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4 LIGM, UMR 8049, École des Ponts, UPE, France

E-mail: martin.rais@cmla.ens-cachan.fr

Abstract. In order to achieve higher resolutions, current earth-observation satellites use larger
lightweight main mirrors which are usually deformed over time, impacting on image quality.
In the context of active optics, we studied the problem of correcting this main mirror by
performing wavefront estimation in a closed loop environment. To this end, a Shack-Hartman
wavefront sensor (SHWFS) used on extended scenes could measure the incoming wavefront.
The performance of the SHWFS on extended scenes depends entirely on the accuracy of the
shift estimation algorithm employed, which should be fast enough to be executed on-board. In
this paper we specifically deal with the problem of fast accurate shift estimation in this context.
We propose a new algorithm, based on the global optical flow method, that estimates the shifts
in linear time. In our experiments, our method proved to be more accurate and stable, as well
as less sensitive to noise than all current state-of-the-art methods.

1. Introduction
Adaptive optics was originally developed for the field of astronomy to remove image aberrations
induced by wavefronts propagating through Earth’s atmosphere. Its task is to correct the
aberrations of an incoming wavefront by using a deformable mirror in order to compensate
for the distortion. It has been shown that adaptive optics allows to reduce these aberrations
thus improving the image quality [1].

A key component of an adaptive optics system is the wavefront sensing mechanism. In
astronomical imaging a wavefront sensing device is frequently used in conjunction with a
deformable mirror in order to correct the undesired effects of atmospheric turbulence, thus
improving the quality of sensed images. A Shack-Hartmann wavefront sensor (SHWFS) is one
of such devices. It uses an array of lenslets to measure the deformation of the incoming wavefront.
The shift of each lenslet focal plane image is proportional to the mean slope of the wavefront in
the subaperture onto this lenslet, thus allowing to obtain a discrete local approximation of the
slope of the wavefront, as shown in Fig. 1a. The measured slopes are then used to approximate
the actual wavefront. This deformation is usually measured using point sources such as a star.

Adaptive optics can also be applied in the context of earth-observation satellites [2, 3]. In
this setting, the problem of atmospheric turbulence is negligible. However, lightweight mirrors
are required to increase the resolution, since mission costs are driven by the payload weight. The
drawback of such mirrors is that time-varying deformations due to thermal effects and vibration



(a) Local shifts in the SHWFS (b) Occlusions in a SHWFS (c) Example images

Figure 1: Left: A SHWFS measures the wavefront by computing the local shifts between the detected
spots (in red) and the reference spots (in grey), which would occur if no deformation is present. Right:
A SHWFS occlusion schema using a Korsch telescope. The secondary mirror and the arms used to hold
it are clearly visible. The decrease of the incoming signal for each lenslet is proportional to its occlusion.

deteriorate the image quality [4]. In adaptive optics a SHWFS device is used together with a
deformable mirror to compensate for these aberrations.

There are some key differences between using wavefront sensing for earth-observation satellites
and for astronomical observation. First, the SHWFS needs to be used on extended scenes,
rather than source points. This yields a grid of images, one for each sub-aperture, which are
shifted versions of the same scene. Second, the pupil of the Korsch telescope in the satellite is
generally occluded in the center by a secondary mirror and the arms used to hold it. In these
regions, the sub-apertures suffer a loss in the incoming signal, proportional to their percentage
of occlusion (Fig. 1b), which results in the output depicted in Fig. 1c. Third, satellites have
limited computational capacity which constrains the shift estimation task, making several shift
estimation methods not suitable to be implemented on-board due to their high complexity.

Our contribution is threefold. First, an analysis of the state-of-the-art on wavefront correction
through the use of SHWFS on extended scenes is performed (section 2). Second, we propose
the use of an iterative global optical flow method for shift estimation (section 3) which presents
several advantages over the conventional correlation methods. Finally, in section 4, a thorough
evaluation of the discussed methods and our proposed algorithm is performed, evaluating their
robustness to noise and image characteristics. Our conclusions are reported in section 5.

2. State-of-the-art review
Since the SHWFS was introduced in the late 1960s [5], several algorithms were proposed to
estimate the shifts using point sources (like stars). However, only few authors have studied the
problem when the source is extended, as when observing the earth from space. They can be
organized in: Correlation methods which compute cross-correlation either in the space [6, 7, 8] or
frequency domain [2, 9, 10, 11, 8] by assuming periodicity. Phase correlation methods estimate
the shift directly in the frequency domain [11, 12] by fitting a plane to the phase correlation
matrix between both images. The iterated methods [9, 10] progressively improve the estimation.
Lastly, maximum likelihood (ML) approaches [13] incorporate specific noise models, and often
lead to an optimization problem. Although it improves over correlation, ML is usually not
considered for SHWFS [7, 2] because of its high computational cost.

Correlation-based Methods. These methods compute a correlation score on a grid C(i, j) and
interpolate it to determine the subpixel location of the peak. The methods mainly differ in the
choices of correlation score and interpolation strategy. Michau et al. [6] was among the first
to propose an experimental implementation for using a Shack-Hartmann sensor on extended
sources. They compute the discrete cross-correlation of the two images, and estimate the subpixel
shift by taking the centroid of the shifts with higher correlation value.



Löfdahl [8] tested several shift estimation algorithms considering several sources of errors
such as noise, blur and bias mismatch. For the scores C(i, j) he considered the sum of
squared differences between the subimages (SDF), covariance in Fourier (CFI), a trend-corrected
covariance (CFF) , the sum of the absolute differences (ADF), and its square (ADF2). Subpixel
shifts are computed by fitting a conic section around the minimum correlation value on the grid
C(imin, jmin), or by fitting parabolas independently in each dimension. For Gaussian noise, the
authors choose SDF followed by fitting a 2D conic into the 3× 3 values (SDF-2QI).

Poyneer [2] also evaluated several methods, including ML and a variant of phase correlation,
but in the end opted for a similar Least Squares approach (using periodic-convolution computed
in the Fourier domain) followed by 1D parabolic fitting.

Phase Correlation. Phase-correlation [12, 11] methods can estimate the shift directly in the
frequency domain. In a noiseless situation, for an M × N image f(x, y) the Fourier shift
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for each frequency. The shifts can then be directly estimated in the frequency domain by fitting
a plane passing through the origin of the computed correlation matrix [12]. To avoid aliased
frequencies, Knutsson et al. [11] (also [9]) propose to discard most of the frequencies keeping
only the two, or the four lowest frequencies, resulting in a fast method that does not require
computing the whole FFT. The choice of two frequencies also has the advantage of being the
least sensitive to aliasing [12], hence is the most reliable, but more sensitive to noise. Using
more frequency components instead yields more robustness to noise.

Iterated Estimation. Sidick et al. [9] proposed ACC (Adaptive Cross-Correlation), an iterative
method that estimates the shift in the Fourier domain by phase correlation [12]. Similarly to
Knutsson et al. [11] only low frequencies are used to estimate the shift (just 8 coefficients). At
each iteration, the second image is resampled (in the frequency domain) by the current shift
estimate. This method attains very low errors of the order of 0.05 pixels by using fewer than 6
iterations. The same authors later [10] replaced the shift estimation with the periodic-correlation
technique of [2] with parabolic fitting around the peak. The resulting method (APC) is more
robust to noise than ACC.

3. Accurate shift estimation using optical flow
In order to estimate the shift between two sub-apertures, we propose to use a gradient-based
shift estimator (GBSE) based on the optical flow equation. This technique, originally proposed
by Lucas and Kanade [14], relates the difference between two successive frames to the spatial
intensity gradient of the first image. Given the two images I2(x, y) = I1(x− vx, y − vy) related
by the translation (vx, vy), a first order Taylor approximation of I1 yields the linear relation

I1(x, y)− I2(x, y) h vx
∂I1(x, y)

∂x
+ vy

∂I1(x, y)

∂y
. (1)
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where Ix, Iy stands for ∂I1
∂x and ∂I1

∂y respectively, and It = I1 − I2 is the derivative over time.
It is important to remark that by centering the Taylor development at 0 and taking up

to the first order term, the method gets systematically biased, directly affecting its accuracy.
Furthermore, the noise in the input images is ignored by the algorithm, which also impacts on
its performance. Both these bias sources are studied in detail in [15].



Iterative gradient-based shift estimator. Instead of dealing with the bias explicitly, Pham et
al. [15] show that both bias sources depend linearly on the shift magnitude. This justifies the
use of an iterative method, which is able to significantly reduce the bias, provided an appropriate
resampling method is used. This algorithm is described in the following lines:

1 i← 0; I2(0)← I2; w ← 0
2 while i < k and |v(i− 1)− v(i− 2)| ≥ τ do
3 v(i)← findshift(I1, I2(i)) // Eq. (2)
4 w ← w + v(i) // Accumulate total shift
5 if i+ 1 < k then
6 I2(i+ 1)← Shift(I2,−w) // Resample the original I2 by shifting it −w pixels

7 i ← i+ 1

where k is the maximum amount of iterations, τ is a parameter that indicates the minimum
incremental shift to stop iterating, findshift uses Eq. (2) to solve for v(i) and Shift resamples
an image by interpolation (see section 4).

Gradient computation. Several gradient estimation methods were tested and, due to the
inherent noise in the input images, the Gaussian derivatives offered the best performance. Note
that since our shift estimation is focused on accuracy and we are dealing with small images, using
a larger kernel for computing the image derivatives imply discarding more boundary pixels, thus
leaving fewer pixels to estimate the shift in Eq. (2).

Image intensities equalization. One requirement of the GBSE algorithm is to work on images
with similar intensities. Since occluded sub-apertures receive less light, their intensities differ
from the reference image. To this end, a simple intensity equalization applied. All subimages
are equalized by scaling their mean to the highest mean among all subapertures, Ik(x, y) =
[maxj(µj)/µk]Ik(x, y) where µk is the average value of image k.

4. Results
Experimental Setup. A simulator was used to evaluate the performance of the proposed
method. Given a 12-bit input image, a set of images was generated matching a SHWFS
configuration provided by CNES. A 12 × 12 lenslet grid occluded as shown in Fig. 1b was
assumed. For each lenslet a ground truth shift was randomly generated. Since we were simulating
in a closed loop environment, the maximum displacement was kept to half a pixel. Each sub-
aperture image was then obtained by resampling the input image in Fourier, extracting a 37×37
pixels subimage, multiplying by the occlusion factor, and lastly adding the noise.

This setup permits compare SHWFS algorithms only considering the shifts induced by the
wavefront slope. However, it has to be noted that due to phenomena such as scintillation and
phase anisoplanatism, the relationship between the real wavefront aberration and the observed
images may be more complex than shifts between the lenslet images.

The error for each method was computed as the mean error for all valid sub-apertures (less
than 60% of its surface is occluded). The error for each sub-aperture is the Euclidean distance
between the measured and the ground truth shift. To evaluate the robustness to image content,
we used three subimages: a highly contrasted one that should not present any difficulty for
shift estimation, a slightly more challenging one with its gradient mainly distributed on a single
direction, and one from the sea with almost no signal. Different amounts of additive white
Gaussian noise were simulated (with standard deviation σ ∈ [1, ..., 150]), and all methods were
evaluated on 100 noise realizations. Fig. 2 shows the subimages affected by three noise levels.
Signal dependent noise was handled by application of a variance stabilization transform.

We tested several variants of the proposed GBSE method. Five interpolation methods
for resampling, namely bilinear, bicubic, cubic spline and Fourier (using the Fourier shift
theorem), with and without image symmetrization, three values for the Gaussian derivative



Figure 2: Left: Input image used for the simulation. Right: For each level of noise σ = {1, 100, 200}
(vertically separated), two different sub-apertures are shown: no occlusion and 57% occluded (horizontally
separated). The dynamic ranges were stretched for viewing purposes.
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Figure 3: Performance for non-iterative and iterative methods on first test image.

width σ = {0.3, 0.6, 1}, and using up to three iterations per shift estimation. From these
methods we retained the best performing non-iterative method (k = 1 and no resampling)
which uses σ = 0.6 for the gradient computation, and the best with 3 iterations which uses
Fourier resampling with image periodization and σ = 0.3. We compared them with the best
performing state-of-the-art algorithms, namely, ACC [9], APC [10], the method from Poyneer
[2] and the SDF-2QI algorithm from Löfdahl [8].

It should be noted that if a single iteration is used, the gradient estimation with σ = 0.6
gives better results than using σ = 0.3. This is because a higher σ removes more noise from
the derivatives, and blurring the images impacts less on the accuracy than not taking care of
the noise. This noise influence can be reduced by iterating the method [15], which justifies
estimating the gradient from a sharper image on those cases.

Results and discussion. We compared iterative and non-iterative algorithms separately. The
average errors for non-iterating methods on the first image type are shown in Fig. 3 (left). The
non-iterative GBSE outperforms both Poyneer and SDF-2QI (which perform similarly in this
image), GBSE is also more stable (less variability). In Fig. 3 (right) both iterative methods
ACC and APC were compared with our GBSE using 3 iterations. Again the proposed method
is the most accurate and more stable. Even more, this method is the best also compared to
non-iterated methods. We also note that ACC is not much robust to noise. This is a well-known
problem for phase-correlation methods which use a limited number of frequencies [16].

The results for the second image type (Fig. 4) are similar to the first one, although the
average errors are higher. While the SDF-2QI performs slightly worse, the Poyneer method is
considerably worse. This is due to discrepancies at the image boundaries resulting from the
periodicity assumption of the periodic convolution used by Poyneer. This is also explains why
the ACC method behaves so poorly on this image. Yet again, the proposed methods are more
precise, stable and with less variability than the state-of-the-art. Finally, for the third image
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Figure 4: Performance for non-iterative and iterative methods on second test image.

type all the methods fail so the graph is omitted.

5. Conclusion
A new method for accurate sub-pixel shift-estimation, based on an iterative global optical flow
algorithm, is proposed in the context of a SHWFS on extended scenes for aberration correction
on-board earth-observation satellites. Simulations using plausible information provided by
CNES show that the proposed algorithm is more accurate, stable, robust to noise, and with lower
variability than the current state-of-the-art, permitting a more precise wavefront estimation.
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