A. Radoss-law-adamczak, A. Litvak, N. Pajor, and . Tomczak-jaegermann, Quantitative estimates of the convergence of the empirical covariance matrix in log-concave ensembles, Journal of the American Mathematical Society, vol.23, issue.2, pp.535-561, 2010.
DOI : 10.1090/S0894-0347-09-00650-X

E. Gustavo, . Batista, C. Ronaldo, M. C. Prati, and . Monard, A study of the behavior of several methods for balancing machine learning training data, ACM Sigkdd Explorations Newsletter, vol.6, issue.1, pp.20-29, 2004.

J. Peter, E. Bickel, and . Levina, Covariance regularization by thresholding. The Annals of Statistics, pp.2577-2604, 2008.

J. Peter, E. Bickel, and . Levina, Regularized estimation of large covariance matrices. The Annals of Statistics, pp.199-227, 2008.

P. Stephen, L. Boyd, and . Vandenberghe, Convex optimization, 2004.

J. Christopher and . Burges, A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery, pp.121-167, 1998.

V. Nitesh, K. W. Chawla, . Bowyer, O. Lawrence, P. Hall et al., Smote: Synthetic minority over-sampling technique, Journal of Artificial Intelligence Research, vol.16, pp.341-378, 2002.

C. Drummond, C. Robert, and . Holte, Exploiting the cost (in) sensitivity of decision tree splitting criteria, ICML, pp.239-246, 2000.

J. Fan, Y. Fan, and J. Lv, High dimensional covariance matrix estimation using a factor model, Journal of Econometrics, vol.147, issue.1, pp.186-197, 2008.
DOI : 10.1016/j.jeconom.2008.09.017

URL : http://arxiv.org/abs/math/0701124

J. Fan, Y. Liao, and M. Mincheva, High-dimensional covariance matrix estimation in approximate factor models, The Annals of Statistics, vol.39, issue.6, p.3320, 2011.
DOI : 10.1214/11-AOS944

K. Rong-en-fan, C. Chang, X. Hsieh, C. Wang, and . Lin, Liblinear: A library for large linear classification, The Journal of Machine Learning Research, vol.9, pp.1871-1874, 2008.

W. Fan, J. Salvatore, J. Stolfo, . Zhang, K. Philip et al., Adacost: misclassification costsensitive boosting, ICML, pp.97-105, 1999.

E. Laurent, . Ghaoui, I. Michael, G. R. Jordan, and . Lanckriet, Robust novelty detection with singleclass mpm, Advances in neural information processing systems, pp.905-912, 2002.

H. He, A. Edwardo, and . Garcia, Learning from imbalanced data. Knowledge and Data Engineering, IEEE Transactions on, vol.21, issue.9, pp.1263-1284, 2009.

N. El and K. , Operator norm consistent estimation of large-dimensional sparse covariance matrices. The Annals of Statistics, pp.2717-2756, 2008.

R. Naimul-mefraz-khan, I. Ksantini, L. Ahmad, and . Guan, Covariance-guided One-Class Support Vector Machine, Pattern Recognition, vol.47, issue.6, pp.2165-2177, 2014.
DOI : 10.1016/j.patcog.2014.01.004

M. Kubat and S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, ICML, pp.179-186, 1997.

R. Gert, L. E. Lanckriet, C. Ghaoui, . Bhattacharyya, I. Michael et al., A robust minimax approach to classification, The Journal of Machine Learning Research, vol.3, pp.555-582, 2003.

D. David, Y. Lewis, . Yang, G. Tony, F. Rose et al., Rcv1: A new benchmark collection for text categorization research, 20] Larry M Manevitz and Malik Yousef. One-class svms for document classification. the Journal of machine Learning research, pp.361-397139, 2002.

M. Markou and S. Singh, Novelty detection: a review???part 1: statistical approaches, Signal Processing, vol.83, issue.12, pp.2481-2497, 2003.
DOI : 10.1016/j.sigpro.2003.07.018

W. Albert, I. Marshall, and . Olkin, Multivariate chebyshev inequalities. The Annals of, Mathematical Statistics, vol.31, issue.4, pp.1001-1014, 1960.

S. Mendelson and G. Paouris, On the singular values of random matrices, Journal of the European Mathematical Society, vol.16, issue.4, pp.823-834, 2014.
DOI : 10.4171/JEMS/448

P. Nader, P. Honeine, and P. Beauseroy, Mahalanobis-based one-class clas- sification
DOI : 10.1109/mlsp.2014.6958934

P. Radivojac, V. Nitesh, K. Chawla, Z. Dunker, and . Obradovic, Classification and knowledge discovery in protein databases, Journal of Biomedical Informatics, vol.37, issue.4, pp.224-239, 2004.
DOI : 10.1016/j.jbi.2004.07.008

B. Raskutti and A. Kowalczyk, Extreme re-balancing for SVMs, ACM SIGKDD Explorations Newsletter, vol.6, issue.1, pp.60-69, 2004.
DOI : 10.1145/1007730.1007739

J. Adam, E. Rothman, J. Levina, and . Zhu, Generalized thresholding of large covariance matrices, Journal of the American Statistical Association, vol.104, issue.485, pp.177-186, 2009.

B. Schölkopf, C. John, J. Platt, A. J. Shawe-taylor, . Smola et al., Estimating the Support of a High-Dimensional Distribution, Neural Computation, vol.6, issue.1, pp.1443-1471, 2001.
DOI : 10.1214/aos/1069362732

B. Schölkopf, C. Robert, A. J. Williamson, J. Smola, . Shawe-taylor et al., Support vector method for novelty detection, NIPS, pp.582-588, 1999.

N. Srivastava and R. Vershynin, Covariance estimation for distributions with {2 + ?} moments. The Annals of Probability, pp.3081-3111, 2013.
DOI : 10.1214/12-aop760

URL : http://arxiv.org/abs/1106.2775

K. Tikhomirov, Sample covariance matrices of heavy-tailed distributions. arXiv preprint, 2016.

W. Ivor, . Tsang, T. James, S. Kwok, and . Li, Learning the kernel in mahalanobis one-class support vector machines, The 2006 IEEE International Joint Conference on Neural Network Proceedings, pp.1169-1175

V. Vapnik, The nature of statistical learning theory, 2000.

V. N. Vapnik and S. Kotz, Estimation of dependences based on empirical data, 1982.

R. Vershynin, Introduction to the nonasymptotic analysis of random matrices. Compressed sensing: theory and applications

R. Vershynin, How Close is the Sample Covariance Matrix to??the??Actual Covariance Matrix?, Journal of Theoretical Probability, vol.18, issue.3, pp.655-686, 2012.
DOI : 10.1007/s10959-010-0338-z

B. Zadrozny, J. Langford, and N. Abe, Cost-sensitive learning by cost-proportionate example weighting, Third IEEE International Conference on Data Mining, pp.435-442, 2003.
DOI : 10.1109/ICDM.2003.1250950