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Abstract 16 

Water treatment utilities are diversifying their water sources and often rely on waters enriched in 17 

nitrogen-containing compounds (e.g., ammonia, organic nitrogen such as amino acids). The 18 

disinfection of waters exhibiting high levels of nitrogen has been associated with the formation of 19 

nitrogenous disinfection byproducts (N-DBPs) such as haloacetonitriles (HANs) and 20 

haloacetamides (HAcAms). While the potential precursors of HANs have been extensively studied, 21 

only few investigations are available regarding the nature of HAcAm precursors. Previous research 22 

has suggested that HAcAms are hydrolysis products of HANs. Nevertheless, it has been recently 23 

suggested that HAcAms can be formed independently, especially during chloramination of humic 24 
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substances. When used as a disinfectant, monochloramine can also be a source of nitrogen for 25 

N-DBPs. This study investigated the role of aromatic organic matter in the formation of N-DBPs 26 

(HAcAms and HANs) upon chloramination. Formation kinetics were performed from various 27 

fractions of organic matter isolated from surface waters or treated wastewater effluents. 28 

Experiments were conducted with 15N-labeled monochloramine (15NH2Cl) to trace the origin of 29 

nitrogen. N-DBP formation showed a two-step profile: (1) a rapid formation following second-order 30 

reaction kinetics and incorporating nitrogen atom originating from the organic matrix (e.g., amine 31 

groups); and (2) a slower and linear increase correlated with exposure to chloramines, incorporating 32 

inorganic nitrogen (15N) from 15NH2Cl into aromatic moieties. Organic matter isolates showing high 33 

aromatic character (i.e., high SUVA) exhibited high reactivity characterized by a major 34 

incorporation of 15N in N-DBPs.  A significantly lower incorporation was observed for low-35 

aromatic-content organic matter. 15N-DCAcAm and 15N-DCAN formations exhibited a linear 36 

correlation, suggesting a similar behavior of 15N incorporation as SUVA increases. Chloramination 37 

of aromatic model compounds (i.e., phenol and resorcinol) showed higher HAcAm and HAN 38 

formation potentials than nitrogenous precursors (i.e., amino acids) usually considered as main 39 

precursors of these N-DBPs. These results demonstrate the importance of aromatic organic 40 

compounds in the formation of N-DBPs, which is of significant importance for water treatment 41 

facilities using chloramines as final disinfectant. 42 
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 51 

 52 

1. Introduction 53 

Surface waters are often impacted by human activities (e.g., agriculture, industries, and municipal 54 

wastewater effluent discharges) resulting in their enrichment in nitrogen-containing compounds 55 

(i.e., ammonia and organic nitrogen such as amino acids) (Westerhoff and Mash, 2002). The 56 

disinfection of waters exhibiting high levels of nitrogen has been associated with the formation of 57 

nitrogenous disinfection byproducts (N-DBPs) (Bond et al., 2011). N-DBPs generally form in 58 

significantly lower concentrations than regulated DBPs, but have been a growing concern over the 59 

past decade because of their higher health risk (Muellner et al., 2007; Plewa et al., 2004). In vitro 60 

mammalian cell tests have demonstrated that haloacetonitriles (HANs), halonitromethanes (HNMs), 61 

and haloacetamides (HAcAms) are more cytotoxic and genotoxic (i.e., up to 2 orders of magnitude) 62 

than non-nitrogenous molecules such as trihalomethanes (THMs) and haloacetic acids (HAAs) 63 

(Plewa et al., 2008). Nitrogen in N-DBPs can also be derived from chloramines when used as 64 

disinfectants. Water utilities have been increasingly switching to monochloramine as an alternative 65 

to chlorine in order to limit the production of regulated THMs and HAAs. Nevertheless, concern 66 

has been raised regarding the formation of N-DBPs (e.g., N-nitrosodimethylamine - NDMA) 67 

produced from the reaction between monochloramine and secondary or tertiary amines (Mitch and 68 

Sedlak, 2004). 69 

Among N-DBPs, dichloroacetonitrile (DCAN) and dichloroacetamide (DCAcAm) are the most 70 

frequently detected species in drinking water treatment plants (Krasner et al., 2006). While the 71 

potential precursors of HANs have been extensively studied, only few investigations are available 72 

regarding the nature of HAcAms precursors. HAcAms were first reported to be intermediate 73 

products of HANs hydrolysis and ultimately decomposed to HAAs (Glezer et al. 1999, Reckhow et 74 

al. 2001).  More recently, it was found that HAcAms can be formed independently from HANs 75 

during chlorination and chloramination processes (Huang et al., 2012). Two different pathways have 76 
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been proposed to describe the formation of HANs and HAcAms (Fig. S1). First, the 77 

Decarboxylation Pathway occurs by rapid chlorination or chloramination of α-amine groups of free 78 

amino acids to form a nitrile, followed by hydrolysis to release HANs and carbonic acid (Trehy et 79 

al., 1986). HANs are then further hydrolyzed to HAcAms and HAAs (Reckhow et al., 2001). The 80 

second pathway proposed for HANs formation is the Aldehyde Pathway, where nitrogen from 81 

monochloramine (NH2Cl) is incorporated into aldehydes to produce nitriles. The reaction between 82 

NH2Cl and formaldehyde forms cyanogen chloride (CNCl) (Pedersen et al., 1999), and 83 

chloroacetonitrile is formed from chloroacetaldehyde (Kimura et al., 2013). Haloacetaldehydes 84 

(HAcAls) are carbonaceous DBPs frequently detected in disinfected waters, and often represent the 85 

third major class of DBPs after THMs and HAAs (Krasner et al., 2006). Chloroacetaldehyde has 86 

been demonstrated to be a precursor of N,2-dichloroacetamide upon chloramination (Kimura et al., 87 

2013). The reaction involves the incorporation of the nitrogen atom of monochloramine (NH2Cl) to 88 

form the amide group through the formation of a carbinolamine intermediate.  89 

In addition to the Aldehyde Pathway, most studies about HANs and HAcAms formation 90 

mechanisms focused on the chlorination of nitrogenous precursors (e.g., amino acids, amines, 91 

pyrimidines) or matrices enriched in nitrogenous moieties (e.g., algae cells, extracellular organic 92 

matter) (Bond et al., 2009; Fang et al., 2010; Oliver, 1983; Reckhow et al., 2001; Yang et al., 2010, 93 

2011, 2012). In the case of aquatic humic substances, a positive correlation was found between their 94 

nitrogen content and their tendency to form HAN upon chlorination (Reckhow et al., 1990). Studies 95 

performed with labeled 15N-chloramines (15NH2Cl) on nitrogenous organic (N-org) precursors and 96 

fractions of dissolved organic matter (DOM) found that nitrogen in HANs or CNCl originated from 97 

both organic precursors and NH2Cl (Yang et al., 2010). Recent studies suggested that aromatic 98 

moieties of DOM may contribute to a substantial HAN formation upon chloramination (Chuang et 99 

al., 2013; Huang et al., 2012; Yang et al., 2008, 2010). During chloramination, the formation of 100 

DCAN or CNCl did not correlate with the DON/DOC ratios of DOM fractions. However, good 101 

correlations were observed with their SUVA values and thus with their aromatic carbon content 102 
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(Yang et al., 2008). A mechanism describing the chloramination of a β-diketone moiety was 103 

proposed based on the Decarboxylation Pathway, showing the incorporation of nitrogen through the 104 

formation of an N-chloroimine and leading to DCAN as a hydrolysis product. Approximately 90 % 105 

of nitrogen in DCAN and CNCl was reported to originate from NH2Cl reaction with Suwannee 106 

River DOM (Yang et al., 2010). Recent kinetics experiments also suggest similarities between 107 

HANs, THMs, and HAAs precursors (Chuang et al., 2013). Kinetics of DCAN and 108 

trichloronitromethane (TCNM) formation upon chloramination using 15NH2Cl were proposed to 109 

involve two reaction mechanisms: formation from N-org precursors following a second-order 110 

reaction; and formation by incorporation of nitrogen from NH2Cl, linearly correlated with 111 

chloramines exposure (Chuang and Tung, 2015). 112 

Less information is available about HAcAms precursors and formation mechanisms, since HAcAms 113 

were first reported as DBPs in a 2000-2002 drinking water survey (Krasner et al., 2006; Weinberg et 114 

al., 2002). Although DCAcAm yields from amino acids are considerably lower than those of 115 

DCAN, comparable levels (i.e., median concentrations of 1.3 and 1 μg/L, respectively) have been 116 

observed in US drinking waters (Bond et al., 2012; Krasner et al., 2006). Therefore, unknown 117 

precursors appear to be responsible for the majority of HAcAm formation (Bond et al., 2012). The 118 

formation of HAcAms from algal exopolymeric substances (EPS), municipal wastewater treatment 119 

plant effluents (Huang et al., 2012), natural waters (Chu et al., 2013), bacterial cells (Huang et al., 120 

2013), natural organic matter (NOM) fractions, and free amino acids (Chu et al., 2010a, 2010b) has 121 

been previously studied. The hydrophilic acid fraction isolated from an algal-impacted water 122 

enriched in nitrogen (i.e., high DON/DOC ratio), exhibited the highest DCAcAm formation 123 

potential during both chlorination and chloramination, which was associated with the presence of 124 

protein-like organic matter (Chu et al., 2010b). However, DCAcAm was recently found to be 125 

preferentially formed by chloramination of humic materials, while chlorination of wastewater 126 

effluents and algal EPS tended to form more DCAN (Huang et al., 2012). These results suggested 127 

that the mechanism of HAcAms formation is independent from that of HANs. Overall, HAcAms 128 
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formation mechanisms remain unclear, and the precursors of HAcAms in natural waters still need to 129 

be characterized. 130 

This study investigated the role of aromatic organic matter in the formation of N-DBPs (i.e., 131 

especially HAcAms) upon chloramination, with emphasis on the formation kinetics of HAcAms 132 

and HANs. Various fractions of organic matter isolated from different waters (i.e., surface waters, 133 

treated wastewater) as well as model compounds were studied to understand the factors controlling 134 

N-DBPs formation. Experiments were conducted with 15NH2Cl to trace the origin of nitrogen in the 135 

formed DBPs. 136 

 137 

2. Materials and methods 138 

2.1. Materials 139 

All reagents were of analytical or laboratory grade and were used without further purification. 140 

MilliQ water was produced with a Millipore system (18.2 MΩ.cm). Sodium hypochlorite (NaOCl, 141 

5.65-6%, Fisher Scientific) and ammonium chloride (Acros Organics, 99.6%) were used to prepare 142 

chloramine reagents. 15N-labeled ammonium chloride was purchased from Sigma-Aldrich (98%). 143 

Sodium thiosulfate (Fisher Scientific) was used to quench residual chloramines. Methyl tert-butyl 144 

ether (MTBE) and ethyl acetate (> 99%, Fisher Scientific) were used for DBP extractions without 145 

further purification. A THM calibration mix (chloroform - TCM, dichlorobromomethane -  146 

CHCl2Br, chlorodibromomethane - CHClBr2, and bromoform - TBM), a mixed standard (EPA 551B 147 

Halogenated Volatiles Mix) containing haloacetonitriles (HANs), trichloronitromethane (TCNM, or 148 

chloropicrin) and haloketones (HKs), and a mixed standard containing 9 HAAs (EPA 552.2 Methyl 149 

Ester Calibration Mix) were supplied from Supelco (Sigma-Aldrich). Chloro-, bromo-, dichloro-, 150 

and trichloroacetamide were obtained from Sigma-Aldrich. Other haloacetamides (HAcAms) were 151 

purchased from Cansyn Chem. Corp. Decafluorobiphenyl (99%, Sigma-Aldrich, Supelco) was used 152 

as a surrogate standard. 2-bromopropionic acid (Fluka Analytical) was used as a surrogate for HAA 153 

extractions and analyses. Phenol (>99%), resorcinol (>99%), L-tyrosine (>98%), L-aspartic acid 154 
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(>99.5%) and L-tryptophan (>98%) were obtained from Sigma-Aldrich. 155 

2.2. Experimental methods 156 

All glassware used during these experiments was washed with Milli-Q water and baked at 500°C 157 

for at least 5 h prior to use. DOM stock solutions were prepared by dissolving 20 mg of a selected 158 

DOM isolate in 500 mL of Milli-Q water (dissolved organic carbon, i.e., DOC ~ 14-19 mg C/L). 159 

Solutions for experimentation were prepared by adjusting DOC to 5 mg C/L in 10 mM phosphate 160 

buffer. Monochloramine and 15N-labeled monochloramine stock solutions were prepared by adding 161 

sodium hypochlorite (NaOCl) to a continuously-stirred ammonium chloride or 15N-labeled 162 

ammonium chloride solution, respectively, adjusted to pH 8.5 with sodium hydroxide, at a N:Cl 163 

molar ratio of 1.2:1. The concentration of monochloramine stock solutions was adjusted to a desired 164 

concentration. Chloramination experiments were performed in headspace-free 65 mL amber glass 165 

bottles under excess of disinfectant dosage. The doses were calculated as: NH2Cl (mg/L as Cl2) = 3 166 

× DOC (mg C/L), to conduct a comprehensive comparison between our DBPFP data and results 167 

obtained from other studies working with similar doses (Chu et al., 2010b; Dotson et al., 2009; 168 

Krasner et al., 2007). Monochloramine was also added in excess for the determination of DBPFP of 169 

model organic compounds (i.e., phenol, resorcinol, tyrosine, aspartic acid, and tryptophan) solutions 170 

(chloramine/model compound molar ratio = 5.6). Most of the experiments were conducted in 171 

duplicates, at room temperature (22±1°C), and under dark conditions to avoid any photolysis 172 

reaction. At the end of the reaction time, chlorine residual was quenched using a slight excess of 173 

sodium thiosulfate. To avoid any loss of the targeted by-products, samples were extracted 174 

immediately after quenching. Free chlorine and total chlorine concentrations in the stock solutions 175 

of sodium hypochlorite were determined iodometrically with sodium thiosulfate 0.1 M (>99.9%). 176 

Initial NH2Cl and NHCl2 concentrations were determined by spectrophotometric measurement 177 

using their respective molar extinction coefficients at 245 nm and 295 nm and by solving 178 

simultaneous equations (Schreiber and Mitch, 2005). Residual oxidant was analyzed iodometrically 179 

(Eaton et al., 1995). Oxidant exposures were calculated based upon the integration of concentration 180 
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versus time curves of oxidant decay. 181 

2.3. Analytical methods 182 

Total Organic Carbon (TOC) and Total Nitrogen (TN) concentrations were measured using a TOC 183 

analyzer equipped with a TN detection unit (TOC-VCSH, Shimadzu). UV254 absorbance was 184 

measured using UV-Vis spectrometer (UV-2550, Shimadzu) and specific UV absorbance at 254 nm 185 

(SUVA) values were calculated as UV254/DOC ratio and expressed as L.mg-1.m-1. Four 186 

trihalomethanes (THMs), four haloacetonitriles (HANs), two haloketones (HKs), and chloropicrin 187 

were extracted and analyzed following EPA method 551, which consists of a liquid-liquid extraction 188 

using MTBE followed by gas chromatography coupled with electron capture detector (GC-ECD) or 189 

mass spectrometer (GC-MS) (Munch and Hautman, 1995). Nine HAAs were extracted and 190 

analyzed following EPA method 552.2, which is based on a liquid-liquid extraction with MTBE in 191 

acidic conditions followed by derivatization to methyl esters using acidic methanol, and analysis by 192 

gas chromatography coupled with mass spectrometry (GC-MS) (Munch and Munch, 1995). 193 

HAcAms were analyzed following the same EPA method 551 protocol, replacing MTBE by ethyl 194 

acetate for the liquid-liquid extraction. For experiments involving 15N-NH2Cl, all extracts were 195 

analyzed by GC-MS. Since 15N-labeled DBPs (15N-DBPs) are not commercially available, the 196 

concentration of 15N-DBPs was quantified indirectly using the concentration of unlabeled DBPs 197 

(i.e., 14N-DBPs), based on the assumption that the MS response for 14N-DBPs is similar to that for 198 

15N-DBPs (Huang et al., 2012). As an example, DCAN concentrations were determined using m/z 199 

74 and 75 as quantification ions for 14N-DCAN and 15N-DCAN, respectively, and using the 200 

calibration curve obtained from 14N-DCAN standards. The same method was used for other 201 

15N-DBPs analysis. Additional analytical details and the list of labeled and unlabeled DBPs and 202 

their related quantification ions are provided in Text S1 and Table S1 (SI).  203 

2.4. Characteristics of DOM extracts 204 

Samples of wastewater were collected at the Jeddah wastewater (JW) treatment plant (Saudi Arabia) 205 

in September 2012 and stored at 4°C prior to the extraction. The hydrophobic (JW HPO), 206 
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transphilic (JW TPI), and colloidal (JW COL) effluent organic matter (EfOM) fractions were 207 

obtained from these samples. Three previously isolated hydrophobic NOM fractions (i.e., 208 

hydrophobic acids-HPOA obtained from base desorption, and hydrophobic-HPO isolated with 209 

acetonitrile/water desorption) showing different chemical composition were selected: SR HPOA 210 

isolated from the Suwannee River (Georgia, USA), BR HPO isolated from the Blavet River (Côte 211 

d’Armor, France), and GR HPO obtained from the Gartempe River (Vienne, France). One 212 

hydrophilic acid (RR HPI) isolated from the Ribou River (Maine-et-Loire, France) was also 213 

selected. NOM fractions were isolated using two slightly different comprehensive isolation 214 

protocols described elsewhere (Croué, 2004; Leenheer et al., 2000). All fractions and their chemical 215 

compositions are described in Table S2 (SI). 216 

 217 

3. Results and discussion 218 

3.1. Kinetics of DBP formation 219 

In preliminary experiments, the kinetics of DBPs formation were assessed during chloramination 220 

over 72h on EfOM isolates (JW HPO and JW TPI) and Suwannee River NOM (SR HPOA). 221 

Monochloramine concentration remained in excess during all the reaction time (Fig. S2, SI). The 222 

decay of monochloramine was always caused by its autodecomposition since no significant 223 

variations were observed between all the experiments, and the experimental values fitted well with 224 

the autodecomposition model reported by Jafvert and Valentine (1992).  225 

DCAcAm formation from the three isolates (SR HPOA, JW HPO, JW TPI) showed a two steps 226 

profile: a rapid formation in the first 3 hours of reaction, followed by a linear increase (Fig. 1a). The 227 

formation of DCAcAm from JW TPI increased slightly faster than from JW HPO during the first 24 228 

hours of reaction, and then slowed down between 24h and 72h.  A linear increase was observed for 229 

JW HPO, finally reaching a concentration similar to that of JW TPI at 72h of reaction (42.9 nM and 230 

38.6 nM for JW HPO and JW TPI, respectively). This finding indicates that the nature of EfOM 231 

precursors (as described by their C/N ratio and hydrophobicity in terms of SUVA values, see Table 232 
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S2, SI) might play an important role in formation kinetics, but exerts a lesser influence on the 233 

overall formation potential. A lower concentration of nitrogenous precursors in JW HPO (i.e., as 234 

revealed by its higher C/N ratio of 19.5, compared to 8.4 for JW TPI, Table S2, SI) could lead to a 235 

lower formation of DCAcAm in the first 24 hours of reaction, then slow incorporation of nitrogen 236 

from monochloramine into the organic matrix would occur with time, leading to a continuous 237 

increase in DCAcAm. DCAcAm formation kinetics from SR HPOA was significantly faster than 238 

that from EfOM isolates. DCAcAm concentration quickly increased in the first 10 hours of reaction, 239 

and then linearly increased even faster after 10h to reach a final concentration of 169.2 nM (21.7 240 

µg/L) at 48h. The high reactivity of SR HPOA isolate can be related to its aromatic character (i.e., 241 

SUVA value = 4.6). High SUVA NOM isolates are generally characterized by a low incorporation of 242 

nitrogenous moieties, i.e., high C/N ratio (e.g., C/N ratio of 68.6 for SR HPOA) as compared to 243 

other isolates (Table S2, SI) (Leenheer and Croué, 2003). In addition, the substantial difference 244 

between SR HPOA and JW HPO reactivities can be explained by their different origins. Especially, 245 

EfOM and NOM exhibit different relationships between SUVA and the aromatic carbon content, 246 

which is explained by a different origin of aromatic moieties (Drewes and Croué, 2002). 247 

Furthermore, EfOM contains less high molecular weight compounds, less compounds with CHO 248 

formulae but much more organosulfur compounds with CHOS formulae (e.g., surfactants) as 249 

compared to NOM (Gonsior et al., 2011).  250 

DCAcAm concentrations from the three isolates did not stabilize after 72h, thus indicating that 251 

precursors were still available in the solutions. No TCAcAm was detected (detection limit of 4 nM) 252 

from any isolate in the experimental conditions used (i.e., NH2Cl = 15 mg Cl2/L and Cl:N ratio of 253 

1:1.2). No brominated HAcAms were detected since no bromide was present in the reaction 254 

solutions.  255 

DCAN formation from the three isolates followed similar profiles compared to those of DCAcAm 256 

formation (Fig. 1b). The difference between JW HPO and JW TPI isolates was even more 257 

pronounced: a faster reactivity was observed for JW TPI between 0 and 24 hours of reaction, but it 258 
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slowed down to reach a final concentration of 23.1 nM after 72h. JW HPO profile showed a 259 

progressive increase with time, to finally reach a higher concentration (i.e., 30.3 nM) than that of 260 

JW TPI. As discussed for DCAcAm results, the different nature of DBP precursors present in the 261 

two JW EfOM isolates (i.e., different proportion of aromatic and nitrogenous precursors), may 262 

influence the reaction kinetics. DCAN formation from SR HPOA was also considerably more 263 

important than from JW EfOM isolates and increased faster, reaching 92.5 nM after only 48h. No 264 

other HAN was detected from any of the three isolates. 265 

 

 

 

Figure 1. Formation kinetics of a) DCAcAm, b) DCAN, c) DCAA, and d) 1,1-DCP by 

chloramination (15 mg Cl2/L) of SR HPOA, JW HPO, and JW TPI isolates (5 mg C/L) at pH 8 (10 

mM phosphate buffer). 

DCAA was the major DBP detected during these experiments, with concentrations of 611.0 nM and 266 

103.1 nM formed after 72h for SR HPOA and JW HPO, respectively. The SR HPOA isolate was the 267 
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strongest DCAA precursor with a kinetics profile similar to that of DCAcAm. A similar DCAA 268 

formation was observed for the two JW EfOM isolates indicating that, unlike N-DBPs, DCAA 269 

precursors might be more similar in the two fractions. TCAA was only detected at very low 270 

concentrations (< 0.005 nM, i.e., < 0.8 µg/L) for SR HPOA and JW TPI.  271 

TCM was only detected for SRHPOA, reaching a concentration of 453.1 nM after 72h. 272 

1,1-dichloropropanone (1,1-DCP) was solely detected during the chloramination of SR HPOA and 273 

JW HPO. This observation could be related to the higher proportion of aromatic precursors in these 274 

isolates. The formation of HKs has been previously reported from chlorination and chloramination 275 

of Black Lake fulvic acids and a Suwannee River reverse osmosis NOM isolate (Reckhow and 276 

Singer, 1985; Yang et al., 2007). 1,1-DCP formation rates from both isolates quickly increased in 277 

the first 24 hours of reaction, but decreased after 24h to reach final concentrations (at 72h) of 84.0 278 

nM and 12.6 nM for SR HPOA and JW HPO, respectively. HKs are known as intermediates in the 279 

haloform reaction, hydrolyzing to chloroform in neutral and alkaline conditions (Suffet et al., 1976). 280 

The formation of HKs has been associated with a higher methyl ketone content in fulvic acids 281 

fractions as compared to humic acids (Reckhow et al., 1990). In our experiments, no 1,1,1-TCP 282 

could be detected from any isolate. 1,1,1-TCP can be formed by chlorine attack of 1,1-DCP during 283 

chlorination but not during chloramination, because monochloramine is not able to provide further 284 

chlorine substitution (Yang et al., 2007).  285 

3.2. Tracing the origin of nitrogen in N-DBPs  286 

To examine the behavior of nitrogen incorporation from organic precursors and NH2Cl, kinetic 287 

experiments were performed with SR HPOA, JW HPO, JW TPI, JW COL, and RR HPI isolates (5 288 

mg C/L) using 15N-labeled monochloramine (15NH2Cl) (15 mg/L as Cl2). DBP formation kinetics in 289 

the presence of 15NH2Cl exhibited similar profiles than those obtained using 14NH2Cl. As depicted 290 

on Fig. S3 and S4 (SI) for each DOM isolate, the initial fast reaction occurring before 24h was 291 

generally related to the incorporation of 14N from N-org precursors into DCAcAm and DCAN. This 292 

result is in accordance with the faster reactivity of JW TPI observed in the first 24 hours of reaction 293 
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(Fig. 1) as compared to JW HPO which can be attributed to its higher nitrogen content (i.e., lower 294 

C/N ratio). Overall, the isolates exhibited a slow and linear formation of 15N-DCAcAm and 295 

15N-DCAN, while the formation of 14N-DCAcAm and 14N-DCAN tended to reach a plateau during 296 

the 72-hour reaction time. For SR HPOA, showing very low nitrogen content, the incorporation of 297 

inorganic nitrogen from NH2Cl was the predominant mechanism after 10 hours of reaction (e.g., 298 

84.6% of the DCAcAm formed at 48h was 15N-DCAcAm), which explains the steep linear kinetics 299 

profiles obtained for DCAN and DCAcAm in the preliminary experiments. JW HPO profiles were 300 

similar to those of SR HPOA, showing proportions of 15N-DCAcAm and 15N-DCAN at 72h of 301 

74.6% and 68.5%, respectively, which also explains the linearity of profiles shown in Fig. 1. In 302 

contrast, the formation of N-DBPs from the JW TPI isolate was more influenced by both 303 

mechanisms at the same time (e.g., the proportion of 15N-DCAcAm was 49% ± 10% throughout the 304 

reaction time) thus explaining the non-linear profiles obtained. In the case of the RR HPI isolate, the 305 

formation of 15N-DCAcAm was slower than that of 14N-DCAcAm in the first 40 hours of reaction 306 

but finally reached a similar concentration after 48h (i.e., 20.3 nM and 18.3 nM, respectively).  307 

A recent study demonstrated that formation kinetics of N-DBPs (DCAN and TCNM) during 308 

chloramination are influenced by two contributions: second-order reaction kinetics from N-org 309 

precursors and the incorporation of inorganic nitrogen from chloramines, linearly correlated with 310 

chloramines exposure (Chuang and Tung, 2015). Second-order reaction kinetics for 14N-DBP 311 

depends on the concentrations of NH2Cl and 14N-DBP precursors, and can be expressed as Eq. 1: 312 

14N-DBP precursors + NH2Cl → 14N-DBP (1) 

    ClNH precursors NDBPk 
dt

NDBPd
2

14
14

 , 
 

Where k is the second-order rate constant for the formation of 14N-DBPs. Integrating Eq. 1 for t 313 

yields Eq. 2 (Text S2, SI).  314 
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2 Totali
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 315 

where [NH2Cl]i is the initial monochloramine concentration and [14N-DBP precursors]Total is the 316 

total 14N-DBP precursors concentration, i.e., the concentration of 14N-DBP formed at 72h. 317 

Fig. 2 shows the formation of 14N-DCAcAm and 14N-DCAN and their respective second-order 318 

relationships derived from Eq. 2. Linear relationships were obtained from this second-order model 319 

for the formation of the two 14N-DBPs with most of the investigated isolates. The linearity observed 320 

for the first 48 hours suggests that the reaction was nearly completed after 72h. This finding 321 

confirms that 14N-DBPs produced after 72h can be used to reflect the total concentration of 14N-322 

DBP precursors. 14N-DCAcAm formation followed second-order kinetics for all the isolates. 323 

Because JW TPI exhibited a decreasing profile after 24h and not enough data points were obtained 324 

for JW COL, second-order relationships could not be plotted for 14N-DCAN formation from these 325 

two isolates. The SR HPOA isolate exhibited the highest formation of 14N-DCAcAm (i.e., 28.0 326 

nM), followed by RR HPI, JW TPI, JW HPO, and finally JW COL. A similar order was obtained for 327 

the formation of 14N-DCAN, however, JW TPI showed a slight decrease in concentration after 24h 328 

of reaction time, reaching a lower value than JW HPO at 72h. Because SR HPOA is characterized 329 

by the highest C/N ratio (i.e., lowest nitrogenous moieties content) of the studied isolates, these 330 

results indicate that there is no direct correlation between nitrogen content of DOM and the 331 

production of 14N-DCAcAm or 14N-DCAN. Hence, the reactivity of specific organic nitrogen sites 332 

plays a more important role in SR HPOA as compared to other fractions of DOM. The aromatic 333 

character does not seem to be a critical parameter in the formation of 14N-DBPs, since low SUVA 334 

isolates (e.g., RR HPI) exhibited higher formation of 14N-DCAcAm and 14N-DCAN than higher 335 

SUVA isolates (e.g., JW HPO).  336 
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 337 

Figure 2. Formation of a) 14N-DCAcAm and b) 14N-DCAN and their respective second-order 

relationships for SR HPOA, RR HPI, JW HPO, JW TPI, and JW COL isolates (5 mg C/L) and 

15NH2Cl (15 mg Cl2/L) at pH 8 (10 mM phosphate buffer) over 72h. 

As proposed in the literature (Chuang and Tung, 2015), a linear correlation was observed between 338 

15N-DCAN formation and monochloramine exposure for all isolates investigated (Fig. 3). The same 339 

linear correlation was observed for the formation of 15N-DCAcAm. SR HPOA exhibited again the 340 

highest reactivity, with concentrations of up to 143.2 nM of 15N-DCAcAm and 73.4 nM of 15N-341 

DCAN formed after 48h (i.e., an exposure of 33,922 mg.min/L). In general, isolates with higher 342 

SUVA values exhibited more pronounced slopes, which indicates that a major incorporation of 15N 343 

occurs during 15NH2Cl reaction with organic matter enriched in aromatic moieties. RR HPI formed 344 

the highest proportion of 14N-DCAcAm (i.e., 47.4% at 48h) as compared to 15N-DCAcAm. The 345 

comparison was even more significant for DCAN, with a relative abundance of 72.1% of 346 

14N-DCAN at 48h, indicating that hydrophilic fractions of DOM enriched in nitrogen (see C/N 347 
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ratios in Table S2, SI) incorporate a higher proportion of nitrogen from N-org precursors into 348 

N-DBPs. 349 

 350 

Figure 3. Formation of a) 15N-DCAcAm and b) 15N-DCAN from SR HPOA, RR HPI, JW HPO, JW 

TPI, and JW COL isolates (5 mg C/L) and 15NH2Cl (15 mg Cl2/L) at pH 8 (10 mM phosphate 

buffer) over 72h. 

These results explain the N-DBP formation profiles obtained in the experiments involving only 351 

14NH2Cl (Fig. 1). The first step of rapid N-DBP production is related to the reactivity of N-org 352 

precursors with chlorine atoms of NH2Cl. As N-org precursors (i.e., 14N-DBP precursors) are 353 

consumed, the formation of 14N-DBP tends to stabilize as described by the second-order reaction 354 

kinetics. Then, the contribution of non-nitrogenous precursors starts to be significant, exhibiting a 355 

slower reactivity with NH2Cl but finally reaching high N-DBP concentrations. These high 356 

concentrations may be due to the higher initial concentrations of non-nitrogenous precursors, i.e., 357 

aromatic precursors, as compared to N-org precursors. The second step of linear increase with 358 

increasing exposure can thus be described as the slow incorporation of nitrogen from NH2Cl into 359 
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non-nitrogenous precursors comprising aromatic moieties. 360 

Aldehydes are known to be precursors of nitriles, and it has been demonstrated that 361 

chloroacetaldehyde forms chloroacetamide and N,2-dichloroacetamide (first time identified) in 362 

alkaline chloramination conditions (Kimura et al., 2013). HAcAms can thus be expected to be 363 

formed from haloacetaldehydes (HAcAl) either directly through the Aldehyde Pathway or indirectly 364 

through the hydrolysis of HANs. DCAcAl and TCAcAl were monitored during the kinetics studies 365 

involving 15N-NH2Cl to compare their formation with HAcAms formation (Fig. 4). TCAcAl was 366 

only detected with JW HPO at very low concentrations (7.7 nM at 72h). DCAcAl formation did not 367 

fit with any second-order kinetics and a linear correlation with oxidant exposure could not be 368 

established. As described in Fig. 4b for JW HPO, the kinetics of formation followed a 2nd order-like 369 

profile in the first 10 hours of reaction and then linearly increased with monochloramine exposure, 370 

reaching a concentration of 28.5 nM after 72h. Similarly to N-DBPs, DCAcAl formation could be 371 

attributed to two types of reaction mechanisms: a) a formation from N-org precursors or an 372 

intermediate in the first hours of reaction, followed by b) a slow reaction with monochloramine. 373 

This second step of formation could be linked to the formation of DCAcAm, i.e., the linear increase 374 

in DCAcAm concentrations would follow the linear formation of DCAcAl through the 375 

incorporation of a N atom from NH2Cl and the formation of a carbinolamine 376 

(2-dichloro-1-(chloroamino)ethanol) and a N-chloroamide (N-chlorodichloroacetamide) 377 

intermediate (Kimura et al., 2013). The formation of N-chlorodichloroacetamide has been reported 378 

during chlorination of DCAN at pH 10 (Peters et al., 1990). It was not detected at lower pH values, 379 

because N-chloroamides are easily hydrolyzed in the presence of HOCl. Samples from this study 380 

were analyzed in full scan mode GC-MS, but no peaks corresponded to the abovementioned 381 

intermediates. Despite its two-steps profile, DCAcAl formation from JW HPO did not exhibit the 382 

same kinetics profile as DCAcAm and DCAN formation, since more DCAcAl was formed in the 383 

first hours of reaction and the linear increase of DCAcAm and DCAN was finally more pronounced 384 

than that of DCAcAl (Fig. S6, SI). A similar observation was made from SR HPOA, which formed 385 
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the highest DCAcAl concentration (43.5 nM at 72h) but in limited proportions as compared to 386 

DCAcAm and DCAN. These results indicate that DCAcAl formation followed an independent 387 

pathway from DCAcAm formation. However, additional investigations are needed to confirm this 388 

hypothesis. 389 

 390 

 391 

Figure 4. Formation of a) DCAcAl and b) DCAcAl and TCAcAl from SR HPOA, RR HPI, JW 

HPO, JW TPI, and JW COL isolates (5 mg C/L) and 15NH2Cl (15 mg Cl2/L) at pH 8 (10 mM 

phosphate buffer) over 72h. 

In contrast to other DBPs, the production of DCAA from SR HPOA exhibited the exact same 

formation profile as total DCAcAm (i.e., the sum of 14N-DCAcAm and 15N-DCAcAm), and their 

concentrations were strongly correlated along the reaction time (R2 = 0.999) (Fig. S7, SI). Good 

fittings were also obtained for other DOM isolates (R2 ranging from 0.96 to 0.98). DCAA 

concentrations were approximately two times higher than DCAcAm concentrations for all isolates 
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(i.e., the average slope was 2.1 ± 0.5). This result indicates a direct relationship between the two 

DBPs during chloramination of DOM, which can be related to the hydrolysis of DCAcAm to 

DCAA observed during chlorination (Peters et al., 1990; Reckhow et al., 2001).  

While the formation of 1,1-DCP mainly occurred from DOM isolates presenting a strong aromatic 392 

character (Table S3, SI), its formation did not linearly increase with chloramine exposure and 393 

followed second-order kinetics (Fig. S5, SI). This different behavior compared to those of DCAN 394 

and DCAcAm indicates that its formation mechanism follows a more complex pathway than the 395 

solely incorporation of 15NH2Cl in aromatic moieties. Since 1,1-DCP kinetics reached a plateau at 396 

reaction times where DCAN and DCAcAm were still linearly increasing, its formation might 397 

depend on the availability of an intermediate rather than that of aromatic precursors. 398 

3.3. DBP Formation Potentials 399 

To verify the hypothesis of the aromatic character of DOM playing a role in the formation of 400 

N-DBPs during chloramination, DBP formation potentials from seven DOM isolates were 401 

determined after 72h of chloramination using 15NH2Cl at pH 8. As previously observed, major DBP 402 

species produced for each class of monitored DBPs (i.e., HAAs, HAcAms, HAcAls) were 403 

dichlorinated in the experimental conditions used. Similarly to the kinetics experiments, DCAA was 404 

the major DBP analyzed for all the isolates, with concentrations ranging between 56.0 nM (JW 405 

COL) and 594.6 nM (BR HPO). DCAA concentrations were higher than TCM concentrations, in 406 

accordance with previous studies conducted on the chloramination of natural waters (Hua and 407 

Reckhow, 2007). DCAcAm exhibited the highest concentrations after DCAA and TCM, reaching 408 

132 (±76) nM for SR HPOA. DCAcAl concentrations were close to those of DCAN, ranging from 409 

14.8 nM (JW COL) to 40.4 nM (SR HPOA). TCAA and TCAcAl were also observed at low 410 

concentrations (4.0 to 7.7 nM) (Table S3, SI). 411 

   Almost all isolates exhibited a higher proportion of 15N incorporation than 14N, either in 412 

DCAcAm or in DCAN (i.e., only RR HPI formed more 14N-DCAN than 15N-DCAN) (Table 1). 413 

Similarly to results obtained from kinetics experiments, the highest concentrations of either 414 
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14N-DBPs or 15N-DBPs were obtained with SR HPOA. Even if no correlation could be derived 415 

from the whole set of results, the general trend was the higher the SUVA of the DOM isolate the 416 

higher the incorporation of 15N in N-DBPs (Fig. S8, SI). When discriminating the OM isolates as a 417 

function of their origin (i.e., 3 HPO fractions from river waters in one group and 3 fractions from 418 

wastewater effluent in another group), good correlations were obtained between 15N-DBPs 419 

formation and SUVA values (R2 = 0.92 for 15N-DCAcAm and R2 = 0.999 for 15N-DCAN) (Fig. S8 420 

and Table S4, SI). These results are in good agreement with previous studies which demonstrated 421 

that the formation of DCAN during chloramination did not correlate with DON/DOC ratio values of 422 

DOM fractions but correlated well with their SUVA values (Yang et al., 2008). In addition to these 423 

correlations with SUVA, 15N-DCAcAm and 15N-DCAN formations exhibited a linear relationship 424 

against each other (R2 = 0.93, Fig. 5). This observation suggests a similar behavior of DCAcAm and 425 

DCAN towards the incorporation of 15NH2Cl as SUVA of DOM increases. Such a relationship 426 

could not be established from 14N-DCAcAm and 14N-DCAN, suggesting that 14N incorporation did 427 

not follow a common pattern for the two species of DBPs. This agrees with results from Huang et 428 

al. (2012), who proposed that DCAcAm formation could be independent from DCAN hydrolysis. 429 

DCAcAm formation from humic-like materials was proposed to rapidly occur through the 430 

Decarboxylation Pathway, followed by the incorporation of inorganic nitrogen through the 431 

Aldehyde Pathway becoming more important with increasing chloramines exposure. Thus, DCAN 432 

and DCAcAm formation would follow similar but independent pathways during the chloramination 433 

of humic substances. 434 

 435 

Table 1. Proportion of nitrogen incorporation in DCAN and DCAcAm by chloramination (15 mg 436 

Cl2/L) of OM isolates (DOC = 5 mg C/L) at pH 8 during 72h of contact time. 437 

 Concentration (nM) (N incorporation - %a) 

Isolate 14N-DCAN 15N-DCAN 14N-DCAcAm 15N-DCAcAm 

SR HPOA 19.1 (27) 51.8 (73) 28.0 (21) 104.0 (79) 
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BR HPO 8.7 (20) 34.1 (80) 13.7 (22) 49.7 (78) 

GR HPO 2.0 (12) 14.3 (88) 11.2 (26) 31.5 (74) 

RR HPI 11.3 (66) 5.8 (34) 13.9 (44) 17.7 (56) 

JW HPO 10.9 (34) 20.7 (66) 2.0 (33) 4.1 (67) 

JW TPI 7.7 (33) 15.4 (67) 3.0 (46) 3.5 (54) 

JW COL 4.5 (29) 10.8 (71) 11.4 (41) 16.5 (59) 
a N incorporation = nitrogen proportion in N-DBPs, calculated as 

 
   )NDBPNDBP(

100NDBP
1514

15or  14




 (%) 

 438 

 439 

Figure 5. Relationship between 15N-DCAN and 15N-DCAcAm formation potentials after 

chloramination (15NH2Cl = 15 mg Cl2/L) of DOM isolates (DOC = 5 mg C/L) at pH 8 (10 mM 

phosphate buffer) during 72h. Dashed lines represent 95% interval confidence. 

3.4. N-DBP formation potentials from model compounds 440 

Most studies using model precursors for HANs and HAcAms formation during chlorination and 441 

chloramination have focused on amino acids (e.g., asparagine, aspartic acid) (Chu et al., 2012; Chu 442 

et al., 2010b; Huang et al., 2012; Trehy et al., 1986; Yang et al., 2010, 2012). Aromatic amino acids 443 

(i.e., tryptophan and tyrosine) were demonstrated as important precursors of HAcAms. A 444 

mechanism was recently proposed to describe the formation of TCAcAm from the aromatic ring of 445 

tyrosine (Chu et al., 2012). Multiple chlorine attacks on the phenolic ring form chloro-, dichloro- 446 

and trichloro-phenol, ring opening released chloroform, TCAA and a trichloroacetyl chloride 447 

(TCAC) intermediate (tentative structure identified by GC-MS). The last step would form TCAcAm 448 

through TCAC reaction with ammonia and the elimination of hydrochloric acid. However, the 449 

mechanism of this critical step, leading to the formation of the amide group (i.e., nitrogen 450 
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incorporation), is still uncertain. Such a pathway was not described for DCAcAm, which was 451 

thought to be formed only from DCAN hydrolysis (Chu et al., 2012). However, DCAcAm was 452 

suggested to be formed independently from DCAN hydrolysis during the chloramination of humic 453 

substances (Huang et al., 2012). To investigate the reactivity of aromatic compounds with 454 

monochloramine, N-DBPs formation tests were conducted by chloramination (100 mg Cl2/L) of 455 

250 µM phenol (PHE) and resorcinol (RES) for 72h at pH 7, and results were compared with amino 456 

acids previously described as major precursors of N-DBPs (e.g., tyrosine - TYR, aspartic acid - 457 

ASP, tryptophan - TRY) (Fig. 6). Phenol and resorcinol formed higher concentrations of DCAN and 458 

DCAcAm than the amino acids, proving that aromatic compounds can be major precursors of 459 

N-DBPs as compared to other previously proposed nitrogenous precursors. Phenol produced the 460 

highest yield of DCAN (4.43% molar yield), while the highest proportion of DCAcAm was 461 

obtained from resorcinol (0.83%). This result can be related to the presence of the second hydroxyl 462 

group in meta position, known to activate the aromatic ring for electrophilic substitution by 463 

chlorine. While the incorporation of nitrogen from NH2Cl was previously hypothesized to occur 464 

through the Aldehyde Pathway (Huang et al., 2012), these results show that aromatic organic 465 

compounds react with monochloramine to produce N-DBPs through an unknown mechanism. 466 
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Figure 6. DCAN and DCAcAm formation by chloramination (100 mg Cl2/L) of phenol, resorcinol, 469 

tyrosine, aspartic acid, and tryptophan (250 µM) over 72 h and at pH 7 (10 mM phosphate buffer). 470 
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Molar yields were calculated based upon the initial model precursor concentration. Error bars 471 

represent standard deviations (n = 3). PHE: phenol; RES: resorcinol; TYR: tyrosine; ASP: aspartic 472 

acid; TRY: tryptophan. 473 

 474 

4. Conclusions 475 

This study demonstrates the possibility of N-DBPs formation from aromatic moieties of DOM. 476 

Experiments using aromatic model compounds confirm the results obtained from DOM isolates. 477 

The results from this investigation are of significant importance for water treatment facilities using 478 

chloramines as final disinfectant, where the removal of aromatic DOC must be optimized to avoid 479 

the production of N-DBPs. This work also confirms the possibility of two distinct mechanisms 480 

explaining N-DBP formation during chlorination/chloramination of aromatic amino acids, i.e., 481 

chlorination of amino groups and incorporation of inorganic nitrogen from NH2Cl in aromatic rings. 482 

The mechanism of N-DBPs formation through aromatic ring opening and nitrogen incorporation 483 

requires further investigation to be elucidated. Kinetics experiments and structural identifications of 484 

potential reaction intermediates should be performed in order to understand this pathway. Potential 485 

intermediates include carbinolamines and N-chloroamides, both previously observed as 486 

intermediates during the chloramination of aldehydes and the chlorination of acetamides, 487 

respectively. 488 
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