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Abstract

This paper addresses the dynamic behavior of piezoelectric cantilevers under base excita-
tions. Such devices are frequently used for applications in energy harvesting. An Euler-
Bernoulli model that accounts for large-de ection e ects and piezoelectric nonlinearities

is proposed. Closed-form expressions of the frequency response are derived, both for di-
rect excitation (i.e. with a base acceleration transverse to the axis of the cantilever) and
parametric excitation (i.e. with a base acceleration along the axis of the cantilever). Ex-
perimental results are reported and used for assessing the validity of the proposed model.
Building on the model presented, some critical issues related to energy-harvesting are in-
vestigated, such as the in uence of nonlinearities on the optimal load resistance, the limits
of validity of linear models, and hysteresis e ects in the electrical power. The e ciency of
direct and parametric excitation is also compared in detail.

Keywords: piezoelectric materials, nite strains, energy harvesting, parametric
resonance, nonlinearities

1. Introduction

Energy harvesting from ambient vibrations has become an increasingly active topic in
recent years[[1[2[ 8, 4]. The overall idea is to use ambient vibrational energy as a source for
operating low-power electronic devices. Energy harvesters lie on a transduction mechanism
that converts mechanical energy into electric energy. Among the various options that are
available, piezoelectric materials { such as PZT ceramics { are often used. Those dielectric
materials have a non symmetric crystalline structure that results in a natural polarization.
Through the deformation of the crystalline lattice, deforming a piezoelectric material entails
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a change of the polarization, which in turn produces a variation of the electric eld and
a current ow in a surrounding electrical circuit. Such a behavior makes for very simple
mechanical designs of energy harvesters: The cantilever con guration, represented in Fig.
[1], is the most frequently used design[]5/16,17,18]. It consists of a beam clamped on one
side, with piezoelectric layers covering (all or part of) the top and bottom surfaces. Such a
con guration is most commonly used indirect excitation, i.e. with a base acceleration that
is transverse to the axis of the cantilever beam. The large majority of related studies uses
a linear modeling approach, which rests on the underlying assumption that nonlinearities
are su ciently small to be neglected. Piezoelectric materials, however, have been reported
to exhibit a nonlinear behavior, even at weak electric elds [9,[10]. Assessing the validity
of linear models thus needs to be clearly discussed, as pointed out notably in[11,112].

Besides direct excitation, parametric excitation is an other way of using the piezo-
electric cantilever as an energy harvester [13, 14]. Parametric excitations is achieved by
applying a base acceleratioralong the axis of the cantilever beam. In contrast with direct
excitations, oscillations only occur if the excitation amplitude is su ciently large. For ex-
citations beyond that critical value, the amplitude of oscillations grows quadratically with
the excitation amplitude (as far as nonlinear e ects can be neglected) and can possibly
reach large values[[15]. Such a behavior raised the interest of using parametric excitations
for energy harvesting [16,17]. Regarding piezoelectric cantilevers, parametric excitation
has been far less studied than direct excitation. In particular, the comparison between
direct and parametric excitations has not been fully addressed in the literature.

In order to address the issues mentioned above, we develop an Euler-Bernoulli model
of piezoelectric cantilevers that accounts for large-de ection e ects and piezoelectric elas-
tic nonlinearities (Sect. [J). The predictions of that model are subsequently compared
with experiments. A similar approach has been followed by Stanton et al. [[18] for direct
excitations, and by Dagaq and Stabler[[13] for parametric excitations. Regarding direct ex-
citations, Stanton et al. [18] took piezoelectric nonlinearities into account but ignored the
geometric nonlinearities due to the large de ections. When comparing with experimental
results, those authors needed to introduce a quadratic damping term to get a satisfactory
match. But if the de ections are su ciently large for quadratic damping to be signi cant,
then there is no reason to neglect geometric nonlinearities in the rst place. Geometric
nonlinearities indeed give rise to a quadratic nonlinearity (through piezoelectric coupling).
Regarding parametric excitations, Dagag and Stabler [[18] took geometric nonlinearities
into account but ignored the piezoelectric nonlinearities. This might explain the noticeable
di erences obtained between the theoretical and experimental results in their paper.

The model developed in this paper accounts both for geometric and material nonlin-
earities. Abdelke et al. [14] 19] proposed a distributed-parameter model of piezoelectric
harvesters that includes both piezoelectric and geometric nonlinearities. They performed
a parametric study to investigate the e ects of all the nonlinear parameters introduced.
Abdelke et al. also argued that 3 modes (at least) are needed in the Galerkin projec-
tion in most cases. Comparison with experiments, however, is not discussed in the works



by Abdelke et al. [14] 19]. Our modeling approach is similar to theirs. However, the
comparison between the model and the experiments led us to make a di erent choice of
material nonlinearities than those considered in[[14]: We have taken a cubic term in the
expression of the stress into account, and neglected some nonlinear piezoelectric coupling
terms. Our expansion of the piezoelectric enthalpy is based on the assumption that, in the
range of excitations considered, mechanical nonlinearities (large strain e ects) dominate
electric nonlinearities (large electric eld e ects).

Our purpose is to derive a model that captures the main physics of the problem but still
remains simple enough for analytical investigation to be tractable and parameter identi ca-
tion to remain simple. To that end, we use a Galerkin projection on the linear mode whose
frequency is the closest to the excitation frequency. This procedure leads to a 2-degrees of
freedom dynamical system. Analytical expressions of approximate steady-state solutions
are derived in Sect.[3 by using a multiple time scale expansion [20, 21]. This enables us to
obtain closed-form expressions of the frequency response, both for direct and parametric
excitations. In Sect. [4 is reported an experimental study that allows the validity of the
proposed model to be assessed. In Sect 5 we further explore some consequences of the
model on some issues related to energy harvesting.

2. Large-de ection model of a cantilever piezoelectric beam

piezoelectric

VBI _____ _::::_"” ]
X

— tip mass
Up

Figure 1: Piezoelectric cantilever beam under base excitation.

The most common con guration used in energy harvesting is represented in Fi§]1. It
consists of a cantilever beam (of lengthL) subjected to base excitations. Piezoelectric
patches cover a portion [QLy] of the top and bottom surfaces of the beam. The goal of
this Section is to derive a model of the piezoelectric-equipped beam that accounts for large
de ections. In Sect. [2.1 we rst study the purely mechanical problem of a heterogeneous
beam. Specic features of the piezoelectric are introduced in Sect] 2.2. In particular,
motivated by experimental observations, we consider nonlinear constitutive laws for the
piezoelectric material.

2.1. Vibrations of an Euler-Bernoulli beam undergoing large displacements
2.1.1. Kinematics

Consider the in-plane motion of a beam under base excitations, rst ignoring the
piezoelectric patches. The axesx y) are attached to the beam and (x;y;t) is the dis-
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placement (at time t) of a point located at (x;y) in the reference con guration. The
axisy = 0 is chosen as the neutral axis of the beam. The displacement is written as
(Xxy;t) = x(xy:t)ex+ y(xy;t)ey with

u(x;t) ysin ( x;t);
v(x;t)+ ycos ( x;t) v:

x(X;y;t)

y(Xy;t) @1

In (B.1), u(x;t) is the axial displacement of the neutral axis,v(x;t) is the de ection of the
neutral axis, and ( x;t) is the angle of rotation of the cross-sections. Eq.l) corresponds
to rigid body kinematics of the cross-sections.

It follows from ( that the Green-Lagrange strain tensorL = %(r +r T o+r T 1)
takes the form

— L xx ny
L= 2.2)
with
L = 3(62 1) y [(1+u9cos + VOsin ]+ 12y2 2
_ 1 - 0 : (2.3)
Ly = 3( (1+u9sin + vOcos):

|
o

The superscript ® denotes di erentiation with respect to the x direction. In (2.3),
is the curvature of the beam ande is the axial dilatation of the beam, de ned by

e= P 1+ u92+ ve;

Under the Euler-Bernoulli assumption that the cross-sections remain orthogonal to the
neutral axis, the angle satis es the relations

1+u® . VO
cos = 'sin = —; (2.4)
e e

so that Ly, = 0. We consider that the beam is inextensible, i.e. e = 1. Di erentiating
([.4) with respect to x and using the inextensibility condition, we have

R
T cos "1 W@
Hence, up to the fourth-order in v®,
= vo{1 + %v@): (2.5)
It follows that, up to the fourth-order in v®,
Lyx = Yy = yvof1+ %vm); u’= V; (2.6)



Observe that, under the considered assumptions, the Green-Lagrange strain tensdr is

equal to the in nitesimal strain tensor = %(r +r T ) ie. wehavel = with
0
= é’ 0 2.7)

Eq. (2.7) is formally identical to the expression used in the linear beam theory. The crucial
di erence is that the curvature  now depends on the de ectionv in a nonlinear fashion,
as can be seen from Eq.[ (2]5).

2.1.2. Equation of motion
The equation of motion can be obtained using Hamilton's principle
Z1
L+We=0 (2.8)
0
where L is the lagrangian and W is the external work. The relation @ holds on any
time interval [0; T]. In the present case,L takes the form
1Z L P
L=U W+ 3 (x)(1 (1+ u92 + v®)2dx
0

where U is the kinetic energy, W is the elastic energy, and (x) is a Lagrange multiplier
associated with the inextensibility constraint. To proceed further, one has to specify the
expressions olJ, W and We. The elastic energyW is taken in the form
z
1 L
w=2> E (x) ?(x)dx (2.9)
0
where EIl (x) is the exural rigidity of the beam (not necessarily a constant). The kinetic
energy U is written as
Zy
U= 3 CO((u+ ug)®+ (v + vg)?) dx (2.10)
0

where (x) is the linear mass density and (g ;vg) is the base displacement.
Substituting in (£.8) and omitting the detail of the calculation, the dynamic equation
(in the caseW, = 0) is found to be

h i
(v+ag)+ ElvOP=  Ely0 %R0 % (g)0%Q%
Z Z 0
1 S @ S
5 V0 &t v®ds ds (2.11)
ZI_ 0
S

00 0

ds + v
L

which is complemented by the boundary conditions
v(0;t) = v0;t) =0; vORL;t) = (EIvf1 + v®)qL:t)=0: (2.12)

+ Vv e



2.1.3. Single mode approximation
In this paper, we are interested in deriving a simple model for the dynamics of the
beam. This can be accomplished by using the single mode approximation, i.e. by writing
v(x;t) as
v(x;t) = (X)r(t) (2.13)

where is the linear mode shape whose associated natural frequency is the closest to the
main excitation frequency. Provided the mode shape is normalized in such fashion that
(L) =1, the variable r(t) can be interpreted as the tip de ection of the beam.
Using (2.13), the kinetic energy and the elastic energy become
Z, z

L
(Uu+ ug)?+( r+vg)? dx; W= > El %2 14+ &2 gy
0

1

U= =
2 9

To account for energy dissipation in the system (notably due to friction with the air), the
external work W is taken as

We= (c+ djrjrr (2.14)

wherec and d are positive parameters. The introduction of a quadratic damping coe cient
d results from the fact that the de ections can be large. It is considered that the linear
and quadratic damping parameters account for all the sources of energy dissipation, i.e.
friction forces (with the air and the support) as well as material damping.

Substituting in (2.8)] and omitting the detail of the calculations, we obtain the dynamic
equation

Me+(K+ ®mg)r+ sr+r?r+ pr3+cr+drjrj+ meg =0 (2.15)
with zZ,
M = 2 dx;
K= ElI %dx;
ZP Zy
= @ ds dx;
g, L (2.16)
b= 2E| 08 ®qy:
Z E Z X Z S
= @ B (s)ds dx whereB(s) = (st;
2, L 0
m = dx:

In (R.15), the transverse excitation g acts as a forcing term (direct excitation) whereas
the axial excitation ug acts as a time-dependent variation of the stiness (parametric
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excitation). The axial excitation «ug appears in ) as a consequence of the inextensibily
condition, which relates a variation v of the transverse displacement to a variation u of
the axial displacement. From (2.6) and (2.13) we have indeedu®°=  vOvO0=r (t)r(t) @,
Now when writing down Hamilon's principle, the term W coming from the kinetic energy
gives rise to the integral  (x)ug udx, which after integration by part (both in space and
time) leads to the term egr(t) that appears in (2.15).

Remark on the Galerkin approximation One can use a more general approximation of
v(x;t) in the form
X
v(xt) = i()ri(t)
i=1
where 1, , , are given mode shapes. In that case, Eq.5) is replaced by a set of
coupled nonlinear equations as detailed ifi Appendix A.
Remark on the assumption of inextensibility The equations (2.11) and (2.15) have been
obtained using the condition of inextensibility of the beam. To justify that assumption,
it is interesting to compare the rst natural frequencies of transverse and axial vibrations.
Considering for simplicity that the exural rigidity EI, the mass density and the area
A of the cross section are all independent orx, it is well known that the rst natural
frequency! ¢ of transverse vibrations is given by

s
K El

(2.17)

and that the rst natural frequency ! § of axial vibrations is given by
s

1 0 EA.

H O 2L .

In (R.17), k¥ is the rst positive solution to the equation cos kY coshk¥ = 1. Numerical
calculations show thatkY  1:875. It follows that

where h is the length of the beam in they direction. Therefore, if the excitation frequency
I is of the order of ! o { which will be the case in this paper { then it makes sense to
neglect axial vibrations and to consider that the beam is inextensible.

2.2. Piezoelectric behavior at large strain
2.2.1. Constitutive laws

We now detail the behavior of the piezoelectric. In accordance with common practice,
the behavior of the piezoelectric is written in a local basis €1; e2; e3) where e3 is the poling
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Figure 2: Poling direction in the piezolectric patches.

direction. For the patch located on the top surfacey = % the poling direction is set equal
to ey. For the patch located on the bottom surfacey = % the poling direction is set
equal to ey (so as to avoid cancellation e ects when the patches are connected in series).
Writing the strain  in the local basis (e1; e2; e3), the kinematics of the beam imply that
11 is the only non vanishing component. We furthermore assume that the electric eldE
and the electric displacementD are along thees direction, i.e. E = Ezez and D = Dgjes.

In such conditions, the free energy densityH of the piezoelectric can be regarded as a
function of ( 11; E3). The constitutive laws of the piezoelectric are given by

_ @H @H,
U7 @y @B

The enthalpy density H is commonly taken as quadratic in (11; E3), in which case the
constitutive relations ( are linear. Such a choice is valid provided that ;1 and E3
remain small enough compared to some characteristic values of the material, henceforth
denoted by © and E°. To account for large de ections, we need an expression ¢f holding
for small { but not in nitesimally small { values of 1= °. The dimensionless electric eld
Es=E° is assumed to remain small compared to 1= °. Writing H as a function of the
dimensionless variables (11= %; E3=EQ), it is natural to consider a Taylor expansion of H,
ie.

Dj3= (218)

11. Es,
)

H(701ﬁ

11,i  E3yj
Gj (T,)'(g)J : (2.19)
1 i+j n
where n is the order of the expansion. Assuming thatEs=EC is of the order of ( 11= 9)?
and limiting the expansion to the order n = 4, we get an expression of the form

1

1 1
600 %1E3 + *C]_ ?l"' ﬂCZ ﬁl: (220)

1 1
H( 11, E3) = EEp %1 enkEs 11 E"§3E§ + 6

In (, Ep is the Young's modulus at in nitesimal strains, es; is the linear piezoelectric
constant, and "35 is the dielectric permittivity at constant strain. The additional parame-
ters cp, €1 and ¢, introduce nonlinearities in the constitutive laws. In particular, for short



circuit conditions (E3 = 0), the stress-strain relation obtained from (2.20) reads as

1 1
11 = Ep 11+ écl %1"' 6C2 il: (221)

Hence the secant modulus 11= 1; is of the form

Ep+ %Cl 11+ %Cz Tt (2.22)
Thus the parameter ¢; (resp. ¢2) models a linear (resp. quadratic) dependence of the
secant modulus with respect to the applied strain. In particular, the parameter c, drives
the stress-strain behavior at high strain: If c; < 0 then the stress as well as the secant
modulus decrease for su ciently high strain, i.e. the material exhibits stress softening.
Conversely, if c > 0 then the stress and the secant modulus increase for su ciently high
strain. In that case, the material exhibits stress hardening.

The parameter ¢ in ( can be interpreted as a nonlinear piezoelectric coupling
parameter. In the following, we make the simplifying assumption thatcy = 0, i.e. we only
take purely elastic nonlinearities of the piezoelectric into account. Some justi cation for
dropping the parameter ¢; is provided by the results of Abdelke et al. [14], [19]. Those
authors considered an expansion of the form9) up to the orden = 3, retaining all
the terms in the expansion and using numerical simulations to investigate the in uence of
the constitutive parameters on the frequency response of the piezoelectric. In particular,
the primary e ect of the parameter ¢ in (2.20) was found to reduce the amplitude of
the response. In practice it turns out to be dicult to distinguish that e ect from the
damping contribution (2.14). In contrast, elastic nonlinearities will be shown in Sect.[3.2-
[ to have a dramatic in uence on the frequency response of the system (notably on the
resonance frequency). Our objective being to keep the model as simple as possible while
still capturing the main physics of the problem, we choose to sety = 0. Ultimately the
validity of that assumption will be validated in Sect.f]by comparison with the experiments.

2.2.2. Equation of motion for the piezoelectric-equipped beam
The equation of motion of the piezoelectric-equipped beam can be obtained using
Hamilton's principle (2.8) where the lagrangian L is now given by
141 P
L=U W Wp+ 3 ) (x)(1 (1+ u92 + v®)? dx: (2.23)
In (2.23), W, is the elastic energy of the piezoelectric. We have

z @H

Wy= =29 4
P p@llll



where , is the domain occupied by the piezoelectric. Assuming the electric eld to be
constant in , and provided that the patches are connected in series, we haves = %

where V (t) is the voltage across the piezoelectric. We note from[ (2]7) and (2.13) that
n= oy o % e ©F (2.22)

Hence

r:

3
11= y 00+ él’(t)z 00 ®

Substituting in (2.23) and using the expression [(2.2D) forH , we obtain (omitting the details
of the calculations)

Z
W= Ep11 nnd ( +Nrd)Vr+ pr3r (2.25)
p
where Z
= %) dx;
07 L
_ 3 P 00 @ gy
N=3% | ’ (2.26)
= §e3luh+ hp)! Z

Lp
p= sCb3 + hol®  [3F) . %aix:

In (R.26), bis the width of the patches.

Observe that the parameterc; does not aRpear in ): This is due to the symmetric
arrangement of the two patches. The term  Ep 11 11d is the linear contribution to
the mechanical energy of the piezoelectric and can be put in the form9). Using the
expression (2.25), Hamilton's principle leads to the dynamic equation

2

Me+(K+ ®eg)r+ sr+r2r+r3+c+drjrfj V Nr2Vv= mwg (2.27)

where it is assumed that the exural rigidity EI (x) and the linear mass density (x) take
the contribution of the piezoelectric into account. In (, the parameter is de ned by

= bt p (2.28)

The parameter characterizes the cubic nonlinearity of the system. As can be seen on
), results from a mechanical contribution |, and a piezoelectric contribution .
Whereas 4 is always positive (see Eq. 6)), p can either be positive or negative,
depending on the sign ofc,.

Eq. ) has been obtained under the assumption that the substrate material is
linear. This is reasonable if the strain is not too large (below 1% for a steel substrate).
In other words, piezoelectric nonlinearities are assumed to appear at the smaller strain
level than the substrate nonlinearities.
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2.2.3. Electrical circuit

i
v(§ + hp)
piezoelectric v(ﬂ)
2
R
H v( %)
piezoelectric
v( % hp)

Figure 3: Electrical circuit.

The equation (2.27) is complemented by the electrical equation of the circuit (Fig.[ B).
The piezoelectric patches are connected in series to a load resistanB We denote by
v(§ + hp) (resp. v(})) the voltage of the electrode aty =  + hy (resp. y = %). Similarly
we denote byv( i hp) (resp. v( 1)) the voltage of the electrode aty = % hy (resp.
y= 1. We have

whereV = v(§ + hy) v( § hp)is the voltage across the resistance load. The current
intensity i in the circuit is estimated as the surface integral ofD3 on the mid-surface of a
piezoelectric layer, i.e. 7

i = Dsdxdz:
_h+hp
Y= —

From the constitutive relation (2.18) and the expression [2.24) of the strain, we nd
- 00, § 2 00 " .
Ds= vyea ™ or(t) r+ "33ks (2.29)

which after integration gives

h h
= L NP 2C V(G +h) (3)
with b
Cp = "%ﬁ (2.30)
Conducting a similar reasoning for the piezoelectric on the bottom surface leads to
h h
= L NP 2C, W 5) v 5 hy)
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Sincev(§) = v( 1) (see Fig.B), we nally arrive at
V
Cp\L+§+ r+ Nr“r=0: (2.31)

Remark: Piezoelectric patches are often manufactured as bimorph, i.e. with two piezo-
electric layers separated by an epoxy layer. The analysis detailed above can easily be
extended to such con gurations.

2.3. Coupled dynamical system

The two equations (2.27) and (2.31) govern the evolution of the variables V). In
the following, we study the dynamics of the system under a harmonic base acceleration,
in either direct or parametric excitation. For a direct excitation ( ug = 0) with harmonic
base acceleration ¥g = B cosl!t ), we obtain the dynamical system

(

Me+Kr+ sr+r2r+r3+c+dijrf V Nr2v=mB! 2coslt;

Cp\L+%+ r+ Nrr=0: (2.32)

For a parametric excitation (vg = 0) with harmonic base acceleration (Ug = B cos!t ),
we obtain the dynamical system

(

Me+ K B! 2coslt r+ #r+r2r+r3+c+djrfj V Nr2v=0;
\Y
CoL+ o+ L+ Nrr=0;:
(2.33)

The linear version of (2.32) { obtained by setting = d= N =0 {is commonly used in
studies related to piezoelectric energy harvesting. In such case, the steady state harmonic
response of the system is of the form

r =Re(a€"); V =Re(bd")
with b= iR'!a= (1+iRCp!) and

m! 2B

a= .
M2 12)+icl +iR 21=(1+iRCp!)

Let P be the average value of the electrical poweY (t)?=R delivered to the load resistance.

We have
1 R 22 5

= ieReca (2.34)

At the rst order in ( c¢; 2), it can be veri ed that the resonance frequency! is given by

I = 1g+ (2.35)
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where! g = P K=M and
_ chp 2l _
2M (1+ R2C2! §)°

Observe from (2.3%) that the piezoelectric coupling results in a shift of the resonance
frequency compared to the natural frequency! ¢ of the beam.

Crucial di erences are found in the case of parametric excitation [2.3B) compared to
the case of direct excitation. In contrast with (2.32), r = V = 0 is always a solution of
([.33): The piezoelectric beam may remain at equilibrium even if excited. If, however, the
amplitude B of the excitation is su ciently large, then the equilibrium state r = V =0
becomesunstable so that any small disturbance leads to oscillations with possibly large
amplitudes. The limit of stability Bg(!) (i.e. the maximum amplitude B for which the
equilibrium r = V = 0 is stable) can be estimated using Floquet theory, as detailed in

Appendix B In particular, for the undamped beam without piezoelectric coupling ( =
N = c= d=0), Bg(!) vanishes for! of the form

- 2o

wheren 2 N. The frequency! , is called the n'" parametric resonance Those results are
modi ed in presence of piezoelectric coupling: At the rst order in (N;c; 2;! 2! 9), the
limit of stability of the piezoelectric beam is given by

I !

"2 "2
R 2 R2C, 2!
2 2 2 _ p ‘0 :

We refer to[Appendix Blfor a derivation of (R.36) using Floquet theory. Observe thatBs(! )

iS minimum for
' =2(1o+ ) (2.37)

Hence, in a similar way to direct excitation, piezoelectric coupling results in a shift of the
parametric resonance. Observe that the relative shift (with respect to the relevant natural
resonance frequency) is the same as for direct excitation and equal te! (. Also note that
Bs(! ) increases with the linear damping coe cient c. the more damping is present in the
system, the higher the excitation needs to be for oscillations to occur.

3. First-order expansion of the nonlinear response

3.1. Steady-state solution

We are interested in studying the steady-state response of the system for an excitation
frequency close to the main resonancég (i.e. ! g = ! ¢ for direct excitation, and ! g =
2! o for parametric excitation). The systems (2.32) and [2.38) are nonlinear and cannot
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be solved exactly. However, using perturbation methods, we can obtain a closed-form
expansion of the solution in the case where the nonlinear terms as well as the excitation
amplitude B are considered as small. More precisely, the parameters, ¢, d, , B, , N

in (.32)-(2.33) are assumed to vary as
B =0("%); c= O('%; d= O('3); =0(%; =0(%; N=0(?; =0()

where " is a small dimensionless parameter driving the expansion. Although they do
not correspond to nonlinear terms, the linear damping coe cient ¢ and the piezoelectric

coupling parameter need to be considered as small quantities for the analysis to be
tractable. Observe, however, that is allowed to remain one order of magnitude larger

than the other parameters. The excitation frequency! is written as

I =g+

where the frequency shift is assumed to be of the order 2 irf'.
Following the method of multiple time scales [20,21], the functionsr (t) and V (t) are
expanded as

r=ro(To; Ta; T2) + "r1(To; Ta; T2) + "2r2(To; Ta; T2) + O(");

N w2 "3 (3.2)
V = Vo(To; Ta; T2) + "Va(To; T1; T2) + "“Va (To; T1; T2) + O(")

with T; = "'t. The time scale Ty is the physical time t, and the time scaleT;+; is a slow
time scale compared toT;. The expressions of; and V; in ( are obtained by expanding
[.37) and (2.33) in power of" and collecting the terms with the same order. The analysis
is similar to that performed by Abdelke et al. [14, 19], the main di erence being in the
de nition of the various constants that appear in (£.32) and (2.33).

In the case of direct excitations, solutions of [(2.3B) are found to be of the form (in the
rst order in ")

IoR
r = acos(t ), V= q°:acos(!t + v) (3.2)
1+ R2C2!'§

where (@; ) are functions of T, that satisfy the modulation equations

C | 2 1 2
!OME: lo——a 4 od 2 MBY 5 sin ;
dT, 2 3 2
d 1 mB! 3 (33)
oM — = | oM = 2 "9 cos:
Mg, ='oMC ) 5 e @ 5 cos
In (, the parametersc, and , are de ned by
R 2 3 2132
Ce = ==~ 0. (3.4)

C+ ——5—55
e
1+ R2C3!'3 4
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The parametercg can be interpreted as ane ective linear damping parameter, that com-

bines mechanical and electrical damping (represented by the termsand R ?=1 + R2CZ! §,

respectively). The parameter o can be interpreted as ane ective nonlinear parameter.
Eq. @) shows that rg is a slowly modulated harmonic function of pulsation ! q.

In the expression ofV in (B.7), there appears a additional phase shift v whose exact

expression is not needed for our purpose. Steady-state solutions are obtained by enforcing

that da=dT, = d =dT, =0 in (8.3}, i.e.

C 41 2d m! 3B
0= lo—2-a 0-a2 0= sin :
2 3 2 (3.5)
1 , m!éB '
0=1oM ( ) éea 2 CoS :

The amplitude a (as well as the phase shift ) depends nonlinearly on the excitation
amplitude B and the frequency shift

A similar analysis can be performed for parametric excitations. The modulation equa-
tions become

da C 41 2d .
!on—Tzz !o%a 3—0612 | 2Basin ;
q (3.6)
LM = 1oM (- 2) e @ 2! 8Bcos:
2
In that case, steady-state solutions are found to be of the form
! 'oR !
r = acos Et 5 V= g————-acos Et §+ v (3.7)
1+ R2C3!'§
where (@; ) satisfy
C |2
e 4 20
0= log— a ! éBsin;
072 3 0 (3.8)

0=!M( 2) o a® 2! ZBcos:

Observe from (3.7) that the system exhibits a harmonic response at half the frequency of
the excitation.

3.2. Frequency-response
The expressions|(3.5-3]8) can be used to study the in uence of the constitutive param-
eters on the steady-state frequency response of the system. To that purpose, it is useful to
express the various parameters in terms of dimensionless quantities (denoted by a tilde ~)
as follows: P
Ce =€ KM ; d=adM=L ; = M=L ;
e =~¢ K=L? ; a=la , B=LB:
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It is also convenient to express the excitation frequency in terms of the relative frequency
shift ~ with respect to the linear resonance frequency, i.e.

Il 1g 1 R¥C3?
IR 2M(1+ R2C2!3)

(3.9)

For energy harvesting, the electric power delivered to the load resistance is the main quan-
tity of interest. Since the instantaneous power is equal toV2(t)=R, it is clear from the
expression [(3.8-3.[7) that the average poweP delivered to the load resistance is

P=P%%? (3.10)
where & corresponds to a steady-state solution and

L2 R 23

PO= = —— 0
2 1+ R2C3!' 3

Eliminating the phase from (B.5)-(B.8) leads to the equation

m 2B2 1 a ., 1 N2 . L
- - = — 4+ — + (~ o~ )
M 5 (26e 3 a)“ +( 57e a&)“ for direct excitation (3.12)
and to the equation
1 4d 1
22 _(ta 4 2.(~ T g?y2 ; -
B (Zee 3 a)“+( >7e a“) for parametric excitation. (3.12)

In (B.11), the constitutive parameters only appear through the e ective linear damping
€ » the quadratic damping parameter @ and the e ective nonlinear parameter ~, . In
), the parametric coe cient ~acts as an additional parameter.

In order to study the in uence of the parameters (e ;d;~g ) on the power P, the
dimensionless frequency responses obtained frorn (3|[L0-3.11) are plotted in Fig$ 4-6 both
for direct (left) and parametric (right) excitations. In the parametric case, it can be
observed in Figs[4-6 thatP vanishes at two frequencies. It can easily be checked from
(B.12) that those two frequencies are given by the relation

1
Bt = 6 +~% (3.13)

Note that the relation (8.13) corresponds to the limit of stability of the equilibrium position,
as obtained in Eq. (2.36) from Floquet theory.
Increasing the damping parameterscg and d has the e ect of decreasing the ampli-

tude a and the electric power P (Figs. @E) In the case of parametric excitation, the
linear damping €, has the additional e ect of reducing the frequency range over which
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Figure 4: Frequency response for several values of the linear e ective damping parameter
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Figure 5: Frequency response for several values of the quadratic damping parametér
. (left) direct excitation with B = 0:01, (right) parametric excitation with B = 0:02
(g =0:01, - =0, ™= 1).
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Figure 6: Frequency response for several values of the e ective nonlinear parameter,~

. (left) direct excitation with B = 0:01, (right) parametric excitation with B = 0:02
(6 =0:01,d=0:1, 7= 1)

oscillations occur. In contrast, the quadratic damping parameterd does not display such
an in uence.

Whereas the damping parameters primarily act on the amplitude of the frequency-
response, the nonlinear parameter g primarily a ects the resonance frequency: Increas-
ing ~¢ results in an increase of the resonance frequency, as shown in F@. 6. Also observe
the foldover e ect (i.e. the bending of the resonance curve) that is typical of nonlinear
oscillators. If ~o > 0, the foldover e ect is of the hardening type, i.e. the resonance curve
is bent towards high frequencies. Conversely, if z < 0 then the foldover e ect is of the
softening type, i.e. the resonance curve is bent towards low frequencies.

For later reference, we note that the expression of the peak powdpy and the corre-
sponding frequency shift 5y can be obtained from [3.11-3.1R). We have indeed

Pm = Po&, (3.14)
where ay is the peak displacement amplitude. We obtain from [3.1]){3.1P) that
1
™M= 57 &, (3.15)
where
8 0 S 1
3 320m. . . -
% @ € + eé + —mJBJA for direct excitation;;
e :§ 16d 3 M (3.16)
3 .. 1 . o
ﬁ(J Bj éee ) for parametric excitation :
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4. Experimental study

Figure 7: Piezoelectric cantilever used for experiments.

A piezoelectric cantilever has been designed in order to study the validity of the model
presented in Sect. [§-B. The device is shown in Fig[]7: Two Mice QP20W bimorph
piezoelectric patches were bonded to the upper and lower surfaces of a 222 x 0.8 x 40
mm?3 steel plate. The piezoelectric patches were bonded at the clamped end side of the
plate. A 12 g tip mass was placed on the steel surface for tuning the resonance frequency
and amplifying the amplitudes of vibrations. In Table [[] are reported the piezoelectric
material parameters provided in the manufacturer's datasheet E, and E. are respectively
the Young's modulus of the piezoelectric material and of the epoxy, , and ¢ are the
mass densitieses; is the piezoelectric constant,” 35 is the relative permittivity at constant
strain).

Ep Ee b o es1 "Ss
(MPa) (MPa) (kg.m 3) (kgm 3) (C.m 2) (F.m 1)
69000 5000 7800 8000 iB 1:50510 8

Table 1: Material parameters for the piezoelectric patch.

The experimental set-up is shown in Fig.[8: An electromagnetic shaker was used to
apply prescribed harmonic excitations to the piezoelectric cantilever. Direct excitation
was achieved by placing the cantilever horizontally (Fig. @) while parametric excitation
was achieved by placing the cantilever vertically (Fig.[10). The piezoelectric patches were
connected in series, with a resistive loadR = 28k . The voltage across the resistive load as
well as the base acceleration were monitored. The particular valu®k = 28k was chosen
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because it was found experimentally to be reasonably close to the optimal resistance (i.e.
the resistance that maximizes the electrical power) over all the excitations tested (both
direct and parametric).

Figure 8: Overall view of the experimental set-up.

Figure 9: Set-up for direct excitation.
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Figure 10: Set-up for parametric excitation.

4.1. Resonance frequencies in the linear regime

In order to evaluate the resonance frequencies for direct excitations in the linear regime,
a spectral analysis was performed on signals measured from free vibrations. Two resonance
frequencies were found in the range 0 150 Hz: the rst resonance frequency! o=2 is
approximatively equal to 15:14 Hz, and the second resonance frequency is approximatively
equal to 81.1 Hz (Fig.[1]). As a comparison, the rst two resonance frequencies obtained
from a Finite Element Analysis (FEA) of the beam (carried out with the FEM software
CAST3M [22]) are approximatively equal to 15.17 Hz and 109.9 Hz. The corresponding
mode shapes 1 and » are represented in Fig.[IR. A nite-element beam model with
piecewise-continuous properties was used so as to take the geometries of the piezoelectric
patches and of the distributed proof mass into account. Regarding the rst resonance g,
the relative error between the experimental and numerical values is about 0.2%. For the
second resonance, the relative error is about 34 %. Such a large value probably comes from
the fact that the assumption of a perfect clamping { used in the FEA { is no longer valid
for high vibration modes. For our purpose, the main observation is that the gap between
the rst two resonance frequencies is large, which justi es taking = ; in the single mode
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(a) Free vibrations starting from a direct exci- (b) Free vibrations starting from a direct exci-
tation targeting the rst resonance tation targeting the second resonance

Figure 11: Spectral analysis of free vibrations.

approximation (R.13), both for direct excitation (!=2 ' 15 Hz) and parametric excitation
(!=2 ' 30 Hz). In the model (2.32[2.3B), the parameters M1;K; ; p; ; ;N;C p;m) are

Figure 12: Mode shapes j(x) (left) and their derivative io(x) (right) for the rst two
modes.

calculated from the mode shape ¢ in Fig. L2 and the material parameters in Table[]. The
obtained values are reported in Table[ 2. At this point the parametersc, d and | remain
to be identi ed.

M K b N Cop m
(@ Nm ') (kgm ) (kgm % (Nm %) NV Y (Nm 2V YH (nF) (9
21:4 1949 0:17 0:780 51510 2:4810 * 4:54 10 ° 20,0 29.6

Table 2: Model parameters (obtained from FEA).
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Figure 13: (left) Measurements of the voltage responsé/(t) in free vibration at small
displacement amplitude; (right) Logarithmic ratio V,=V(0) as a function of n.

4.2. Identi cation of the linear damping parameter ¢
The linear damping parameterc can be obtained from the small amplitude decay in free

vibrations. For small amplitudes of the displacement, all the nonlinear terms in (2.32-2.3B)
indeed become negligible so that the voltage respond&(t) in free vibrations takes the form

t=2M

|
V(t) = qévoeCe cos( ot + v) (4.1)

1+ R2C2!'§
where Vg is a constant. Eq. (4.1) can notably be obtained by using[(3.2) and neglecting

the quadratic term in (B.3). It follows from Eq. (4.1) that the ratio between the initial
voltage V (0) and the n!" peak of the voltage response is

Vn nce =2M! o
= e © 0 4.2

In Fig. [L3[left) are shown some measurements of the voltage responaé(t) in free
vibrations at small amplitudes. Those measurements have been obtained with a resistive
load R = 28 k. The corresponding values of log V (0)=\,, are shown in Fig.[13(right) and
display a linear dependence withn. Using ), the slope of that line gives the value of
Ce , from which the linear damping c can be deduced by using Eqg. 4). Carrying out

such a procedure gives = 0:034 N.s.m 1.

4.3. Identi cation of the quadratic damping d and of the nonlinear piezoelectric parameter

p
Using the formula established in Sect., the nonlinear parametersd; ) can be
obtained from the measurement of the peak powelP), and the corresponding frequency
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shift ~y at any given amplitude of excitation (either direct or parametric). In the case of
a parametric excitation, we have indeed from |(3.15)

r—
3 .. G Po 2K Py,
d=— |B — — = ——~" 4.3
a 1B oy Py e T zpy, M (4.3)
For a parametric excitation with acceleration amplitude Ug = B! 2 =5:83 g, a peak power
Pw of 0:9605 mW was measured (see Fid. 14(a)). The corresponding frequency shiff~
is equal to 6610 3. Using those measurements, the relation3) give

d=0:018kg.m?*; o = 22910 N.m 3

In the identication procedure that has been just described, the parametersl and o are
found simultaneously. Since o is directly related to the stress-strain nonlinearity of the
piezoelectric, an other possible approach for identifying o is to use (quasi-static) tests
in short-circuit conditions.

At this point all the model parameters have been found. Out of the 12 parameters of
the model, 9 are directly available from a nite element analysis (Table[2). The remaining
3 are deduced from experimental measurements as detailed above (Taljle 3).

c d p
(Ns.m 1) (kgm 1) (N.m 3)
0:034 Q018 3:.09 10

Table 3: Model parameters (identi ed from experiments).

4.4. Frequency response in the nonlinear regime

The red dots in Fig. [I4 show the average poweP delivered to the load resistance
for several amplitudes and frequencies of the excitation. Such measurements have been
performed both for direct and parametric excitations. For parametric excitations, a foldover
e ect of the softening type can clearly be observed on Fig[ T4(a)(c). A similar e ect is also
visible for direct resonance at su ciently high excitation amplitude, see Fig. b). Note
that a softening behaviour under direct excitation has also been observed experimentally
in [10, [23]. From the de nition (3.4) of o , we can deduce that , = 3:0910' N.m 3.
Finding a negative value for o 1S consistent with the parametric study detailed in Sect.
[3.2: Softening resonance curves, as observed experimentally, correspond to negative values

of the nonlinearity parameter o . Recall from ) and ) that

w

_1 2 .
e —2(3 b 2' O)+Z p-

24



Using the values in Table@, the purely mechanical contribution;ll(3 b 2! 3)isfound to
positive. Hence the introduction of the nonlinear piezoelectric term , is crucial to capture
the softening behavior that is observed in the frequency response. Note fr06) thatp
is directly related to the piezoelectric parameterc, which models the quadratic dependence
of the Young modulus with respect to the applied strain. Incidentally, nding , < 0 means
that ¢, < 0, i.e. that the piezoelectric material exhibits stress softening at high strain. A
similar result (i.e ¢, < 0) was obtained in [9].

(a) Parametric excitation, Uy = 5:83 g. (b) Direct excitation, Up =0:19 g.

(c) Parametric excitation, Uy =5:9 g. (d) Direct excitation, Uy =0:079 g.

Figure 14: Frequency responses for several acceleration amplitudét (g = 9:81 m.s 2):
experimental results (red dots), analytical expressions (solid blue line), numerical simula-
tions (pink solid line).

4.5. Model validation
The solid blue lines in Fig. [14 shows the frequency response predicted by the expressions

(B.10{3.11F3.1P). A very good agreement with the experimental results is observed over all
the range of tested loadings, both in direct and parametric excitations. We emphasize that

the same set of parameters (Table§|P}3) is kept for all the curves in Figl 14. Recall that
the resonance frequency vy and peak powerPy, in Fig. @](a) are the only experimental
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measurements used for identi cation purpose. The very good agreement between the model
and the experiments thus indicate that the model gives a fairly accurate description of the
physical system, at least close to the resonance and for moderately large amplitude of
excitations.

The pink solid curves in Fig. show the frequency response obtained by numerical
integration of the dynamical systems [2.32) and [2.3B) using a Runge-Kutta scheme. More
precisely, starting from the initial condition ( r(0); V (0)) = (0 :0001; 0), the time integration
is performed on a time su ciently long for the response to stabilize on a steady-state
cycle (60 s was found to be su cient in all the considered cases). The results obtained in
such fashion are very close to the results provided by the closed-form expressio.lO-
[3.11f3.12), thus validating the analytical approach considered in Sec[]3. For parametric
excitations, the sudden 'vertical’ jump displayed by the numerical resonance curve is related
to instability phenomena, as detailed later in Sect.[5.3.

The results in Fig. rely on the single mode approximation ) of the dynamics. As
discussed in detail by Abdelke et al. [14,[19], the number of required modes in the Galerkin
projection is strongly in uenced by the value of the excitation acceleration. In order to
assess the domain of validity of the single mode approximation for the problem at hand,
numerical simulations have been performed using up to 3 modes in the Galerkin projection.
The corresponding equations are reported ifi Appendix A, see Egs| (A|R-Al3). The same
linear and quadratic damping have been used for all modes. Some results are reported in
Fig. (for parametric excitations) and in Fig. @] (for direct excitations). Both for direct
and parametric excitations, it has been found that the 1-, 2- and 3-modes approximations
all give similar results up to some valueU"® of the amplitude of excitations. Above that
value, signi cant di erences appear between the di erent approximations considered so
that the validity of the single mode approximation becomes questionable, see Fi5(b)—
(b). The limit value Uj"® is about 0:22g for direct excitations and 5:99 for parametric
excitations: Above those values, the relative di erence between the peak power provided
by the 1-, 2- and 3-modes approximations is signi cant and exceeds 10%.

5. Applications in energy harvesting

In this Section we further explore some consequences of the proposed model for appli-
cations in energy harvesting. Except stated otherwise, all the numerical curves presented
in the following have been obtained using the model parameters in Tablés|[2-3.

5.1. Optimal resistance

For energy harvesting, a major concern is to estimate the maximum electrical power
that can be extracted from a given excitation. This is achieved by assuming the perfect
tuning condition ! = !y and optimizing the load resistanceR. To that purpose, it is
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(@ Up=4:50¢. (b) Up =6:2qg.

Figure 15: Numerical simulations of the frequency response in parametric excitation.

(@) Up=0:1g¢. (b) Up =0:26 g.

Figure 16: Numerical simulation of the frequency response in direct excitation.

convenient to introduce the dimensionless quantities de ned as

2

2 c

R=RCplo; = = ; 6= p——:
P 0 CpK KM

From the relation (8.10), we obtain that the optimal resistance necessarily satis es

_ @B (@
0= @r" *P @GR

0=(1 Ray +2R(1+ R @éMR: (5.1)
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At this point it is necessary to distinguish between direct and parametric excitations be-
cause the expression ofyr is not the same in both cases, as can be seen from Eq. (3/16).
The case of parametric excitation is the easiest one to handle. In that case], (§.1) becomes
3~2
0=1 RH1 —Y R+RY: (5.2)
2B €

The value R = 1 (i.,e. R = 1=C,! o) is always a solution of ) and corresponds to a
stationary point of P(R) (but not necessarily to a maximum). Depending on the excitation
amplitude B, other solutions to (5.4) may exist. After some manipulations on [5.2), we
obtain that:

if B e=2< %~2, then there are two values of the optimal resistance obtained as

the solutions to the quadratic equation 0 = 1 21.;? R+ R®. The corresponding value of
the electric power is
2 2iB 3
p=_ L2k AB] 9
3o 3

if | B] e=2> %*2, then the optimal resistance is given byR = 1. The corresponding
electric power is
2 9202B] e 3¥)?
3o 8 '

For the device considered in Sed:]4, the threshold valuB separating the two regimes is
equal to 0:011. In Fig. [I7 is plotted the optimal resistance as a function of the excitation
amplitude.

P =

L2K! o

Although similar in spirit, the calculations for direct excitations are more involved.
Substituting the relevant expression ofay in ( leads to the equation
S

320 m
- 2 + B2 Lsdam. - .
0=(1 R% (1+R?% e?é 3 VLl 2R :
Again R = 1 is always a solution. Depending on the excitation amplitudeB’, other solution
may be found by solving the equation
S

320 m
- 2 °odm.. . ~2.
0=(1+ R ‘% * 3 MJB'j 2R (5.3)
Rather than solving (which is intricate), we make the following observation: If (5.3)
admits a solution (denoted by Rp), then from ( the corresponding amplitude ay is
equal to
3 ,Ro™

1601+ R2

o): (5.4)
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Figure 17: Optimal resistance under parametric resonance.

Recall that ay is required to be positive, so [(5.4) implies that

~2
0> R3 Ro-o +1: (5.5)

Now the minimum value of the polynomial x 7! x? xlé +lisequaltol ™=4¢. Hence

(6.5) implies that
2 2e (5.6)

If the model parameters donot satisfy (5.6) { which happens to be the case for the device
considered in Sect[ 4 { then [5.8) cannot have any admissible solution. In such situation,
the optimal resistance is given byR = 1 and does not depend on the excitation amplitude.

5.2. Limits of the linear model

As mentioned in Sect. [2.8, linear models of piezoelectric cantilever under direct ex-
citation are frequently used in studies related to energy harvesting. In such models, the
peak power and the resonance frequency are given by (2/34) and (2]35), respectively. The
nonlinear model presented in this paper allows one to assess the limits of validity of the
linear model: In Fig. [1§(left) is plotted the relative error between the linearized expression
(2.34) and the expression [(3.1%-3.16) of the peak powd?y , as a function of the acceler-
ation amplitude Up. The relative error remains small (< 0.2%) for accelerationUp below
0.01 m.s 2, but grows fast for acceleration amplitude above 0.01 m.s?>. The relative error
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exceeds 10 % for acceleration amplitude above 0.16 m% Note that acceleration ampli-
tudes above 0.16 m.s? are common in low-level ambient vibration sources[[6], meaning
that nonlinear e ects are expected to be signi cant in a lot of applications related to energy
harvesting. As illustrated in Fig. [L8[right), neglecting nonlinearities leads to overestimate
the harvested power. A similar conclusion has been obtained in 18] for negligible geometric
nonlinearities. As can be observed in Fig[ 18, the relative error on the prediction of the
resonance frequency remains small.

Figure 18: Comparison of the linear and nonlinear models: relative error on the peak power
and resonance frequency (left), frequency response for a direct excitation with amplitude
Uo = 0:4 m.s 2 (right).

5.3. Stability and hysteresis e ects

The bending of the resonance curve { that is observed either for direct or parametric
excitation { gives rise to some hysteretic behavior. To illustrate that e ect, the frequency
response is plotted in Fig. [19 for a parametric excitation with acceleration amplitude
Up = 6:73 g. The equilibrium position is stable outside of the domain delimited by the
points A and D in Fig. 9 The stability of oscillatory solutions can be estimated by
studying the jacobian of the system [3.8): In the steady-state solution [(3.7), the amplitude
a and the phase shift are indeed obtained as equilibrium solutions to the dynamical system
B.8). Such equilibria are (asymptotically) stable if all the eigenvalues of the jacobian
have a negative real part [24]. As detailed i Appendix €, there is a simple geometrical
interpretation of the stability condition for the problem at hand: The limit of stability is
reached when the tangent vector to the resonance curve is vertical (point8 and E in Fig.
[19). The portion of the resonance curve that is bounded by the pointsB and E (showed
as a dashed line) corresponds to unstable solutions: Any small disturbance will drive the
system either to a stable oscillatory solution or to the equilibrium position. Points on the
resonance curve that are outside of the portion delimited byB and E correspond to stable
oscillatory solutions.
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Figure 19: Frequency response for parametric excitation with acceleration amplitudéJy =
6:73 g: Stability of oscillatory solutions and hysteretic behavior.

The frequency shifts corresponding to the pointsA, B, D, E are denoted by (A),

(B), (D) and (E), respectively. For frequency shifts between (D) and (E), observe
that there are two stable oscillatory solutions. Depending on the initial conditions, the
steady-state response will be either on the upper branciBF or the lower branch DE of
the resonance curve (see [13] for a more detailed discussion along those lines). Similarly,
for frequency shifts between (B) and (D), there are two possible steady-state solutions,
namely the equilibrium position and an oscillatory solution (branch BF ). In particular,
it can be noted that the resonance frequency y falls in that range. As a consequence,
the steady-state solution achieving peak power (pointM in Fig. [L9) is reached for some
but not all initial conditions. The stable steady-state oscillatory solution is unique only for
frequency shifts between (E) and (A). For frequencies in that range, the electrical power
is maximum at the point labeled F in Fig. 9 That point correspond to the maximum
power that can be extracted without setting provision on the initial conditions.

5.4. Dependence of the harvested energy on the amplitude of excitation

The peak powerPy as given in Eq. {3.14) is plotted in Fig. [20Q (solid lines) as a function
of the excitation amplitude B, both for direct and parametric excitations. The peak power
Pw is obtained by setting the excitation frequency equal to the relevant resonant frequency
for the type of excitation considered (direct or parametric). The exact expression of the
resonant frequency is given by Egs.[(3.15-3.16 )). Besides, the load resistance is set to its
optimal value as discussed in Sect[ 5|1. Hence, the curves in Fig. |20 (solid lines) shows
the maximum power that can be harvested for a excitation of given amplitude.
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Figure 20: Electrical power at the resonance frequency, as a function of the amplitude of
excitation: (red) direct excitation, (blue) parametric excitation.

In the case of direct excitations, theB Py curve (solid line) is almost linear. In
contrast, in the case of parametric excitation, theB Py curve has more of a parabolic
shape: the harvested power starts slowly but grows more rapidly with the amplitude of
excitation. Similar remarks apply to the the half-power bandwidth, as represented in Fig.
[21. Those results suggest that the bene ts of parametric excitation over direct excitation
can only appear at high excitation amplitude.

In that regard, it should be kept in mind that the distortion of the resonance curve gets
more pronounced as the excitation amplitudeB increases. As a result, foB large enough,
there are two stable solutions at the resonance frequencyy, , as discussed previously in
Sect.[5.3. In such case, the optimal oscillatory solution is reached only for certain initial
conditions. The dotted lines in Fig. [20 shows the maximum power that can be obtained
independently on the initial state. Both for direct and parametric excitation, those curves
are almost linear with comparable slopes. A similar observation can be made for the
half-power bandwidth (Fig. P1).

6. Conclusion

In this paper, a Galerkin projection has been used to study the behaviour of a distributed-
parameter model of piezoelectric harvesters that included both piezoelectric and geometric
nonlinearities. That model holds for moderately large geometric nonlinearities. Regarding
the piezoelectric, mechanical nonlinearities (large strain e ects) are assumed to dominate
electric nonlinearities (large electric eld e ects). A cubic term appears in the stress-strain
relation as a result, but the piezoelectric coupling is assumed to remain linear. Material
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Figure 21: Half-power bandwidth as a function of the amplitude of excitation: (red) direct
excitation, (blue) parametric excitation.

nonlinearities in the substrate are neglected. The beam is furthermore assumed to be in-
extensible, which is reasonable for slender beams and excitation frequencies of the order of
the rst natural frequency ! o.

As demonstrated in Sect. [4, the proposed model gives a fairly accurate description
of the dynamics near the main resonance frequency and for moderately large amplitude
of excitation, both in direct and parametric excitations. Most of the model parameters
are readily available from a linear nite element analysis of the cantilever beam. The re-
maining nonlinear parameters can be obtained by an identi cation procedure that requires
measuring the peak power and corresponding resonance frequency at a single excitation
amplitude.

Various issues related to energy harvesting have been discussed in detail. Under certain
conditions given in Sect. [5.1, the optimal resistance can be made independent on the
excitation amplitude, which is a welcome feature for e ective predictions in applications.
Concerning direct excitations, it appears that the limits of validity of a linear model are
relatively low (0.16 m.s 2 for the tested device) { lower than what could intuitively be
expected. As a consequence, nonlinearities e ects can be signi cant even for low-level
ambient vibrations. For the tested device, ignoring nonlinearities leads to overestimate the
harvested energy, as detailed in Sectf. 5 2.

Compared to direct excitation, the bene ts of parametric excitation are likely to occur
only at high amplitudes, far above the stability limit of the equilibrium. Moreover, at such
levels of amplitude, several steady-state solutions are stable. Therefore, depending on the
initial conditions, the response of the system may not converge towards the most favorable
steady-state solution.
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On a nal note, we stress that further work is needed to extend the limits of validity
of the proposed model, both in terms of frequencies and amplitude of the excitation. In
particular, for frequencies that are not close to the main resonance and large amplitude
of excitations, additional modes need to be taken into account in the Galerkin projection.
Moreover, higher order nonlinearities than those considered in this paper { such as the
nonlinear piezoelectric coupling { may come at play.

Appendix A. Galerkin approximation with n modes

If the displacement v is approximated as

where 1;

8i 2 [1;n]

xXo
v(x;t) = i(X)ri(t) (A.1)
i=1

; n are given mode shapes, then the coe cients;(t) satisfy the n equations
X X
Mi ¥+  (Kj + e)rj + ijki Tkl + ikl (Fj TP+ rprn)
j=1 j=1 ikl =1 ikl =1

xXn
+ miwvg  V(t) Nijk rjreV(t) + ciri + dirgjrij =0
k=1
(A2)
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where

Z
Mj = i jax
2,
Kij = ElI {°Mx
0
o= b p
ik = ikl Tk
b _ 00000 0, O O 0000
ijkI_OEIijkI+ijkIdX
|
1 h 5 h® “ L 00 00 00 0
P —
ikl — gCZb 5t hp 5 PO 00 20 Pix
ZL Zx Zx
_ 00 00
ikl = i jds Kk 1ds dx
0 0
ZL X
i = 00 ds dx
0 L
_ 0
i=  i(Lp)
Zpr 0000, 0000, 0000
Nijk = 5 i J okt ikt o7k dX
Z
m; = idx

and (c;d;) are respectively the linear and the quadratic damping for the modei. In
addition, the following electrical equation has to be satis ed:

v X X
Cp\L+ R ir+ Lik rirjrk =0 (A.3)
i=1 ik =1
with Z,
Lik =

" 1 00 00, 0000 gy

500 kT
The system is a set ofn+1 coupled nonlinear equations that governs the evolution
of (ri;  irn;V).
Appendix B. Stability of equilibrium for the piezoelectric beam under para-

metric excitation

Let T =2 =!I be the period of the excitation. SettingX =(r; r;V), the set of equations
(2.33) can be put in the generic form

X(t) = F(X(t);1) (B.1)
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whereF isT periodic. As noted in Sec, the equilibrium stateX o(t) = 0 is a particular
solution of the nonlinear di erential equation (2.33). Using Routh criterion [24], Xq is
(asymptotically) stable if YO(t) = 0 is an (asymptotically) stable solution to the linearized
equation

Y(t) = gx(x O(t);1):Y (1): (B.2)

Note that ( is a linear di erential equation with T periodic coe cients. The stability
of solutions to such equations can be studied using Floquet theoryY 9(t) is asymptotically
stable if all the Floquet exponents have a non positive real part. We recall that the
distinctive property of the Floquet exponents ; is that (B.2} admits a non zero solution
Y; of the form

Yi(t) = e "'Pi(t)

where P; is T periodic and takes values inC. For later reference, we also recall that the

Floquet multipliers 1, , n satisfy the relation
Z1
@ o
: PN = tr —(X*(t);t) dt: B.3
1 N . r @X( (1);1) (B.3)

In the present case, the linearized equation aiX ¢(t) = 0 can be written as

Mp+(K+ wg)r+c_ V =0;

vV (B.4)
Cp\L+ rRT r=0:

We are interested in nding the maximum value of B for which r = V = 0 is an asymp-
totically stable solution to (B.4). From Floquet theory, the limit of stability is reached
when one of the Floquet multipliers has a null real part, i.e. when ) admits a non zero
solution of the form

r(t)y= €t p(t); V()= €t qt): (B.5)

where 2 R and (p;qg) are T periodic functions. Using Fourier decomposition, the func-
tions p and g can be written as

X X
pty=  ae ;qt)=  he
k27 k2z

Substituting in ( leads to the following linear relations between the coe cients ( ax; by):

M (Kl + )2ay+ Kak+%B! 2(ag 1+ as1) + ic(k! + dax be=0

iCp(k! + )b+ %bﬁi (kI + )ax =0:
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Eliminating bg leads to the relation

ik + ) g
1+iRCp(k! + )

(B.6)
The relation (B.6) holds for any k 2 Z. At the limit of stability, the set of equations (B.6)|
admits a non zero solutionf axgk2z.

1 .
M (k! + )?%ac+ Kay+ > B! 2(a 1+ ags1 )+ ic(k! + Da+ R 2ay

First consider the case = ¢ =0, in which case (2.33) reduces to the Mathieu equation
[25]. Using ), it can be proved that = ko!§ for someko 2 N. It follows from (B.6)
that the limit of stability is equal to 0 if K M (k! + ko!f)2 =0 for somek, i.e. if I = =0
for somen 2 N.

Now consider that and c are small parameters. More precisely, we assume that

c=0O(")and 2= O(")where" 1. We wantto nd the limit of stability for | =21 ¢+
with = O("). To that purpose, the coe cients ax and the exponent in ( are
expanded as |

a=al+al; =2+ 1

2

wherea} = a)O(") and ! = O("). Substituting in (.6) and collecting the terms of the
main order in ", we obtain that a; = 0 for k 2 f 1;09. Note that it is necessary that
(a%,;a9) 6 (0;0) for the functions p and g in (B.5) to be non zero.

At the next order in ", we obtain the relation

0= 2M(2k+1)(k + 1)!0ag+((Kk |v|(21|;+1)2! Bat+2B! 3@ ,+al,,)
i(2k! o +
+ic(2k +1)! pal + R 2a0 —— 0 :
ek Dlodc* R &g Re @kl o+ D)
(B.7)
In particular, using (B.7) with k = 1 and k = 0 yields the two equations
: IoR(i RCyp! ) ? .
0= ic!oa%, 01(+Icg—!§RzO)aol+2M!0( 1 a%,+2B! Zal; .
. I gR(i+Cp! gR) 2 :
0= 2B!3a% +icl gad 2M! o a8+ 05 ">p00) ~ 1225{)5;2) ad:

For (a°4;a9) to be dierent from (0 ;0), the determinant of the linear system ) must
vanish. That requirement implies that 1 = ! ox and

R ? R2C, 2l

Y+ (msear2
12 1+R2C3!'5

17 RICH? M 2)? (B.9)

4B%1 % 2= (c+

The value of B de ned by the above relation is the limit of stability at the excitation
frequency! .
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Appendix C. Stability of steady-state oscillatory solutions
The equations of modulation (3.6) can be put in the form
da

— =f(a; );
dra (C.1)
at, - g(a; ; ~)
where 1 ¢ 4
)= — € F 0V 2 | i :
f(a; ) M( 2a 3 a I pBasin );
and
gla; ; ~)=2!o~+ e & 2! 5Bcos

I oM
In (C.1), ~ is the dimensionless frequency shift, as de ned in[(3]9). Steady-state oscillatory
solutions correspond to equilibria of the dynamical system ), i.e. tovaluesd ; )
satisfying
0=f(a; )=g9(@; ;~) (C.2)

To study the stability of such equilibria, consider the jacobian J of the system, i.e. the
matrix

Ga G
where the partial derivatives of f and g are evaluatedat@; ;~). Let 12Cand ,2C

be the eigenvalues ofl, i.e the solution of the quadratic equation
2 (trJ) +detJ=0: (C.3)

An equilibrium (a ; )is (asymptotically) stable if the real parts of 1 and » are negative
[24]. In the present case, an important observation is that trJ < 0. Therefore, setting
=(tr J)? 4detJ, three cases can occur:

- if < 0,then 2 = ; and consequently 1+ > =2Re( 1) =tr J < 0. Hence
(a; ) is a stable equilibrium.
- if 0 and detJ 0 then ( 1; ») are real numbers and have the same sign.

Since 1+ ,=tr J< 0, 1and , are both negative. It follows that (a ; ) is a stable
equilibrium.

- if 0 and detJ < 0 then ( 1; ») are real numbers and have opposite sign. Hence
(a; )is an unstable equilibrium.

Since =(tr J)? 4detJ, note that detJ < 0 automatically implies that 0. For
the problem at hand, the condition of instability thus reduces to

detd < O: (C.4)
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In order to obtain a geometrical interpretation of the condition (, consider the
derivative of the frequency-responseP (~). Recalling that P(~) = 2PoL?a * wherePq is a
constant, we have

dP da
— = PoL%a —:
d~ ~ T @ e
Now di erentiating (¢.2)|with respect to ~ gives
3 da =d~ N 0 _ 0
d =d~ 2 0
It follows that
da=d~ _ ;1 0 _ 1 g f. 0
d =d~ 2' o detJ Ja f;a 2! o
Hence dp b L2
— = | oL"a . : :
-~ Zogerg @)

In Fig. points in the unshaded (resp. shaded) domain satisfyf. (a; ) < O (resp.
f.(a; ) > 0). Note that f. (a; ) vanishes at the resonance point of the frequency-
response (denoted byM in Fig. C.22). In the unshaded domain, dP =d~ has the same
sign as detl). Therefore, unstable solutions correspond to point such thatdP=d~< 0, i.e.
such that the frequency response is decreasing. Similarly, in the shaded domain, unstable
solutions correspond to point such thatdP=d~> 0, i.e. such that the frequency response
is increasing. As a conclusion, limits of stability correspond to points where a change of
sign occur in dP =d~ (setting aside the resonance pointM ). For the case depicted in Fig.
[C.27, such a change of sign occurs at two points labeled @& and E. The same analysis
can be transposed to direct excitations.
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