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aUniversité Paris-Est, Laboratoire Navier (UMR 8205), CNRS, Ecole des Ponts ParisTech, IFSTTAR,
F-77455 Marne la Vallée, France

bEcole Polytechnique, 91128 Palaiseau, France
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Abstract

This paper addresses the dynamic behavior of piezoelectric cantilevers under base excita-
tions. Such devices are frequently used for applications in energy harvesting. An Euler-
Bernoulli model that accounts for large-deflection effects and piezoelectric nonlinearities
is proposed. Closed-form expressions of the frequency response are derived, both for di-
rect excitation (i.e. with a base acceleration transverse to the axis of the cantilever) and
parametric excitation (i.e. with a base acceleration along the axis of the cantilever). Ex-
perimental results are reported and used for assessing the validity of the proposed model.
Building on the model presented, some critical issues related to energy-harvesting are in-
vestigated, such as the influence of nonlinearities on the optimal load resistance, the limits
of validity of linear models, and hysteresis effects in the electrical power. The efficiency of
direct and parametric excitation is also compared in detail.

Keywords: piezoelectric materials, finite strains, energy harvesting, parametric
resonance, nonlinearities

1. Introduction

Energy harvesting from ambient vibrations has become an increasingly active topic in
recent years [1, 2, 3, 4]. The overall idea is to use ambient vibrational energy as a source for
operating low-power electronic devices. Energy harvesters lie on a transduction mechanism
that converts mechanical energy into electric energy. Among the various options that are
available, piezoelectric materials – such as PZT ceramics – are often used. Those dielectric
materials have a non symmetric crystalline structure that results in a natural polarization.
Through the deformation of the crystalline lattice, deforming a piezoelectric material entails
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a change of the polarization, which in turn produces a variation of the electric field and
a current flow in a surrounding electrical circuit. Such a behavior makes for very simple
mechanical designs of energy harvesters: The cantilever configuration, represented in Fig.
1, is the most frequently used design [5, 6, 7, 8]. It consists of a beam clamped on one
side, with piezoelectric layers covering (all or part of) the top and bottom surfaces. Such a
configuration is most commonly used in direct excitation, i.e. with a base acceleration that
is transverse to the axis of the cantilever beam. The large majority of related studies uses
a linear modeling approach, which rests on the underlying assumption that nonlinearities
are sufficiently small to be neglected. Piezoelectric materials, however, have been reported
to exhibit a nonlinear behavior, even at weak electric fields [9, 10]. Assessing the validity
of linear models thus needs to be clearly discussed, as pointed out notably in [11, 12].

Besides direct excitation, parametric excitation is an other way of using the piezo-
electric cantilever as an energy harvester [13, 14]. Parametric excitations is achieved by
applying a base acceleration along the axis of the cantilever beam. In contrast with direct
excitations, oscillations only occur if the excitation amplitude is sufficiently large. For ex-
citations beyond that critical value, the amplitude of oscillations grows quadratically with
the excitation amplitude (as far as nonlinear effects can be neglected) and can possibly
reach large values [15]. Such a behavior raised the interest of using parametric excitations
for energy harvesting [16, 17]. Regarding piezoelectric cantilevers, parametric excitation
has been far less studied than direct excitation. In particular, the comparison between
direct and parametric excitations has not been fully addressed in the literature.

In order to address the issues mentioned above, we develop an Euler-Bernoulli model
of piezoelectric cantilevers that accounts for large-deflection effects and piezoelectric elas-
tic nonlinearities (Sect. 2). The predictions of that model are subsequently compared
with experiments. A similar approach has been followed by Stanton et al. [18] for direct
excitations, and by Daqaq and Stabler [13] for parametric excitations. Regarding direct ex-
citations, Stanton et al. [18] took piezoelectric nonlinearities into account but ignored the
geometric nonlinearities due to the large deflections. When comparing with experimental
results, those authors needed to introduce a quadratic damping term to get a satisfactory
match. But if the deflections are sufficiently large for quadratic damping to be significant,
then there is no reason to neglect geometric nonlinearities in the first place. Geometric
nonlinearities indeed give rise to a quadratic nonlinearity (through piezoelectric coupling).
Regarding parametric excitations, Daqaq and Stabler [13] took geometric nonlinearities
into account but ignored the piezoelectric nonlinearities. This might explain the noticeable
differences obtained between the theoretical and experimental results in their paper.

The model developed in this paper accounts both for geometric and material nonlin-
earities. Abdelkefi et al. [14, 19] proposed a distributed-parameter model of piezoelectric
harvesters that includes both piezoelectric and geometric nonlinearities. They performed
a parametric study to investigate the effects of all the nonlinear parameters introduced.
Abdelkefi et al. also argued that 3 modes (at least) are needed in the Galerkin projec-
tion in most cases. Comparison with experiments, however, is not discussed in the works
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by Abdelkefi et al. [14, 19]. Our modeling approach is similar to theirs. However, the
comparison between the model and the experiments led us to make a different choice of
material nonlinearities than those considered in [14]: We have taken a cubic term in the
expression of the stress into account, and neglected some nonlinear piezoelectric coupling
terms. Our expansion of the piezoelectric enthalpy is based on the assumption that, in the
range of excitations considered, mechanical nonlinearities (large strain effects) dominate
electric nonlinearities (large electric field effects).

Our purpose is to derive a model that captures the main physics of the problem but still
remains simple enough for analytical investigation to be tractable and parameter identifica-
tion to remain simple. To that end, we use a Galerkin projection on the linear mode whose
frequency is the closest to the excitation frequency. This procedure leads to a 2-degrees of
freedom dynamical system. Analytical expressions of approximate steady-state solutions
are derived in Sect. 3 by using a multiple time scale expansion [20, 21]. This enables us to
obtain closed-form expressions of the frequency response, both for direct and parametric
excitations. In Sect. 4 is reported an experimental study that allows the validity of the
proposed model to be assessed. In Sect 5 we further explore some consequences of the
model on some issues related to energy harvesting.

2. Large-deflection model of a cantilever piezoelectric beam

x

y
piezoelectric

uB

vB

tip mass

Figure 1: Piezoelectric cantilever beam under base excitation.

The most common configuration used in energy harvesting is represented in Fig 1. It
consists of a cantilever beam (of length L) subjected to base excitations. Piezoelectric
patches cover a portion [0, Lb] of the top and bottom surfaces of the beam. The goal of
this Section is to derive a model of the piezoelectric-equipped beam that accounts for large
deflections. In Sect. 2.1 we first study the purely mechanical problem of a heterogeneous
beam. Specific features of the piezoelectric are introduced in Sect. 2.2. In particular,
motivated by experimental observations, we consider nonlinear constitutive laws for the
piezoelectric material.

2.1. Vibrations of an Euler-Bernoulli beam undergoing large displacements
2.1.1. Kinematics

Consider the in-plane motion of a beam under base excitations, first ignoring the
piezoelectric patches. The axes (x, y) are attached to the beam and ξ(x, y, t) is the dis-
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placement (at time t) of a point located at (x, y) in the reference configuration. The
axis y = 0 is chosen as the neutral axis of the beam. The displacement ξ is written as
ξ(x, y, t) = ξx(x, y, t)ex + ξy(x, y, t)ey with

ξx(x, y, t) = u(x, t)− y sin Θ(x, t),
ξy(x, y, t) = v(x, t) + y cos Θ(x, t)− y. (2.1)

In (2.1), u(x, t) is the axial displacement of the neutral axis, v(x, t) is the deflection of the
neutral axis, and Θ(x, t) is the angle of rotation of the cross-sections. Eq. (2.1) corresponds
to rigid body kinematics of the cross-sections.

It follows from (2.1) that the Green-Lagrange strain tensor L = 1
2(∇ξ+∇T ξ+∇T ξ·∇ξ)

takes the form

L =

(
Lxx Lxy
Lxy 0

)
(2.2)

with
Lxx = 1

2(e2 − 1)− yκ[(1 + u′) cos Θ + v′ sin Θ] + 1
2y

2κ2,
Lxy = 1

2(−(1 + u′) sin Θ + v′ cos Θ).
(2.3)

The superscript ′ denotes differentiation with respect to the x direction. In (2.3), κ = Θ′

is the curvature of the beam and e is the axial dilatation of the beam, defined by

e =
√

(1 + u′)2 + v′2.

Under the Euler-Bernoulli assumption that the cross-sections remain orthogonal to the
neutral axis, the angle Θ satisfies the relations

cos Θ =
1 + u′

e
, sin Θ =

v′

e
; (2.4)

so that Lxy = 0. We consider that the beam is inextensible, i.e. e = 1. Differentiating
(2.4) with respect to x and using the inextensibility condition, we have

κ =
v′′

cos Θ
=

v′′√
1− v′2

.

Hence, up to the fourth-order in v′4,

κ = v′′(1 +
1

2
v′2). (2.5)

It follows that, up to the fourth-order in v′4,

Lxx = −yκ = −yv′′(1 +
1

2
v′2), u′ = −v

′2

2
(2.6)
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Observe that, under the considered assumptions, the Green-Lagrange strain tensor L is
equal to the infinitesimal strain tensor ε = 1

2(∇ξ +∇T ξ), i.e. we have L = ε with

ε =

(
−yκ 0

0 0

)
. (2.7)

Eq. (2.7) is formally identical to the expression used in the linear beam theory. The crucial
difference is that the curvature κ now depends on the deflection v in a nonlinear fashion,
as can be seen from Eq. (2.5).

2.1.2. Equation of motion

The equation of motion can be obtained using Hamilton’s principle

δ

∫ T

0
L+We = 0 (2.8)

where L is the lagrangian and We is the external work. The relation (2.8) holds on any
time interval [0, T ]. In the present case, L takes the form

L = U −W +
1

2

∫ L

0
λ(x)(1−

√
(1 + u′)2 + v′2)2 dx

where U is the kinetic energy, W is the elastic energy, and λ(x) is a Lagrange multiplier
associated with the inextensibility constraint. To proceed further, one has to specify the
expressions of U , W and We. The elastic energy W is taken in the form

W =
1

2

∫ L

0
EI(x)κ2(x) dx (2.9)

where EI(x) is the flexural rigidity of the beam (not necessarily a constant). The kinetic
energy U is written as

U =
1

2

∫ L

0
µ(x)((u̇+ u̇B)2 + (v̇ + v̇B)2) dx (2.10)

where µ(x) is the linear mass density and (uB, vB) is the base displacement.
Substituting in (2.8) and omitting the detail of the calculation, the dynamic equation

(in the case We = 0) is found to be

µ(v̈ + v̈B) +
[
EIv′′

]′′
=−

[
EIv′

(
v′′v′

)]′ − [(EI)′ v′′v′
2
]′

− 1

2

[
v′
∫ s

L
µ
∂2

∂t2

(∫ s

0
v′

2
ds

)
ds

]′
+

[
v′′
(∫ s

L
µds

)
+ µv′

]
üB

(2.11)

which is complemented by the boundary conditions

v(0, t) = v′(0, t) = 0, v′′(L, t) = (EIv′′(1 + v′2))′(L, t) = 0. (2.12)
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2.1.3. Single mode approximation

In this paper, we are interested in deriving a simple model for the dynamics of the
beam. This can be accomplished by using the single mode approximation, i.e. by writing
v(x, t) as

v(x, t) = φ(x)r(t) (2.13)

where φ is the linear mode shape whose associated natural frequency is the closest to the
main excitation frequency. Provided the mode shape φ is normalized in such fashion that
φ(L) = 1, the variable r(t) can be interpreted as the tip deflection of the beam.

Using (2.13), the kinetic energy and the elastic energy become

U =
1

2

∫ L

0
µ
(

(u̇+ u̇B)2 + (φṙ + v̇B)2
)
dx , W =

1

2

∫ L

0
EIφ′′

2
r2
(

1 + φ′
2
r2
)
dx.

To account for energy dissipation in the system (notably due to friction with the air), the
external work δWe is taken as

δWe = −(c+ d|ṙ|)ṙδr (2.14)

where c and d are positive parameters. The introduction of a quadratic damping coefficient
d results from the fact that the deflections can be large. It is considered that the linear
and quadratic damping parameters account for all the sources of energy dissipation, i.e.
friction forces (with the air and the support) as well as material damping.

Substituting in (2.8) and omitting the detail of the calculations, we obtain the dynamic
equation

Mr̈ + (K + ξüB) r + β
(
r̈r + ṙ2

)
r + αbr

3 + cṙ + dṙ|ṙ|+mv̈B = 0 (2.15)

with

M =

∫ L

0
µφ2 dx,

K =

∫ L

0
EIφ′′

2
dx,

ξ =

∫ L

0
φ′

2
(∫ x

L
µds

)
dx,

αb =

∫ L

0
2EIφ′′

2
φ′

2
dx,

β =

∫ L

0
φ′

2
(∫ x

L
µB(s) ds

)
dx where B(s) = −

∫ s

0
φ′

2
ds,

m =

∫ L

0
µφdx.

(2.16)

In (2.15), the transverse excitation v̈B acts as a forcing term (direct excitation) whereas
the axial excitation üB acts as a time-dependent variation of the stiffness (parametric
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excitation). The axial excitation üB appears in (2.15) as a consequence of the inextensibily
condition, which relates a variation δv of the transverse displacement to a variation δu of
the axial displacement. From (2.6) and (2.13) we have indeed δu′ = −v′δv′ = −δr(t)r(t)φ′2.
Now when writing down Hamilon’s principle, the term δW coming from the kinetic energy
gives rise to the integral

∫
µ(x)u̇Bδu̇dx, which after integration by part (both in space and

time) leads to the term ξüBr(t) that appears in (2.15).

Remark on the Galerkin approximation: One can use a more general approximation of
v(x, t) in the form

v(x, t) =

n∑
i=1

φi(x)ri(t)

where φ1,· · · ,φn are given mode shapes. In that case, Eq. (2.15) is replaced by a set of n
coupled nonlinear equations as detailed in Appendix A.

Remark on the assumption of inextensibility: The equations (2.11) and (2.15) have been
obtained using the condition of inextensibility of the beam. To justify that assumption,
it is interesting to compare the first natural frequencies of transverse and axial vibrations.
Considering for simplicity that the flexural rigidity EI, the mass density µ and the area
A of the cross section are all independent on x, it is well known that the first natural
frequency ω0 of transverse vibrations is given by

ω0 =
kv

L2

√
EI

µ
(2.17)

and that the first natural frequency ω′0 of axial vibrations is given by

ω′0 =
π

2L

√
EA

µ
.

In (2.17), kv is the first positive solution to the equation cos kv cosh kv = −1. Numerical
calculations show that kv ≈ 1.875. It follows that(

ω′0
ω0

)2

∼ L2A

I
∼
(
L

h

)2

� 1

where h is the length of the beam in the y direction. Therefore, if the excitation frequency
ω is of the order of ω0 – which will be the case in this paper – then it makes sense to
neglect axial vibrations and to consider that the beam is inextensible.

2.2. Piezoelectric behavior at large strain

2.2.1. Constitutive laws

We now detail the behavior of the piezoelectric. In accordance with common practice,
the behavior of the piezoelectric is written in a local basis (e1, e2, e3) where e3 is the poling
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hp

h

Lp

e3

e1

e3

e1

y = h
2

y = −h
2

Figure 2: Poling direction in the piezolectric patches.

direction. For the patch located on the top surface y = h
2 , the poling direction is set equal

to ey. For the patch located on the bottom surface y = −h
2 , the poling direction is set

equal to −ey (so as to avoid cancellation effects when the patches are connected in series).
Writing the strain ε in the local basis (e1, e2, e3), the kinematics of the beam imply that
ε11 is the only non vanishing component. We furthermore assume that the electric field E
and the electric displacement D are along the e3 direction, i.e. E = E3e3 and D = D3e3.
In such conditions, the free energy density H of the piezoelectric can be regarded as a
function of (ε11, E3). The constitutive laws of the piezoelectric are given by

σ11 =
∂H

∂ε11
, D3 = − ∂H

∂E3
. (2.18)

The enthalpy density H is commonly taken as quadratic in (ε11, E3), in which case the
constitutive relations (2.18) are linear. Such a choice is valid provided that ε11 and E3

remain small enough compared to some characteristic values of the material, henceforth
denoted by ε0 and E0. To account for large deflections, we need an expression of H holding
for small – but not infinitesimally small – values of ε11/ε

0. The dimensionless electric field
E3/E

0 is assumed to remain small compared to ε11/ε
0. Writing H as a function of the

dimensionless variables (ε11/ε
0, E3/E

0), it is natural to consider a Taylor expansion of H,
i.e.

H(
ε11

ε0
,
E3

E0
) '

∑
1≤i+j≤n

cij(
ε11

ε0
)i(
E3

E0
)j . (2.19)

where n is the order of the expansion. Assuming that E3/E
0 is of the order of (ε11/ε

0)2

and limiting the expansion to the order n = 4, we get an expression of the form

H(ε11, E3) =
1

2
Epε

2
11 − e31E3ε11 −

1

2
εS33E

2
3 +

1

6
c0ε

2
11E3 +

1

6
c1ε

3
11 +

1

24
c2ε

4
11. (2.20)

In (2.20), Ep is the Young’s modulus at infinitesimal strains, e31 is the linear piezoelectric
constant, and εS33 is the dielectric permittivity at constant strain. The additional parame-
ters c0, c1 and c2 introduce nonlinearities in the constitutive laws. In particular, for short
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circuit conditions (E3 = 0), the stress-strain relation obtained from (2.20) reads as

σ11 = Epε11 +
1

2
c1ε

2
11 +

1

6
c2ε

3
11. (2.21)

Hence the secant modulus σ11/ε11 is of the form

Ep +
1

2
c1ε11 +

1

6
c2ε

2
11. (2.22)

Thus the parameter c1 (resp. c2) models a linear (resp. quadratic) dependence of the
secant modulus with respect to the applied strain. In particular, the parameter c2 drives
the stress-strain behavior at high strain: If c2 < 0 then the stress as well as the secant
modulus decrease for sufficiently high strain, i.e. the material exhibits stress softening.
Conversely, if c2 > 0 then the stress and the secant modulus increase for sufficiently high
strain. In that case, the material exhibits stress hardening.

The parameter c0 in (2.20) can be interpreted as a nonlinear piezoelectric coupling
parameter. In the following, we make the simplifying assumption that c0 = 0, i.e. we only
take purely elastic nonlinearities of the piezoelectric into account. Some justification for
dropping the parameter c0 is provided by the results of Abdelkefi et al. [14, 19]. Those
authors considered an expansion of the form (2.19) up to the order n = 3, retaining all
the terms in the expansion and using numerical simulations to investigate the influence of
the constitutive parameters on the frequency response of the piezoelectric. In particular,
the primary effect of the parameter c0 in (2.20) was found to reduce the amplitude of
the response. In practice it turns out to be difficult to distinguish that effect from the
damping contribution (2.14). In contrast, elastic nonlinearities will be shown in Sect. 3.2-
4 to have a dramatic influence on the frequency response of the system (notably on the
resonance frequency). Our objective being to keep the model as simple as possible while
still capturing the main physics of the problem, we choose to set c0 = 0. Ultimately the
validity of that assumption will be validated in Sect.4 by comparison with the experiments.

2.2.2. Equation of motion for the piezoelectric-equipped beam

The equation of motion of the piezoelectric-equipped beam can be obtained using
Hamilton’s principle (2.8) where the lagrangian L is now given by

L = U −W −Wp +
1

2

∫ L

0
λ(x)(1−

√
(1 + u′)2 + v′2)2 dx. (2.23)

In (2.23), Wp is the elastic energy of the piezoelectric. We have

δWp =

∫
Ωp

∂H

∂ε11
δε11dΩ
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where Ωp is the domain occupied by the piezoelectric. Assuming the electric field to be

constant in Ωp and provided that the patches are connected in series, we have E3 = −V (t)
2hp

where V (t) is the voltage across the piezoelectric. We note from (2.7) and (2.13) that

ε11 = −y
(
r(t)φ′′ +

1

2
r(t)3φ′′φ′

2
)

(2.24)

Hence

δε11 = −y
(
φ′′ +

3

2
r(t)2φ′′φ′

2
)
δr.

Substituting in (2.23) and using the expression (2.20) for H, we obtain (omitting the details
of the calculations)

δWp =

∫
Ωp

Epε11δε11 dΩ− (θ +Nr2)V δr + αpr
3δr (2.25)

where

θ = χ

∫ Lp

0
φ′′(x)dx,

N = 3
2χ

∫ Lp

0
φ′′φ′

2
dx,

χ = 1
2e31b(h+ hp),

αp = 1
5c2b([

h
2 + hp]

5 − [h2 ]5)

∫ Lp

0
φ′′

4
dx.

(2.26)

In (2.26), b is the width of the patches.
Observe that the parameter c1 does not appear in (2.25): This is due to the symmetric

arrangement of the two patches. The term
∫

ΩEpε11δε11 dΩ is the linear contribution to
the mechanical energy of the piezoelectric and can be put in the form (2.9). Using the
expression (2.26), Hamilton’s principle leads to the dynamic equation

Mr̈ + (K + ξüB) r + β
(
r̈r + ṙ2

)
r + αr3 + cṙ + dṙ|ṙ| − θV −Nr2V = −mv̈B (2.27)

where it is assumed that the flexural rigidity EI(x) and the linear mass density µ(x) take
the contribution of the piezoelectric into account. In (2.27), the parameter α is defined by

α = αb + αp. (2.28)

The parameter α characterizes the cubic nonlinearity of the system. As can be seen on
(2.28), α results from a mechanical contribution αb and a piezoelectric contribution αp.
Whereas αb is always positive (see Eq. (2.16)), αp can either be positive or negative,
depending on the sign of c2.

Eq. (2.27 ) has been obtained under the assumption that the substrate material is
linear. This is reasonable if the strain is not too large (below 0.1% for a steel substrate).
In other words, piezoelectric nonlinearities are assumed to appear at the smaller strain
level than the substrate nonlinearities.
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2.2.3. Electrical circuit

v(h
2
+ hp)

piezoelectric
v(h

2
)

v(−h
2
− hp)

piezoelectric
v(−h

2
)

R

i

Figure 3: Electrical circuit.

The equation (2.27) is complemented by the electrical equation of the circuit (Fig. 3).
The piezoelectric patches are connected in series to a load resistance R. We denote by
v(h2 + hp) (resp. v(h2 )) the voltage of the electrode at y = h

2 + hp (resp. y = h
2 ). Similarly

we denote by v(−h
2 − hp) (resp. v(−h

2 )) the voltage of the electrode at y = −h
2 − hp (resp.

y = −h
2 ). We have

V

R
= i

where V = v(h2 + hp) − v(−h
2 − hp) is the voltage across the resistance load. The current

intensity i in the circuit is estimated as the surface integral of Ḋ3 on the mid-surface of a
piezoelectric layer, i.e.

i =

∫
y=

h+hp
2

Ḋ3dxdz.

From the constitutive relation (2.18) and the expression (2.24) of the strain, we find

Ḋ3 = −ye31

(
φ′′ +

3

2
r(t)2φ′′φ′

2
)
ṙ + εS33Ė3. (2.29)

which after integration gives

i = −θṙ −Nr2ṙ − 2Cp

(
v̇(
h

2
+ hp)− v̇(

h

2
)

)
with

Cp = εS33

bLp
2hp

. (2.30)

Conducting a similar reasoning for the piezoelectric on the bottom surface leads to

i = −θṙ −Nr2ṙ − 2Cp

(
v̇(−h

2
)− v̇(−h

2
− hp)

)
.
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Since v(h2 ) = v(−h
2 ) (see Fig. 3), we finally arrive at

CpV̇ +
V

R
+ θṙ +Nr2ṙ = 0. (2.31)

Remark: Piezoelectric patches are often manufactured as bimorph, i.e. with two piezo-
electric layers separated by an epoxy layer. The analysis detailed above can easily be
extended to such configurations.

2.3. Coupled dynamical system

The two equations (2.27) and (2.31) govern the evolution of the variables (r, V ). In
the following, we study the dynamics of the system under a harmonic base acceleration,
in either direct or parametric excitation. For a direct excitation (uB = 0) with harmonic
base acceleration (vB = B cosωt), we obtain the dynamical system{

Mr̈ +Kr + β
(
r̈r + ṙ2

)
r + αr3 + cṙ + dṙ|ṙ| − θV −Nr2V = mBω2 cosωt,

CpV̇ +
V

R
+ θṙ +Nr2ṙ = 0.

(2.32)

For a parametric excitation (vB = 0) with harmonic base acceleration (uB = B cosωt),
we obtain the dynamical system{

Mr̈ +
(
K − ξBω2 cosωt

)
r + β

(
r̈r + ṙ2

)
r + αr3 + cṙ + dṙ|ṙ| − θV −Nr2V = 0,

CpV̇ +
V

R
+ θṙ +Nr2ṙ = 0.

(2.33)

The linear version of (2.32) – obtained by setting α = d = N = 0 – is commonly used in
studies related to piezoelectric energy harvesting. In such case, the steady state harmonic
response of the system is of the form

r = Re(a eiωt) , V = Re(b eiωt)

with b = −iRθωa/(1 + iRCpω) and

a =
mω2B

M(ω2
0 − ω2) + icω + iRθ2ω/(1 + iRCpω)

.

Let P be the average value of the electrical power V (t)2/R delivered to the load resistance.
We have

P =
1

2

Rθ2ω2

1 +R2C2
pω

2
a2. (2.34)

At the first order in (c, θ2), it can be verified that the resonance frequency ω is given by

ω = ω0 + λ (2.35)
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where ω0 =
√
K/M and

λ =
R2Cpθ

2ω0

2M(1 +R2C2
pω

2
0)
.

Observe from (2.35) that the piezoelectric coupling results in a shift λ of the resonance
frequency compared to the natural frequency ω0 of the beam.

Crucial differences are found in the case of parametric excitation (2.33) compared to
the case of direct excitation. In contrast with (2.32), r = V = 0 is always a solution of
(2.33): The piezoelectric beam may remain at equilibrium even if excited. If, however, the
amplitude B of the excitation is sufficiently large, then the equilibrium state r = V = 0
becomes unstable so that any small disturbance leads to oscillations with possibly large
amplitudes. The limit of stability Bs(ω) (i.e. the maximum amplitude B for which the
equilibrium r = V = 0 is stable) can be estimated using Floquet theory, as detailed in
Appendix B. In particular, for the undamped beam without piezoelectric coupling (θ =
N = c = d = 0), Bs(ω) vanishes for ω of the form

ωn =
2ω0

n

where n ∈ N. The frequency ωn is called the nth parametric resonance. Those results are
modified in presence of piezoelectric coupling: At the first order in (N, c, θ2, ω − 2ω0), the
limit of stability of the piezoelectric beam is given by

4B2
s (ω)ω2

0ξ
2 =

(
c+

Rθ2

1 +R2C2
pω

2
0

)2

+

(
R2Cpθ

2ω0

1 +R2C2
pω

2
0

−M(ω − 2ω0)

)2

. (2.36)

We refer to Appendix B for a derivation of (2.36) using Floquet theory. Observe that Bs(ω)
is minimum for

ω = 2(ω0 + λ) (2.37)

Hence, in a similar way to direct excitation, piezoelectric coupling results in a shift of the
parametric resonance. Observe that the relative shift (with respect to the relevant natural
resonance frequency) is the same as for direct excitation and equal to λ/ω0. Also note that
Bs(ω) increases with the linear damping coefficient c: the more damping is present in the
system, the higher the excitation needs to be for oscillations to occur.

3. First-order expansion of the nonlinear response

3.1. Steady-state solution

We are interested in studying the steady-state response of the system for an excitation
frequency close to the main resonance ωR (i.e. ωR = ω0 for direct excitation, and ωR =
2ω0 for parametric excitation). The systems (2.32) and (2.33) are nonlinear and cannot
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be solved exactly. However, using perturbation methods, we can obtain a closed-form
expansion of the solution in the case where the nonlinear terms as well as the excitation
amplitude B are considered as small. More precisely, the parameters α, c, d, β, B, θ, N
in (2.32)-(2.33) are assumed to vary as

B = O(ε2), c = O(ε2), d = O(ε2), α = O(ε2), β = O(ε2), N = O(ε2), θ = O(ε)

where ε is a small dimensionless parameter driving the expansion. Although they do
not correspond to nonlinear terms, the linear damping coefficient c and the piezoelectric
coupling parameter θ need to be considered as small quantities for the analysis to be
tractable. Observe, however, that θ is allowed to remain one order of magnitude larger
than the other parameters. The excitation frequency ω is written as

ω = ωR + σ

where the frequency shift σ is assumed to be of the order 2 in ε.
Following the method of multiple time scales [20, 21], the functions r(t) and V (t) are

expanded as

r = r0 (T0, T1, T2) + εr1 (T0, T1, T2) + ε2r2 (T0, T1, T2) +O(ε3),

V = V0 (T0, T1, T2) + εV1 (T0, T1, T2) + ε2V2 (T0, T1, T2) +O(ε3)
(3.1)

with Ti = εit. The time scale T0 is the physical time t, and the time scale Ti+1 is a slow
time scale compared to Ti. The expressions of ri and Vi in (3.1) are obtained by expanding
(2.32) and (2.33) in power of ε and collecting the terms with the same order. The analysis
is similar to that performed by Abdelkefi et al. [14, 19], the main difference being in the
definition of the various constants that appear in (2.32) and (2.33).

In the case of direct excitations, solutions of (2.33) are found to be of the form (in the
first order in ε)

r = a cos (ωt− γ) , V =
ω0θR√

1 +R2C2
pω

2
0

a cos (ωt− γ + γV ) (3.2)

where (a, γ) are functions of T2 that satisfy the modulation equations

ω0M
da

dT2
= −ω0

ceff

2
a− 4ω2

0d

3π
a2 − mBω2

0

2
sin γ,

ω0M
dγ

dT2
= ω0M (σ − λ)− 1

2
κeff a

2 − mBω2
0

2a
cos γ.

(3.3)

In (3.3), the parameters ceff and κeff are defined by

ceff = c+
Rθ2

1 +R2C2
pω

2
0

, κeff =
3α− 2βω2

0

4
. (3.4)

14



The parameter ceff can be interpreted as an effective linear damping parameter, that com-

bines mechanical and electrical damping (represented by the terms c and Rθ2/1 +R2C2
pω

2
0,

respectively). The parameter κeff can be interpreted as an effective nonlinear parameter.

Eq. (3.2) shows that r0 is a slowly modulated harmonic function of pulsation ω0.
In the expression of V in (3.7), there appears a additional phase shift γV whose exact
expression is not needed for our purpose. Steady-state solutions are obtained by enforcing
that da/dT2 = dγ/dT2 = 0 in (3.3), i.e.

0 = −ω0

ceff

2
a− 4ω2

0d

3π
a2 − mω2

0B

2
sin γ,

0 = ω0M (σ − λ)− 1

2
κeff a

2 − mω2
0B

2a
cos γ.

(3.5)

The amplitude a (as well as the phase shift γ) depends nonlinearly on the excitation
amplitude B and the frequency shift σ.

A similar analysis can be performed for parametric excitations. The modulation equa-
tions become

ω0M
da

dT2
= −ω0

ceff

2
a− 4ω2

0d

3π
a2 − ξω2

0Ba sin γ,

ω0M
dγ

dT2
= ω0M (σ − 2λ)− κeff a

2 − 2ξω2
0B cos γ.

(3.6)

In that case, steady-state solutions are found to be of the form

r = a cos
(ω

2
t− γ

2

)
, V =

ω0θR√
1 +R2C2

pω
2
0

a cos
(ω

2
t− γ

2
+ γV

)
(3.7)

where (a, γ) satisfy

0 = −ω0

ceff

2
− 4ω2

0d

3π
a− ξω2

0B sin γ,

0 = ω0M(σ − 2λ)− κeff a
2 − 2ξω2

0B cos γ.
(3.8)

Observe from (3.7) that the system exhibits a harmonic response at half the frequency of
the excitation.

3.2. Frequency-response

The expressions (3.5-3.8) can be used to study the influence of the constitutive param-
eters on the steady-state frequency response of the system. To that purpose, it is useful to
express the various parameters in terms of dimensionless quantities (denoted by a tilde )̃
as follows:

ceff = c̃eff
√
KM , d = d̃M/L , ξ = ξ̃M/L ,

κeff = κ̃effK/L
2 , a = Lã , B = LB̃.
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It is also convenient to express the excitation frequency ω in terms of the relative frequency
shift σ̃ with respect to the linear resonance frequency, i.e.

σ̃ =
ω − ωR
ωR

− 1

2

R2C2
pθ

2

M(1 +R2C2
pω

2
0)
. (3.9)

For energy harvesting, the electric power delivered to the load resistance is the main quan-
tity of interest. Since the instantaneous power is equal to V 2(t)/R, it is clear from the
expression (3.2-3.7) that the average power P delivered to the load resistance is

P = P 0ã2 (3.10)

where ã corresponds to a steady-state solution and

P 0 =
L2

2

Rθ2ω2
0

1 +R2C2
pω

2
0

.

Eliminating the phase γ from (3.5)-(3.8) leads to the equation(m
M

)2 B̃2

4ã2
= (

1

2
c̃eff +

4d̃

3π
ã)2 + (σ̃ − 1

2
κ̃eff ã

2)2 for direct excitation (3.11)

and to the equation

ξ̃2B̃2 = (
1

2
c̃eff +

4d̃

3π
ã)2 + (σ̃ − 1

2
κ̃eff ã

2)2 for parametric excitation. (3.12)

In (3.11), the constitutive parameters only appear through the effective linear damping
c̃eff, the quadratic damping parameter d̃ and the effective nonlinear parameter κ̃eff. In

(3.12), the parametric coefficient ξ̃ acts as an additional parameter.
In order to study the influence of the parameters (c̃eff, d̃, κ̃eff) on the power P , the

dimensionless frequency responses obtained from (3.10-3.11) are plotted in Figs 4-6 both
for direct (left) and parametric (right) excitations. In the parametric case, it can be
observed in Figs 4-6 that P vanishes at two frequencies. It can easily be checked from
(3.12) that those two frequencies are given by the relation

ξ̃2B̃2 =
1

4
c̃2
eff + σ̃2. (3.13)

Note that the relation (3.13) corresponds to the limit of stability of the equilibrium position,
as obtained in Eq. (2.36) from Floquet theory.

Increasing the damping parameters c̃eff and d̃ has the effect of decreasing the ampli-

tude a and the electric power P (Figs. 4-5). In the case of parametric excitation, the
linear damping c̃eff has the additional effect of reducing the frequency range over which
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Figure 4: Frequency response for several values of the linear effective damping parameter
c̃eff: (left) direct excitation with B̃ = 0.01, (right) parametric excitation with B̃ = 0.02

(d̃ = 0.1, κ̃eff = 0, ξ̃ = −1).

Figure 5: Frequency response for several values of the quadratic damping parameter d̃
: (left) direct excitation with B̃ = 0.01, (right) parametric excitation with B̃ = 0.02
(c̃eff = 0.01, κ̃eff = 0, ξ̃ = −1).
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Figure 6: Frequency response for several values of the effective nonlinear parameter κ̃eff
: (left) direct excitation with B̃ = 0.01, (right) parametric excitation with B̃ = 0.02
(c̃eff = 0.01, d̃ = 0.1, ξ̃ = −1).

oscillations occur. In contrast, the quadratic damping parameter d̃ does not display such
an influence.

Whereas the damping parameters primarily act on the amplitude of the frequency-
response, the nonlinear parameter κ̃eff primarily affects the resonance frequency: Increas-
ing κ̃eff results in an increase of the resonance frequency, as shown in Fig. 6. Also observe

the foldover effect (i.e. the bending of the resonance curve) that is typical of nonlinear
oscillators. If κ̃eff > 0, the foldover effect is of the hardening type, i.e. the resonance curve
is bent towards high frequencies. Conversely, if κ̃eff < 0 then the foldover effect is of the
softening type, i.e. the resonance curve is bent towards low frequencies.

For later reference, we note that the expression of the peak power PM and the corre-
sponding frequency shift σ̃M can be obtained from (3.11-3.12). We have indeed

PM = P0ã
2
M (3.14)

where ãM is the peak displacement amplitude. We obtain from (3.11)-(3.12) that

σ̃M =
1

2
κ̃eff ã

2
M (3.15)

where

ãM =


3π

16d̃

−c̃eff +

√
c̃2
eff +

32d̃

3π

m

M
|B̃|

 for direct excitation,

3π

4d̃
(|ξ̃B̃| − 1

2
c̃eff) for parametric excitation.

(3.16)
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4. Experimental study

Figure 7: Piezoelectric cantilever used for experiments.

A piezoelectric cantilever has been designed in order to study the validity of the model
presented in Sect. 2-3. The device is shown in Fig. 7: Two Midé QP20W bimorph
piezoelectric patches were bonded to the upper and lower surfaces of a 222 x 0.8 x 40
mm3 steel plate. The piezoelectric patches were bonded at the clamped end side of the
plate. A 12 g tip mass was placed on the steel surface for tuning the resonance frequency
and amplifying the amplitudes of vibrations. In Table 1 are reported the piezoelectric
material parameters provided in the manufacturer’s datasheet (Ep and Ee are respectively
the Young’s modulus of the piezoelectric material and of the epoxy, ρp and ρe are the
mass densities, e31 is the piezoelectric constant, εS33 is the relative permittivity at constant
strain).

Ep Ee ρp ρe e31 εS33

(MPa) (MPa) (kg.m−3) (kg.m−3) (C.m−2) (F.m−1)

69000 5000 7800 8000 13.1 1.505 10−8

Table 1: Material parameters for the piezoelectric patch.

The experimental set-up is shown in Fig. 8: An electromagnetic shaker was used to
apply prescribed harmonic excitations to the piezoelectric cantilever. Direct excitation
was achieved by placing the cantilever horizontally (Fig. 9) while parametric excitation
was achieved by placing the cantilever vertically (Fig. 10). The piezoelectric patches were
connected in series, with a resistive load R = 28 kΩ. The voltage across the resistive load as
well as the base acceleration were monitored. The particular value R = 28 kΩ was chosen
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because it was found experimentally to be reasonably close to the optimal resistance (i.e.
the resistance that maximizes the electrical power) over all the excitations tested (both
direct and parametric).

Figure 8: Overall view of the experimental set-up.

Figure 9: Set-up for direct excitation.
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Figure 10: Set-up for parametric excitation.

4.1. Resonance frequencies in the linear regime

In order to evaluate the resonance frequencies for direct excitations in the linear regime,
a spectral analysis was performed on signals measured from free vibrations. Two resonance
frequencies were found in the range 0 − 150 Hz: the first resonance frequency ω0/2π is
approximatively equal to 15.14 Hz, and the second resonance frequency is approximatively
equal to 81.1 Hz (Fig. 11). As a comparison, the first two resonance frequencies obtained
from a Finite Element Analysis (FEA) of the beam (carried out with the FEM software
CAST3M [22]) are approximatively equal to 15.17 Hz and 109.9 Hz. The corresponding
mode shapes φ1 and φ2 are represented in Fig. 12. A finite-element beam model with
piecewise-continuous properties was used so as to take the geometries of the piezoelectric
patches and of the distributed proof mass into account. Regarding the first resonance ω0,
the relative error between the experimental and numerical values is about 0.2%. For the
second resonance, the relative error is about 34 %. Such a large value probably comes from
the fact that the assumption of a perfect clamping – used in the FEA – is no longer valid
for high vibration modes. For our purpose, the main observation is that the gap between
the first two resonance frequencies is large, which justifies taking φ = φ1 in the single mode
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Figure 11: Spectral analysis of free vibrations.

approximation (2.13), both for direct excitation (ω/2π ' 15 Hz) and parametric excitation
(ω/2π ' 30 Hz). In the model (2.32-2.33), the parameters (M,K, ξ, αb, β, θ,N,Cp,m) are
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Figure 12: Mode shapes φi(x) (left) and their derivative φ′i(x) (right) for the first two
modes.

calculated from the mode shape φ0 in Fig. 12 and the material parameters in Table 1. The
obtained values are reported in Table 2. At this point the parameters c, d and αp remain
to be identified.

M K ξ β αb θ N Cp m

(g) (N.m−1) (kg.m−1) (kg.m−2) (N.m−3) (N.V−1) (N.m−2.V−1) (nF) (g)

21.4 194.9 −0.17 0.780 5.15 103 2.48 10−4 4.54 10−5 20.0 29.6

Table 2: Model parameters (obtained from FEA).
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sample number

Figure 13: (left) Measurements of the voltage response V (t) in free vibration at small
displacement amplitude; (right) Logarithmic ratio Vn/V (0) as a function of n.

4.2. Identification of the linear damping parameter c

The linear damping parameter c can be obtained from the small amplitude decay in free
vibrations. For small amplitudes of the displacement, all the nonlinear terms in (2.32-2.33)
indeed become negligible so that the voltage response V (t) in free vibrations takes the form

V (t) =
ω0θR√

1 +R2C2
pω

2
0

V0e
ceff t/2M cos (ω0t− γ + γV ) (4.1)

where V0 is a constant. Eq. (4.1) can notably be obtained by using (3.2) and neglecting
the quadratic term in (3.3). It follows from Eq. (4.1) that the ratio between the initial
voltage V (0) and the nth peak of the voltage response is

Vn
V (0)

= e−nπceff /2Mω0 . (4.2)

In Fig. 13(left) are shown some measurements of the voltage response V (t) in free
vibrations at small amplitudes. Those measurements have been obtained with a resistive
load R = 28 kΩ. The corresponding values of log V (0)/Vn are shown in Fig. 13(right) and
display a linear dependence with n. Using (4.2), the slope of that line gives the value of
ceff, from which the linear damping c can be deduced by using Eq. (3.4). Carrying out

such a procedure gives c = 0.034 N.s.m−1.

4.3. Identification of the quadratic damping d and of the nonlinear piezoelectric parameter
αp

Using the formula established in Sect. 3.2, the nonlinear parameters (d, αp) can be
obtained from the measurement of the peak power PM and the corresponding frequency

23



shift σ̃M at any given amplitude of excitation (either direct or parametric). In the case of
a parametric excitation, we have indeed from (3.16)

d =
3π

4L

(
|ξB| −

ceff

2ω0

)√
P0

PM
, κeff =

2K

L2

P0

PM
σ̃M

2. (4.3)

For a parametric excitation with acceleration amplitude U0 = Bω2 = 5.83 g, a peak power
PM of 0.9605 mW was measured (see Fig. 14(a)). The corresponding frequency shift σ̃M
is equal to 6.6 10−3. Using those measurements, the relations (4.3) give

d = 0.018 kg.m−1, κeff = −2.29 104 N.m−3

In the identication procedure that has been just described, the parameters d and κeff are
found simultaneously. Since κeff is directly related to the stress-strain nonlinearity of the

piezoelectric, an other possible approach for identifying κeff is to use (quasi-static) tests
in short-circuit conditions.

At this point all the model parameters have been found. Out of the 12 parameters of
the model, 9 are directly available from a finite element analysis (Table 2). The remaining
3 are deduced from experimental measurements as detailed above (Table 3).

c d αp

(N.s.m−1) (kg.m−1) (N.m−3)

0.034 0.018 −3.09 104

Table 3: Model parameters (identified from experiments).

4.4. Frequency response in the nonlinear regime

The red dots in Fig. 14 show the average power P delivered to the load resistance
for several amplitudes and frequencies of the excitation. Such measurements have been
performed both for direct and parametric excitations. For parametric excitations, a foldover
effect of the softening type can clearly be observed on Fig. 14(a)(c). A similar effect is also
visible for direct resonance at sufficiently high excitation amplitude, see Fig. 14(b). Note
that a softening behaviour under direct excitation has also been observed experimentally
in [10, 23]. From the definition (3.4) of κeff, we can deduce that αp = −3.09 104 N.m−3.
Finding a negative value for κeff is consistent with the parametric study detailed in Sect.
3.2: Softening resonance curves, as observed experimentally, correspond to negative values
of the nonlinearity parameter κeff. Recall from (2.28) and (3.4) that

κeff =
1

4
(3αb − 2βω2

0) +
3

4
αp.
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Using the values in Table 2, the purely mechanical contribution 1
4(3αb − 2βω2

0) is found to
positive. Hence the introduction of the nonlinear piezoelectric term αp is crucial to capture
the softening behavior that is observed in the frequency response. Note from (2.26) that αp
is directly related to the piezoelectric parameter c2 which models the quadratic dependence
of the Young modulus with respect to the applied strain. Incidentally, finding αp < 0 means
that c2 < 0, i.e. that the piezoelectric material exhibits stress softening at high strain. A
similar result (i.e c2 < 0) was obtained in [9].

σ/2π [Hz]
-0.4 -0.2 0 0.2 0.4 0.6 0.8

P
 [
W

]

×10
-4

0

1

2

3

4

5

6

7

8

9

(a) Parametric excitation, U0 = 5.83 g.
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Figure 14: Frequency responses for several acceleration amplitudes U0 (g = 9.81 m.s−2):
experimental results (red dots), analytical expressions (solid blue line), numerical simula-
tions (pink solid line).

4.5. Model validation

The solid blue lines in Fig. 14 shows the frequency response predicted by the expressions
(3.10-3.11-3.12). A very good agreement with the experimental results is observed over all
the range of tested loadings, both in direct and parametric excitations. We emphasize that
the same set of parameters (Tables 2-3) is kept for all the curves in Fig. 14. Recall that
the resonance frequency ωM and peak power PM in Fig. 14(a) are the only experimental
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measurements used for identification purpose. The very good agreement between the model
and the experiments thus indicate that the model gives a fairly accurate description of the
physical system, at least close to the resonance and for moderately large amplitude of
excitations.

The pink solid curves in Fig. 14 show the frequency response obtained by numerical
integration of the dynamical systems (2.32) and (2.33) using a Runge-Kutta scheme. More
precisely, starting from the initial condition (r(0), V (0)) = (0.0001, 0), the time integration
is performed on a time sufficiently long for the response to stabilize on a steady-state
cycle (60 s was found to be sufficient in all the considered cases). The results obtained in
such fashion are very close to the results provided by the closed-form expressions (3.10-
3.11-3.12), thus validating the analytical approach considered in Sec. 3. For parametric
excitations, the sudden ’vertical’ jump displayed by the numerical resonance curve is related
to instability phenomena, as detailed later in Sect. 5.3.

The results in Fig. 14 rely on the single mode approximation (14) of the dynamics. As
discussed in detail by Abdelkefi et al. [14, 19], the number of required modes in the Galerkin
projection is strongly influenced by the value of the excitation acceleration. In order to
assess the domain of validity of the single mode approximation for the problem at hand,
numerical simulations have been performed using up to 3 modes in the Galerkin projection.
The corresponding equations are reported in Appendix A, see Eqs. (A.2-A.3). The same
linear and quadratic damping have been used for all modes. Some results are reported in
Fig. 15 (for parametric excitations) and in Fig. 16 (for direct excitations). Both for direct
and parametric excitations, it has been found that the 1-, 2- and 3-modes approximations
all give similar results up to some value Umax0 of the amplitude of excitations. Above that
value, significant differences appear between the different approximations considered so
that the validity of the single mode approximation becomes questionable, see Figs 15(b)-
16(b). The limit value Umax0 is about 0.22g for direct excitations and 5.9g for parametric
excitations: Above those values, the relative difference between the peak power provided
by the 1-, 2- and 3-modes approximations is significant and exceeds 10%.

5. Applications in energy harvesting

In this Section we further explore some consequences of the proposed model for appli-
cations in energy harvesting. Except stated otherwise, all the numerical curves presented
in the following have been obtained using the model parameters in Tables 2-3.

5.1. Optimal resistance

For energy harvesting, a major concern is to estimate the maximum electrical power
that can be extracted from a given excitation. This is achieved by assuming the perfect
tuning condition ω = ωM and optimizing the load resistance R. To that purpose, it is
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Figure 15: Numerical simulations of the frequency response in parametric excitation.
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Figure 16: Numerical simulation of the frequency response in direct excitation.

convenient to introduce the dimensionless quantities defined as

R̃ = RCpω0 , θ̃
2

=
θ2

CpK
, c̃ =

c√
KM

.

From the relation (3.10), we obtain that the optimal resistance necessarily satisfies

0 = ãM
∂P0

∂R
+ 2P0

∂ãM
∂R

i.e.

0 = (1− R̃2
)ãM + 2R̃(1 + R̃

2
)
∂ãM
∂R

. (5.1)
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At this point it is necessary to distinguish between direct and parametric excitations be-
cause the expression of ãM is not the same in both cases, as can be seen from Eq. (3.16).
The case of parametric excitation is the easiest one to handle. In that case, (5.1) becomes

0 = (1− R̃2
)(1− 3θ̃2

2|B̃ξ̃| − c̃
R̃+ R̃

2
). (5.2)

The value R̃ = 1 (i.e. R = 1/Cpω0) is always a solution of (5.2) and corresponds to a
stationary point of P (R) (but not necessarily to a maximum). Depending on the excitation
amplitude B, other solutions to (5.2) may exist. After some manipulations on (5.2), we
obtain that:

• if |B̃ξ̃| − c̃/2 < 3
2 θ̃

2, then there are two values of the optimal resistance obtained as

the solutions to the quadratic equation 0 = 1− 3θ̃2

2|B̃ξ̃|−c̃R̃+ R̃
2
. The corresponding value of

the electric power is

P =
π2

32d̃
2L

2Kω0
(2|B̃ξ̃| − c̃)3

3
.

• if |B̃ξ̃|− c̃/2 > 3
2 θ̃

2, then the optimal resistance is given by R̃ = 1. The corresponding
electric power is

P =
π2

32d̃
2L

2Kω0
9θ̃2(2|B̃ξ̃| − c̃− 1

2 θ̃
2)2

8
.

For the device considered in Sec. 4, the threshold value B̃ separating the two regimes is
equal to 0.011. In Fig. 17 is plotted the optimal resistance as a function of the excitation
amplitude.

Although similar in spirit, the calculations for direct excitations are more involved.
Substituting the relevant expression of ãM in (5.1) leads to the equation

0 = (1− R̃2)
(
(1 + R̃2)

√
c̃2
eff +

32d̃

3π

m

M
|B̃| − 2R̃θ̃2

)
.

Again R̃ = 1 is always a solution. Depending on the excitation amplitude B̃, other solution
may be found by solving the equation

0 = (1 + R̃2)

√
c̃2
eff +

32d̃

3π

m

M
|B̃| − 2R̃θ̃2. (5.3)

Rather than solving (5.3) (which is intricate), we make the following observation: If (5.3)
admits a solution (denoted by R̃0), then from (3.16) the corresponding amplitude ãM is
equal to

3π

16d̃
(
R̃0θ̃

2

1 + R̃2
0

− c̃). (5.4)
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Figure 17: Optimal resistance under parametric resonance.

Recall that ãM is required to be positive, so (5.4) implies that

0 > R̃2
0 − R̃0

θ̃2

c̃
+ 1. (5.5)

Now the minimum value of the polynomial x 7→ x2− x θ̃2c̃ + 1 is equal to 1− θ̃4/4c̃2. Hence
(5.5) implies that

θ̃2 ≥ 2c̃. (5.6)

If the model parameters do not satisfy (5.6) – which happens to be the case for the device
considered in Sect. 4 – then (5.3) cannot have any admissible solution. In such situation,
the optimal resistance is given by R̃ = 1 and does not depend on the excitation amplitude.

5.2. Limits of the linear model

As mentioned in Sect. 2.3, linear models of piezoelectric cantilever under direct ex-
citation are frequently used in studies related to energy harvesting. In such models, the
peak power and the resonance frequency are given by (2.34) and (2.35), respectively. The
nonlinear model presented in this paper allows one to assess the limits of validity of the
linear model: In Fig. 18(left) is plotted the relative error between the linearized expression
(2.34) and the expression (3.15-3.16) of the peak power PM , as a function of the acceler-
ation amplitude U0. The relative error remains small (<0.2%) for acceleration U0 below
0.01 m.s−2, but grows fast for acceleration amplitude above 0.01 m.s−2. The relative error
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exceeds 10 % for acceleration amplitude above 0.16 m.s−2. Note that acceleration ampli-
tudes above 0.16 m.s−2 are common in low-level ambient vibration sources [6], meaning
that nonlinear effects are expected to be significant in a lot of applications related to energy
harvesting. As illustrated in Fig. 18(right), neglecting nonlinearities leads to overestimate
the harvested power. A similar conclusion has been obtained in [18] for negligible geometric
nonlinearities. As can be observed in Fig. 18, the relative error on the prediction of the
resonance frequency remains small.

Figure 18: Comparison of the linear and nonlinear models: relative error on the peak power
and resonance frequency (left), frequency response for a direct excitation with amplitude
U0 = 0.4 m.s−2 (right).

5.3. Stability and hysteresis effects

The bending of the resonance curve – that is observed either for direct or parametric
excitation – gives rise to some hysteretic behavior. To illustrate that effect, the frequency
response is plotted in Fig. 19 for a parametric excitation with acceleration amplitude
U0 = 6.73 g. The equilibrium position is stable outside of the domain delimited by the
points A and D in Fig. 19. The stability of oscillatory solutions can be estimated by
studying the jacobian of the system (3.8): In the steady-state solution (3.7), the amplitude
a and the phase shift γ are indeed obtained as equilibrium solutions to the dynamical system
(3.8). Such equilibria are (asymptotically) stable if all the eigenvalues of the jacobian
have a negative real part [24]. As detailed in Appendix C, there is a simple geometrical
interpretation of the stability condition for the problem at hand: The limit of stability is
reached when the tangent vector to the resonance curve is vertical (points B and E in Fig.
19). The portion of the resonance curve that is bounded by the points B and E (showed
as a dashed line) corresponds to unstable solutions: Any small disturbance will drive the
system either to a stable oscillatory solution or to the equilibrium position. Points on the
resonance curve that are outside of the portion delimited by B and E correspond to stable
oscillatory solutions.
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Figure 19: Frequency response for parametric excitation with acceleration amplitude U0 =
6.73 g: Stability of oscillatory solutions and hysteretic behavior.

The frequency shifts corresponding to the points A, B, D, E are denoted by σ(A),
σ(B), σ(D) and σ(E), respectively. For frequency shifts between σ(D) and σ(E), observe
that there are two stable oscillatory solutions. Depending on the initial conditions, the
steady-state response will be either on the upper branch BF or the lower branch DE of
the resonance curve (see [13] for a more detailed discussion along those lines). Similarly,
for frequency shifts between σ(B) and σ(D), there are two possible steady-state solutions,
namely the equilibrium position and an oscillatory solution (branch BF ). In particular,
it can be noted that the resonance frequency ωM falls in that range. As a consequence,
the steady-state solution achieving peak power (point M in Fig. 19) is reached for some
but not all initial conditions. The stable steady-state oscillatory solution is unique only for
frequency shifts between σ(E) and σ(A). For frequencies in that range, the electrical power
is maximum at the point labeled F in Fig. 19: That point correspond to the maximum
power that can be extracted without setting provision on the initial conditions.

5.4. Dependence of the harvested energy on the amplitude of excitation

The peak power PM as given in Eq. (3.14) is plotted in Fig. 20 (solid lines) as a function
of the excitation amplitude B, both for direct and parametric excitations. The peak power
PM is obtained by setting the excitation frequency equal to the relevant resonant frequency
for the type of excitation considered (direct or parametric). The exact expression of the
resonant frequency is given by Eqs. (3.15-3.16 )). Besides, the load resistance is set to its
optimal value as discussed in Sect. 5.1. Hence, the curves in Fig. 20 (solid lines) shows
the maximum power that can be harvested for a excitation of given amplitude.
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Figure 20: Electrical power at the resonance frequency, as a function of the amplitude of
excitation: (red) direct excitation, (blue) parametric excitation.

In the case of direct excitations, the B − PM curve (solid line) is almost linear. In
contrast, in the case of parametric excitation, the B − PM curve has more of a parabolic
shape: the harvested power starts slowly but grows more rapidly with the amplitude of
excitation. Similar remarks apply to the the half-power bandwidth, as represented in Fig.
21. Those results suggest that the benefits of parametric excitation over direct excitation
can only appear at high excitation amplitude.

In that regard, it should be kept in mind that the distortion of the resonance curve gets
more pronounced as the excitation amplitude B increases. As a result, for B large enough,
there are two stable solutions at the resonance frequency ωM , as discussed previously in
Sect. 5.3. In such case, the optimal oscillatory solution is reached only for certain initial
conditions. The dotted lines in Fig. 20 shows the maximum power that can be obtained
independently on the initial state. Both for direct and parametric excitation, those curves
are almost linear with comparable slopes. A similar observation can be made for the
half-power bandwidth (Fig. 21).

6. Conclusion

In this paper, a Galerkin projection has been used to study the behaviour of a distributed-
parameter model of piezoelectric harvesters that included both piezoelectric and geometric
nonlinearities. That model holds for moderately large geometric nonlinearities. Regarding
the piezoelectric, mechanical nonlinearities (large strain effects) are assumed to dominate
electric nonlinearities (large electric field effects). A cubic term appears in the stress-strain
relation as a result, but the piezoelectric coupling is assumed to remain linear. Material
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Figure 21: Half-power bandwidth as a function of the amplitude of excitation: (red) direct
excitation, (blue) parametric excitation.

nonlinearities in the substrate are neglected. The beam is furthermore assumed to be in-
extensible, which is reasonable for slender beams and excitation frequencies of the order of
the first natural frequency ω0.

As demonstrated in Sect. 4, the proposed model gives a fairly accurate description
of the dynamics near the main resonance frequency and for moderately large amplitude
of excitation, both in direct and parametric excitations. Most of the model parameters
are readily available from a linear finite element analysis of the cantilever beam. The re-
maining nonlinear parameters can be obtained by an identification procedure that requires
measuring the peak power and corresponding resonance frequency at a single excitation
amplitude.

Various issues related to energy harvesting have been discussed in detail. Under certain
conditions given in Sect. 5.1, the optimal resistance can be made independent on the
excitation amplitude, which is a welcome feature for effective predictions in applications.
Concerning direct excitations, it appears that the limits of validity of a linear model are
relatively low (0.16 m.s−2 for the tested device) – lower than what could intuitively be
expected. As a consequence, nonlinearities effects can be significant even for low-level
ambient vibrations. For the tested device, ignoring nonlinearities leads to overestimate the
harvested energy, as detailed in Sect. 5.2.

Compared to direct excitation, the benefits of parametric excitation are likely to occur
only at high amplitudes, far above the stability limit of the equilibrium. Moreover, at such
levels of amplitude, several steady-state solutions are stable. Therefore, depending on the
initial conditions, the response of the system may not converge towards the most favorable
steady-state solution.
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On a final note, we stress that further work is needed to extend the limits of validity
of the proposed model, both in terms of frequencies and amplitude of the excitation. In
particular, for frequencies that are not close to the main resonance and large amplitude
of excitations, additional modes need to be taken into account in the Galerkin projection.
Moreover, higher order nonlinearities than those considered in this paper – such as the
nonlinear piezoelectric coupling – may come at play.

Appendix A. Galerkin approximation with n modes

If the displacement v is approximated as

v(x, t) =

n∑
i=1

φi(x)ri(t) (A.1)

where φ1, · · · , φn are given mode shapes, then the coefficients ri(t) satisfy the n equations

∀i ∈ [1, n]
n∑
j=1

Mij r̈j +
n∑
j=1

(Kij + ξüB)rj +
n∑

j,k,l=1

αijklrjrkrl +
n∑

j,k,l=1

βijkl (rjrkr̈l + rj ṙkṙl)

+miv̈B − θiV (t)−
n∑

j,k=1

NijkrjrkV (t) + ciṙi + diṙi|ṙi| = 0

(A.2)
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where

Mij =

∫ L

0
µφiφjdx

Ki,j =

∫ L

0
EIφ′′i φ

′′
jdx

αijkl = αbijkl + αpijkl

αbijkl =

∫ L

0
EI
(
φ′′i φ

′′
jφ
′
kφ
′
l + φ′iφ

′
jφ
′′
kφ
′′
l

)
dx

αpijkl =
1

5
c2b

([
h

2
+ hp

]5

−
[
h

2

]5
)∫ Lp

0
φ′′i φ

′′
jφ
′′
kφ
′′
l dx

βijkl =

∫ L

0
µ

(∫ x

0
φ′iφ
′
jds

)(∫ x

0
φ′kφ

′
lds

)
dx

ξij =

∫ L

0
φ′iφ
′
j

(∫ x

L
µds

)
dx

θi = χφ′i(Lp)

Nijk =
χ

2

∫ Lp

0

(
φ′iφ
′
jφ
′′
k + φ′′i φ

′
jφ
′
k + φ′iφ

′′
jφ
′
k

)
dx

mi =

∫ L

0
µφidx

and (ci, di) are respectively the linear and the quadratic damping for the mode i. In
addition, the following electrical equation has to be satisfied:

CpV̇ +
V

R
+

n∑
i=1

θiṙi +
n∑

i,j,k=1

Lijkrirj ṙk = 0 (A.3)

with

Lijk = χ

∫ Lp

0

[
1

2
φ′iφ
′
jφ
′′
k + φ′iφ

′′
jφ
′
k

]
dx

The system (A.2-A.3) is a set of n+1 coupled nonlinear equations that governs the evolution
of (r1, · · · , rn, V ).

Appendix B. Stability of equilibrium for the piezoelectric beam under para-
metric excitation

Let T = 2π/ω be the period of the excitation. Setting X = (r, ṙ, V ), the set of equations
(2.33) can be put in the generic form

Ẋ(t) = F(X(t), t) (B.1)
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where F is T−periodic. As noted in Sect.2.3, the equilibrium state X0(t) = 0 is a particular
solution of the nonlinear differential equation (2.33). Using Routh criterion [24], X0 is
(asymptotically) stable if Y 0(t) = 0 is an (asymptotically) stable solution to the linearized
equation

Ẏ (t) =
∂F
∂X

(X0(t), t).Y (t). (B.2)

Note that (B.2) is a linear differential equation with T−periodic coefficients. The stability
of solutions to such equations can be studied using Floquet theory: Y 0(t) is asymptotically
stable if all the Floquet exponents have a non positive real part. We recall that the
distinctive property of the Floquet exponents µi is that (B.2) admits a non zero solution
Yi of the form

Yi(t) = eµitPi(t)

where Pi is T−periodic and takes values in C. For later reference, we also recall that the
Floquet multipliers µ1,· · · ,µN satisfy the relation

µ1. · · · .µN =

∫ T

0
tr
∂F
∂X

(X0(t), t) dt. (B.3)

In the present case, the linearized equation at X0(t) = 0 can be written as

Mr̈ + (K + ξüB) r + cṙ − θV = 0,

CpV̇ +
V

R
+ θṙ = 0.

(B.4)

We are interested in finding the maximum value of B for which r = V = 0 is an asymp-
totically stable solution to (B.4). From Floquet theory, the limit of stability is reached
when one of the Floquet multipliers has a null real part, i.e. when (B.4) admits a non zero
solution of the form

r(t) = eiµtp(t) , V (t) = eiµtq(t). (B.5)

where µ ∈ R and (p, q) are T−periodic functions. Using Fourier decomposition, the func-
tions p and q can be written as

p(t) =
∑
k∈Z

ake
ikωt , q(t) =

∑
k∈Z

bke
ikωt

Substituting in (B.4) leads to the following linear relations between the coefficients (ak, bk):

−M(kω + µ)2ak +Kak +
1

2
ξBω2(ak−1 + ak+1) + ic(kω + µ)ak − θbk = 0

iCp(kω + µ)bk +
1

R
bk + iθ(kω + µ)ak = 0.
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Eliminating bk leads to the relation

−M(kω+µ)2ak+Kak+
1

2
ξBω2(ak−1 +ak+1)+ic(kω+µ)ak+Rθ2ak

i(kω + µ)

1 + iRCp(kω + µ)
= 0

(B.6)
The relation (B.6) holds for any k ∈ Z. At the limit of stability, the set of equations (B.6)
admits a non zero solution {ak}k∈Z.

First consider the case θ = c = 0, in which case (2.33) reduces to the Mathieu equation
[25]. Using (B.3), it can be proved that µ = k0

ω
2 for some k0 ∈ N. It follows from (B.6)

that the limit of stability is equal to 0 if K −M(kω+ k0
ω
2 )2 = 0 for some k, i.e. if ω = 2ω0

n
for some n ∈ N.

Now consider that θ and c are small parameters. More precisely, we assume that
c = O(ε) and θ2 = O(ε) where ε� 1. We want to find the limit of stability for ω = 2ω0 +σ
with σ = O(ε). To that purpose, the coefficients ak and the exponent µ in (B.6) are
expanded as

ak = a0
k + a1

k , µ =
ω0

2
+ µ1

where a1
k = a0

kO(ε) and µ1 = O(ε). Substituting in (B.6) and collecting the terms of the
main order in ε, we obtain that a0

k = 0 for k ∈ {−1, 0}. Note that it is necessary that
(a0
−1, a

0
0) 6= (0, 0) for the functions p and q in (B.5) to be non zero.

At the next order in ε, we obtain the relation

0 = −2M(2k + 1)(kσ + µ1)ω0a
0
k + (K −M(2k + 1)2ω2

0)a1
k + 2Bξω2

0(a0
k−1 + a0

k+1)

+ic(2k + 1)ω0a
0
k +Rθ2a0

k

i(2kω0 + µ1)

1 + iRCp(2kω0 + µ1)
.

(B.7)
In particular, using (B.7) with k = −1 and k = 0 yields the two equations

0 = −icω0a
0
−1 −

ω0R(i−RCpω0)θ2

1+C2
pω

2
0R

2 a0
−1 + 2Mω0(µ1 − σ)a0

−1 + 2Bω2
0ξa

0
0,

0 = 2Bω2
0ξa

0
−1 + icω0a

0
0 − 2Mω0µ

1a0
0 +

ω0R(i+Cpω0R)θ2

1+C2
pω

2
0R

2 a0
0.

(B.8)

For (a0
−1, a

0
0) to be different from (0, 0), the determinant of the linear system (B.8) must

vanish. That requirement implies that µ1 = ω0x and

4B2ω2
0ξ

2 = (c+
Rθ2

1 +R2C2
pω

2
0

)2 + (
R2Cpθ

2ω0

1 +R2C2
pω

2
0

−M(ω − 2ω0))2 (B.9)

The value of B defined by the above relation is the limit of stability at the excitation
frequency ω.
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Appendix C. Stability of steady-state oscillatory solutions

The equations of modulation (3.6) can be put in the form

da

dT2
= f(a, γ),

dγ

dT2
= g(a, γ, σ̃);

(C.1)

where

f(a, γ) =
1

M
(−
ceff

2
a− 4ω0d

3π
a2 − ξω0Ba sin γ),

and

g(a, γ, σ̃) = 2ω0σ̃ +
1

ω0M

(
−κeff a

2 − 2ξω2
0B cos γ

)
.

In (C.1), σ̃ is the dimensionless frequency shift, as defined in (3.9). Steady-state oscillatory
solutions correspond to equilibria of the dynamical system (C.1), i.e. to values (a∗, γ∗)
satisfying

0 = f(a∗, γ∗) = g(a∗, γ∗, σ̃). (C.2)

To study the stability of such equilibria, consider the jacobian J of the system, i.e. the
matrix

J =

[
f,a f,γ
g,a g,γ

]
.

where the partial derivatives of f and g are evaluated at (a∗, γ∗, σ̃). Let λ1 ∈ C and λ2 ∈ C
be the eigenvalues of J , i.e the solution of the quadratic equation

λ2 − (tr J)λ+ det J = 0. (C.3)

An equilibrium (a∗, γ∗) is (asymptotically) stable if the real parts of λ1 and λ2 are negative
[24]. In the present case, an important observation is that trJ < 0. Therefore, setting
∆ = (trJ)2 − 4 det J , three cases can occur:

- if ∆ < 0, then λ2 = λ̄1 and consequently λ1 + λ2 = 2 Re(λ1) = trJ < 0. Hence
(a∗, γ∗) is a stable equilibrium.

- if ∆ ≥ 0 and det J ≥ 0 then (λ1, λ2) are real numbers and have the same sign.
Since λ1 + λ2 = tr J < 0, λ1 and λ2 are both negative. It follows that (a∗, γ∗) is a stable
equilibrium.

- if ∆ ≥ 0 and detJ < 0 then (λ1, λ2) are real numbers and have opposite sign. Hence
(a∗, γ∗) is an unstable equilibrium.

Since ∆ = (tr J)2 − 4 detJ , note that det J < 0 automatically implies that ∆ ≥ 0. For
the problem at hand, the condition of instability thus reduces to

det J < 0. (C.4)
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In order to obtain a geometrical interpretation of the condition (C.4), consider the
derivative of the frequency-response P (σ̃). Recalling that P (σ̃) = 1

2P0L
2a∗,2 where P0 is a

constant, we have
dP

dσ̃
= P0L

2a∗
da∗

dσ̃
.

Now differentiating (C.2) with respect to σ̃ gives

J ·
(
da∗/dσ̃
dγ∗/dσ̃

)
+

(
0
2ω0

)
=

(
0
0

)
.

It follows that(
da∗/dσ̃
dγ∗/dσ̃

)
= −J−1 ·

(
0
2ω0

)
= − 1

det J

[
g,γ −f,γ
−g,a f,a

]
·
(

0
2ω0

)
.

Hence
dP

dσ̃
= −2ω0

P0L
2a∗

det J
f,γ(a∗, γ∗).

In Fig. C.22, points in the unshaded (resp. shaded) domain satisfy f,γ(a∗, γ∗) < 0 (resp.
f,γ(a∗, γ∗) > 0). Note that f,γ(a∗, γ∗) vanishes at the resonance point of the frequency-
response (denoted by M in Fig. C.22). In the unshaded domain, dP/dσ̃ has the same
sign as det J . Therefore, unstable solutions correspond to point such that dP/dσ̃ < 0, i.e.
such that the frequency response is decreasing. Similarly, in the shaded domain, unstable
solutions correspond to point such that dP/dσ̃ > 0, i.e. such that the frequency response
is increasing. As a conclusion, limits of stability correspond to points where a change of
sign occur in dP/dσ̃ (setting aside the resonance point M). For the case depicted in Fig.
C.22, such a change of sign occurs at two points labeled as B and E. The same analysis
can be transposed to direct excitations.
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