. It could be interesting to investigate whether Theorem 1 could be
extended to other viscoplastic potentials than those of the form (3).

In practice, the shakedown theorem that has been presented could be useful for
the fatigue design of structures submitted to large temperature variations. As illus-
trated in Sect. 4, that theorem gives lower bounds on the shakedown limit. It would
be interesting to investigate whether the kinematic shakedown theorem of [3] could
be extended to the case of temperature-dependent elastic moduli, so as to obtain
upper bounds.
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