lsmear: A Variable Selection Strategy for Interval Branch and Bound Solvers

Abstract : Smear-based variable selection strategies are well-known and commonly used by branch-and-prune interval-based solvers. They estimates the impact of the variables on each constraint of the system by using the partial derivatives and the sizes of the variable domains. Then they aggregate these values, in some way, to estimate the impact of each variable on the whole system. The variable with the greatest impact is then selected. A problem of these strategies is that they, generally, consider all constraints equally important. In this work, we propose a new variable selection strategy which first weights the constraints by using the optimal Lagrangian multipliers of a linearization of the original problem. Then, the impact of the variables is computed with a typical smear-based function but taking into account the weights of the constraints. The strategy is tested on classical benchmark instances outperforming significantly the classical ones.
Type de document :
Communication dans un congrès
GOW'16 XIII Global Optimization Workshop, Sep 2016, Braga, Portugal
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01376611
Contributeur : Bertrand Neveu <>
Soumis le : mercredi 5 octobre 2016 - 12:40:35
Dernière modification le : jeudi 11 janvier 2018 - 06:20:23
Document(s) archivé(s) le : vendredi 6 janvier 2017 - 13:29:50

Fichier

lsmear-GOW-16.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01376611, version 1

Collections

Citation

Ignacio Araya, Bertrand Neveu. lsmear: A Variable Selection Strategy for Interval Branch and Bound Solvers. GOW'16 XIII Global Optimization Workshop, Sep 2016, Braga, Portugal. 〈hal-01376611〉

Partager

Métriques

Consultations de la notice

137

Téléchargements de fichiers

60