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Abstract Poisson’s ratio is a well-de ned parameter in elasticity. For time-dependent ma-
terials, multiple de nitions based on the ratios between lateral and axial deformations are
available. Here, we focus ourselves on the two most widely used de nitions in the time
domain, which de ne time-dependent functions that we call relaxation Poisson’s ratio and
creep Poisson’s ratio. Those two ratios are theoretically different, but are linked in an exact
manner through an equation we derive. We show that those two functions are equal at both
initial and large times and that their derivatives with respect to time also are. Based on sim-
ple rheological models for both the deviatoric and volumetric creep behaviors, we perform a
parametric study and show that the difference between those two time-dependent Poisson’s
ratios can be signi cant. However, based on creep data available in the literature, we show
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1 Introduction

For an isotropic body, the elastic Poisson’s ratjas de ned unambiguously as the ratio
of the lateral contractiois | to the elongation , in the in nitesimal deformation under
uniaxial load, that is,

=5 L. (1)
a

By extension, for linear viscoelastic materials, we can aim at de ning a time-dependent
Poisson’s ratio (Van der Varst and Kortsri92 Hilton 2001, 2011, Tschoegl et al2002
Lakes and Winema2006. However, such an aim can generate some ambiguity since Hilton
(2001 enumerated ve different ways of de ning a time-dependent Poisson'’s ratio. Here, by
using a direct extension of EdL)(to a uniaxial creep experiment and to a uniaxial relaxation
experiment, we de ne the creep Poisson’s rati@and the relaxation Poisson’s ratig:

- t
(t)=S I((t)) during a uniaxial creep experiment for whicg(t) = 5, (2a)
a
-~ t
() =S 10 during a uniaxial relaxation experiment for whick(t) = s, (2b)

a0

where 4(t) and (t) are the time-dependent axial and lateral strains, respectivgty, is

the axial load, and 4o and 4o are constants. Note that these de nitions are specic to

the case of creep and relaxation with an instantaneous loading: indeed, even in the case of
uniaxial compression only, various load histories lead to various evolutions of the ratio of
the lateral dilation to the axial contraction over time.

With respect to the terminology used by Hilta0Q1), our creep Poisson’s ratiq cor-
responds to his type | de nition restricted to a uniaxial creep experiment, whereas our relax-
ation Poisson’s ratio corresponds to his type Il de nition. These two Poisson’s ratios are not
equal (Tschoegl et aR002 Lakes and Winemag006. However, little is known on how
signi cant the difference between them is. Quantifying such a difference is the main goal of
this work.

Better understanding how Poisson’s ratios evolve with time is relevant for a variety of ap-
plications, among which we nd the estimation of service life of the containment of French
nuclear power plants. Indeed, the containment of French nuclear power plants is made of a
biaxially prestressed concrete and designed to withstand an internal pressure of 0.5 MPa in
case of an accident. In order to avoid tensile stresses in concrete, the applied prestress cor-
responds to compressive stresses in concrete of around 8.5 MPa and 12 MPa along vertical
and orthoradial axes, respectively (Torrenti et28l14. To limit cracking of concrete, ten-
sile stresses should remain below the tensile strength of concrete in case of accident. That is
why the evolution of prestressing forces with respect to time is critical for the operation of
nuclear power plants and for the optimization of their service life. Consequently, a good pre-
diction of the evolution of delayed strains of the containment under a biaxial stress condition
is needed.

In this article, starting from the basic equations of linear viscoelasticity, we derive a re-
lationship between the two time-dependent Poisson’s ratios just introduced. We speci cally
consider how their values and their derivatives can be compared at short and long times.
Then, a parametric study of the difference between them over all times is performed, based
on common rheological models. In the last section, we consider the practical case of ce-
mentitious materials (on which creep data in both axial and lateral directions are available
from the literature): for this speci c class of materials, the difference between the two time-
dependent Poisson’s ratios is scrutinized.
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2 Theoretical derivations

This section is devoted to derive analytical relations pertaining to the creep Poisson’s ra-
tio . and the relaxation Poisson'’s ratip. First, from the basic equations of viscoelasticity

we derive expressions of the two Poisson’s ratios. Then, we derive relation between them
and compare their initial and long-time asymptotic values and derivatives with respect to
time.

2.1 Viscoelastic constitutive relations

We restrict ourselves to an isotropic nonaging linear viscoelastic solid submitted to in nites-
imal strains in isothermal conditions. For such a case, the time-dependent state equations
that link the stress tensor (decomposed into the volumetric stress= tr(_)/ 3 and the
deviatoric stress tensgrsuch that = ,1+ s, where tr is the trace operator andslthe

unit tensor) to the strain tensordecomposed into the volumetric straip= tr( ) and the
deviatoric strain tensa such that = ( ,/3)1+ €) are (Christenseh982: -

v(t) = K@) (), (32)
s ()= 2G(1) & (1), (3b)

where denotes the convolution product de nedfas g= ; f(t S )g()d ,andf
is for derivatives with respect to time,= df (t)/dt . Those state equations can equivalently
be written as (Christenser®82

NORENCIMO! (@)
&M= 3d0 50, (4b)

whereJk (t) andJg(t) are called the bulk creep compliance and the shear creep compliance,
respectively. Creep compliances are linked to relaxation moduli through (Christe®2n

1
sl = —, 5a
KT K (59)
1
Slg = —, 5b
e (5b)

wheres is the Laplace variable, arfds) is the Laplace transform of a functidt) .
Starting from the state equatior&]—(4b), in uniaxial testing, we can show that the axial
stress history 4(t) and the axial strain history,(t) are related by (Christensé982

a() = E(t)  a(b), (62)
a(t) = Je()  a(b), (6b)

whereE(t) andJg (t) are called the uniaxial relaxation modulus and the uniaxial creep com-
pliance, respectively. For a uniaxial relaxation or creep test, by solving Egs(3b) and
(4d), (4b) in the Laplace domain, we obtain an analytic expression for the uniaxial relaxation
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modulust and the uniaxial creep compliandg in the Laplace domain, respectively, the
latter being transformed back directly:

_ 9K(s)G(s)
BRETOREC) e
J0) = gk + 3360 (7b)

In the uniaxial relaxation test, for which(t) = 49, by substituting this condition into
Egs. 8a), (3b) and solving it in Laplace domain, the relaxation Poisson’s ratio is found:

(s)= 3K(s) S 2G(s)

= oG (®)
SEK(s) + G(S))

For the uniaxial creep test, for which(t) = 40, Egs. @3a), (4b) are solved directly in
the time domain, which yields an analytic expression of the creep Poisson’sg@titime:

)= 3Je(t) S 23k ()

= 2@+ M) ®)

In the creep test, the ratio between the Laplace transforaf the lateral strain to the
Laplace transform, of the axial strain is evaluated and found to be equabto,. By
transforming this equality back to the time domain we have

1=Ss, a i(t) = S r (D) alt). (10)

Comparing Eqg. 10) with Eq. 28 and combining them with Eq60), we get the relation
between the two Poisson'’s ratios:

() Je()
Je()

Van der Varst and Kortsmitl@92 also found this relation by writing the equilibrium of a
cylindrical bar subjected to a uniaxial load. Salenct®33 also demonstrated this relation,

but in the Laplace domain. Note that this relationship is only valid to relate the creep and
relaxation Poisson’s ratios as de ned by Edgg)(and @b), respectively. In contrast, if the
loading is not applied instantaneously, then how the ratio between lateral and axial strains
evolves over time during the creep phase is related in a different manner to how this same
ratio evolves over time during the relaxation phase.

e(t) = (11)

2.2 Comparison of the relaxation Poisson’s ratio and the creep Poisson’s ratio

Equations 8) and Q) indicate that both the relaxation Poisson’s rati@nd the creep Pois-
son’s ratio . can be expressed as functions of the relaxation moduli, even though they are
de ned with reference to a speci c loading path. In order to evaluate the difference between
the relaxation Poisson’s ratiqg and the creep Poisson’s ratig, their initial and long-time
asymptotic values are compared rst.

At time t = 0, the relaxation modulus and creep compliance are equal to their
elastic values, that isK(t = 0) = Ko, G(t = 0) = Gg, Jk(t = 0) = Jko = K31,
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Jo(t=0)=Jgo= Gogl. By using the initial value theorem (Auliac et &000, the value
of the relaxation Poisson’s ratig at time O is evaluated:

- 3K $2Gs_ 3K526G
(0= lm s (s)= lim S _ Ko 0_

2= = . 12
+ 6K+ 2GS 6Ko+ 2G, ° (12)

What concerns the creep Poisson’s ratjpevaluating Eq.9) at timet = 0 is straightfor-
ward:
3360 S 2Jko _ 3KoS 2Go _
6Jco+ 2Jko  6Ko+ 2Go
Therefore, the value of both the relaxation Poisson’s ratend the creep Poisson’s ratig
at time 0 is equal to the elastic Poisson’s ratjo

At large times (i.e., at + ), the bulk and shear relaxation moduli tend towKrd
andG , respectively. Hence, an asymptotic Poisson'’s ratiaccan be de ned:

(0) =

0- (13)

3K §2G

= 14
6K + 2G (14

The asymptotic value of the relaxation Poisson’s ratio is evaluated by using the nal value
theorem (Auliac et al2000:

3K$2Gs_ 3K 352G

)= lms ((8)= M e 2G5~ 6k + 26 ’ (15)
whereas since lim  Jk(t) = UK andlim. Js(t)= UG ,
3G S 2K 3K S2G
li t) = = 16
dmo 0= g6 vk - ek + 20 (16)

Therefore, both relaxation Poisson’s ratioand creep Poisson’s ratiq tend toward the
same value atlarge times.

The relation between their derivatives with respect to time will be derived from1&y. (
The uniaxial creep complianck:(t) is a continuous function for times 0 but exhibits
a discontinuity at = 0: Jg(t < 0) = 0, whereasJg (t = 0) = Jgo > 0. The existence of
this discontinuity implies that the convolution integral on the right-hand side of EL. (
is a hereditary integral. By multiplying both sides of Eq1) by Je and simplifying the
hereditary integral, we get

t dJe()

()Je) = ((1)Je(0) + ” (S )— ¢ 7
Differentiating this equation with respect to time yields
c(MIe®) + c()Ie®) = ()Ie(0)+ ((t)Ie(), (18)

which, after evaluation dt= 0, yields (0) = (0).

The relaxation Poisson’s ratio and creep Poisson’s ratiq are known to be bounded.
In addition, in most cases, considering that, after a certain time, those two Poisson’s ratios
are monotonic functions of time is a reasonable assumption. Under such an assumption, we
can therefore conclude that their derivatives with respect to time must tend to zero, that is,
lim, r(t) = limg () =0.
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Fig. 1 Rheological models used in the parametric studyBoth volumetric and deviatoric behaviors gov-
erned by the Maxwell unit;i)) Volumetric behavior and deviatoric behavior governed by the Maxwell unit
and the Kelvin—Voigt unit, respectivelyc) Volumetric behavior and deviatoric behavior governed by the
Kelvin—Voigt unit and the Maxwell unit, respectivelydBoth volumetric and deviatoric behaviors governed
by the Kelvin—Voigt unit

In conclusion, the initial values of the relaxation Poisson’s ratiand of the creep
Poisson’s ratio . are equal to each other. So are their long-time asymptotic value, their initial
derivative with respect to time, and the long-time asymptotic values of their derivatives with
respect to time. However, in spite of these similarities, over all times, those two Poisson’s
ratios differ from each other. Quantifying how different those quantities are is the main
objective of the next section.

3 Difference between relaxation and creep Poisson’s ratios in rheological
models

This section is devoted to assessing how different the relaxation Poisson’s,ratid the
creep Poisson’s ratio. are over all times. To do so, we perform a parametric study in
which the shear and volumetric behaviors are modeled with the most common rheological
units.

Here, we consider virtual materials for which the volumetric behavior and the deviatoric
behavior are modeled with either the Maxwell unit (to model a creep behavior that diverges
with time) or the Kelvin—Voigt unit (to model a creep behavior with an asymptotic value).
All four combinations of those units are considered (see BigFor simplicity, when the
Kelvin—\oigt unit is considered, the stiffness of the two springs it contains are set equal to
each other.

If the bulk behavior is modeled with the Maxwell unit, then the bulk relaxation modu-
lus K(s) in the Laplace domain and the bulk creep compliafigé) in the time domain
read

1 S1
K(s)= —+ — (19a)
Ko K

1

_t
W)=+ (19b)
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Fig. 2 Relaxation Poisson’s 0.5
ratio (t) and creep Poisson’s
ratio ¢(t) for a material whose _ 041
volumetric and deviatoric -
. ]
behaviors are governed by the £ 0.3}
Maxwell unit and for which -
0=01and g/ ¢ =10 g 02|
E
0.1- =" Relaxation Poisson's ratio v,
- = Creep Poisson's ratio v,
Oy 10° 10" 10

Dimensionless time £ =G t/ng [-]

In contrast, if the bulk behavior is modeled with the Kelvin—Voigt unit, the bulk relaxation
modulusK(s) in the Laplace domain and the bulk creep compliadgét) in the time
domain read

Ks)= —+ —> o (20a)
- Ko Ko+ s « '
1 . LK
I (t) = ra 23 exp S—Kot . (20b)

Equivalent equations can be derived for the shear behavior.

For every combination of rheological units considered (see Fidoy applying the in-
verse Laplace transform to E@)(in which the corresponding time-dependent moduli have
been injected, we obtain the relaxation Poisson’s ratimver all times. The creep Poisson’s
ratio . is obtained by injecting the corresponding creep compliances intodEdDétails
of all calculations are provided in Appendix

The relaxation Poisson’s ratig and the creep Poisson’s ratig depend on the stiff-
nesseK, andGg of the springs and on the viscositieg and ¢ of the dashpots. In fact,
dimensional analysis shows that those two Poisson’s ratiasd . can be expressed with
the following dimensionless parameters:

c(t,Ko,Go, k,» c)= c(t, 0, k/ &) (21)
((t,Ko,Go, , &)= «(t, 0, x/ &) (22)

wheret = tGy/ g is a dimensionless time. This dimensional analysis de nes the rationale
for the parametric study: For the four combinations of rheological units considered, the
difference between the two Poisson’s ratios is studied for various values of the elastic ini-
tial Poisson’s ratio, [S 1,0.5] and for a wide range of values of the ratig/ ¢ (i.e.,

k! ¢ [0.01100).

Figure 2 displays the two Poisson’s ratiog and . for the speci c case of a material
whose both the volumetric and deviatoric behaviors are governed by the Maxwell unit and
for which o= 0.1 and x/ ¢ = 10. We observe that, in this case, the relaxation Poisson’s
ratio , increases more rapidly and reaches its asymptotic value earlier than the creep Pois-
son’s ratio .

In the following parametric study, the difference in the evolutions of the two Poisson’s
ratios over time is characterized by two parameters, a characteristic differenesad a
retard factorf ; that captures the retard of the creep Poisson’s ratiwith respect to the
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Fig. 3 Characteristic difference between relaxation Poisson’s ratig(t) and creep Poisson’s ratig(t):

(a) Both volumetric and deviatoric behaviors governed by the Maxwell unit (seelB)g.(b) Volumetric
behavior and deviatoric behavior governed by the Maxwell unit and the Kelvin—Voigt unit, respectively (see
Fig. 1b); (c) Volumetric behavior and deviatoric behavior governed by the Kelvin—\oigt unit and the Maxwell
unit, respectively (see Fidc); (d) Both volumetric and deviatoric behaviors governed by the Kelvin—Voigt
unit (see Figld)

relaxation Poisson’s ratig :

= r(tm)S c(tm), (23a)
fi = :—C, (23b)

wherety, is such that (tm) S c(tm)|= max| ((t) S c(t)], andt, andt. are such that
rt)= clte)=(ot )2

Figure 3 displays the characteristic difference . For a material whose both volumet-
ric and deviatoric behaviors are governed by the Maxwell unit (see Biggandla), the
characteristic difference is an increasing function of the ratiqc/ ¢ and a decreasing
function of the initial Poisson’s ratioy. For this material, the characteristic difference
is comprised betwee$i 0.3 and 0.3. For a material whose volumetric and deviatoric behav-
iors are governed by the Maxwell unit and the Kelvin—\Voigt unit, respectively (see 3igs.
and 1b), the characteristic difference is a decreasing function of the initial Poisson’s
ratio . The minimum characteristic difference is equal®6.3 and is observed for the
material for which ¢ = 0.5. For a material whose volumetric and deviatoric behaviors are
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Fig. 4 Retard factorf ; of the creep Poisson’s ratiq(t) with respect to the relaxation Poissongt):
(a) Both volumetric and deviatoric behaviors governed by the Maxwell unit (seelB)g.(b) Volumetric
behavior and deviatoric behavior governed by the Maxwell unit and the Kelvin—\Voigt unit, respectively (see

Fig. 1b); (c) Volumetric behavior and deviatoric behavior governed by the Kelvin—\Voigt unit and the Maxwell
unit, respectively (see Fidc)

governed by the Kelvin—\oigt unit and the Maxwell unit, respectively (see Eigand3c),
the characteristic difference is an increasing function of the initial Poisson’s ratio The
maximum characteristic difference is equal t8 @nd is observed for the material for which

o S 1. For a material whose both volumetric and deviatoric behaviors are governed by
the Kelvin—Voigt unit (see Figdd and3d), the characteristic difference is almost 0. The
observation of such a small characteristic difference is likely due to the fact that we chose
identical stiffnesses for the two springs of the Kelvin—Voigt unit, for both the volumetric and
deviatoric behaviors.

Figure4 displays the retard factdr; . For a material whose both volumetric and devi-

atoric behaviors are governed by the Maxwell unit (see Figsand4a), the retard factor
f ¢ is constant and equal to44 for the various values of the initial Poisson’s ratipand
theratio x/ . For a material whose volumetric and deviatoric behaviors are governed by
the Maxwell unit and the Kelvin—Voigt unit, respectively (see Fifys.and4b) and for a
material whose volumetric and deviatoric behaviors are governed by the Kelvin—\oigt unit
and the Maxwell unit, respectively (see Fids.and4c), the retard factof ; is a mono-
tonic function of neither the initial Poisson’s ratig nor the ratio x/ . For each of those
two types of materials, the retard factor is comprised between.44 and 208. For the
material whose both volumetric and deviatoric behaviors are governed by the Kelvin—\oigt
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unit (see Figsld and3d), since the characteristic difference between the two Poisson’s
ratios is almost 0O, the retard factor is not studied.

To sum up this parametric study, for some materials, the creep Poisson’s(&ican
differ signi cantly from the relaxation Poisson'’s ratig(t) (see, e.g., the case of a mate-
rial whose both volumetric and deviatoric behaviors are governed by the Maxwell unit in
Fig. 3a). In contrast, for other materials, the difference can be negligible (see, e.g., the case
of a material whose both volumetric and deviatoric behaviors are governed by the Kelvin—
Voigt unit in Fig. 3d). For all cases considered, the characteristic differencbetween the
two Poisson’s ratios lies in the ran#®0.3, 0.3]. In terms of kinetics, the creep Poisson’s
ratio .(t) always evolves slower than the relaxation Poisson’s ra{iy: for all cases for
which the difference between the two Poisson’s ratios is not negligible, the retardffactor
that we introduced is always comprised in the rafigé4, 2.09].

4 Discussions

This section discusses the difference between the two Poisson’s rataosl ., rstin
practice in the case of multiaxial creep tests on cementitious materials, and then with respect
to the elastic—viscoelastic correspondence principle (Christet3&2. A brief conclusion

on the different usage of the two Poisson’s ratios is drawn at the end of this latter section, in
which the in uence of the duration of the loading phase on the creep strains is also discussed.

4.1 Poisson’s ratio from multiaxial creep tests on cementitious materials

In order to compare the two Poisson’s ratipsand . in practice, we consider cementitious
materials (i.e., cement paste, mortar, and concrete), for which multiaxial creep tests are avail-
able in Gopalakrishnan et all969, Jordaan and lllson1969, Parrott (974, Kennedy
(1979, Neville et al. 1983, Bernard et al.Z003, Kim et al. 005. The tests here consid-
ered characterize the so-called “basic” creep of the cementitious materials (N&dbg
which is measured in absence of any hydric transfer and to which any time-dependent de-
formation observed on a nonloaded specimen (i.e., autogenous shrinkage) is subtracted.
We consider that the coordinate frame is oriented in the principal directions, which are
numbered from 1 to 3. The principal stresses and strains in those principal directions are de-
noted ;(t) and ;(t), respectively, with = 1, 2, 3. For a multiaxial creep test, the stresses
are kept constant over time, that is(t) = io. For such a test, the linearity of the material
makes it possible to extend Eq2a) and (L0) to nd out the viscoelastic stress—strain rela-
tions valid in the case of multiaxial solicitation, expressed in terms of either the relaxation
Poisson’s ratio  (t) or the creep Poisson’s ratig(t):

i(t)= Je() 0S5 (jo+ «) ((t) Je(t), wherei =j =k {1,23}, (24a)
i(t)= Je() 10S (jo+ «) c(t)Je(t), wherei =j =k { 1,23} (24b)

Here, we consider experimental results available in the literature (se®)Fignd by
using Egs. 249 and @4b) we compute the experimental values of the Poisson’s ratios
and .. The details of the computation are given in AppenBixNote that the Poisson’s
ratios displayed on Figga—c exhibit very different trends over time: some increase, one
decreases, and one remains constant. For such a variety of cases, we compare the relaxation
and creep Poisson’s ratios with each other.
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Fig. 5 Experimental data of multiaxial creep experiments on cementitious mateapBiakial creep test

on cubic concrete sample (Jordaan and 1118869; (b) Uniaxial creep test on a cuboid sample of cement
paste (Parrotl974); (c) Triaxial creep tests on cylindrical specimens of leached cement paste and mortar
(Bernard et al2003

Figure 5a displays results of a biaxial creep test on a cubic concrete sample (Jordaan
and lllson1969. The two Poisson’s ratios reach their asymptotic value in less than 10 days,
during which they vary by about@04. The difference between them is smaller th&®02,
which is negligible: they can be considered as equal to each other. Note that such a trend
of almost constant Poisson’s ratios is observed with other experimental data on concrete
available in the literature (i.e., namely the data in Kenng@ly5 Stockl et al.1989 Kim
et al. 2009: with such data, relaxation and creep Poisson’s ratio can again be considered
as equal to each other. The results from a uniaxial creep test on a cuboid sample of cement
paste (Parrot1974 are displayed in Fighb. Both Poisson’s ratios decrease by aba060
in about a dozen of days. The difference between the two Poisson’s ratios is always smaller
than 0004, which, depending on the applications, can be considered as negligible or not.
The last case displayed in Fifc is that of triaxial creep tests on cylindrical specimens of
leached cement paste and mortar (Bernard &04l3. In this last case, the Poisson’s ratios
are increasing functions of time and vary by abod7 for the cement paste specimen and
by about 0218 for the mortar speciménHere, the difference between the two Poisson’s
ratios can be as large as0Q7 for the cement paste specimen and26 for the mortar

1Bernard et al.Z003 reported only creep strains. We estimated the elastic strains that are necessary for the
computation of the creep Poisson’s ratio by considering the Young’s modulus equal to 0.7 MPa and the elastic
Poisson’s ratio equal to.®4 for the leached cement paste, the Young’s modulus equal to 0.5 MPa and the
elastic Poisson’s ratio equal ta2@ for mortar (Heukam@003 Bellégo2001).
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specimen: for those specimens, the difference between the relaxation Poisson’s ratio and
the creep Poisson’s ratio is no more negligible. From this back-analysis of creep tests on
cementitious materials we conclude that if the Poisson'’s ratios vary little over time, then the
difference between the relaxation Poisson’s ratio and the creep Poisson’s ratio is negligible.
In contrast, when the Poisson’s ratios vary signi cantly over time, the difference between the
two Poisson’s ratios can be no more negligible: whether this difference must be taken into
accountin practice needs to be assessed case by case, that is, for each application considered.
The signi cance of the difference between the two Poisson’s ratios must also be assessed
by keeping in mind the accuracy of the measurement of creep strains, which results from the
accuracy of strain gauges and of temperature control. For instance, the accuracy of the strain
gauges that were used in the biaxial creep test reported on concrete sample (§¢ Fig.
is 1x 10°% (Jordaan and lllsoi969: this accuracy leads to an uncertainty on the creep
Poisson’s ratio of about.002, which is ten times larger than the difference between the
two Poisson’s ratios in that experiment. The temperature was controlled with an accuracy of
+1 °C in that experiment. Considering a thermal dilatation coef cient ab¥410°% K>!
for concrete, uncorrected variations of temperatures would lead to an uncertainty on the mea-
sured strain that would be 15 times larger than the accuracy of the strain gauges. However,
in that experiment, variations of temperature were corrected so that the uncertainty induced
by variations of temperatures would be much smaller than 15 times the accuracy of the
strain gauges, although probably nonnegligible. Also, what concerns the uniaxial creep test
reported on cement paste (see Fig), for which the accuracy of the strain gauges they used
was 3x 10°6 (Parrott1974), we found an uncertainty on the creep Poisson’s ratio of about
0.003, which is of the same order of magnitude as the maximum difference between the two
Poisson’s ratios in that experiment. In contrast, what concerns the experiments performed on
leached specimens (see Fig), since the strains are about two orders of magnitude greater
than the strains in the experiments displayed in FsgsandSb, the uncertainty on the Pois-
son’s ratio becomes truly negligible: with respect to this uncertainty, the difference between
the creep and relaxation Poisson’s ratios in that experiment is signi cant.

4.2 The elastic—viscoelastic correspondence principle

For an isotropic elastic material with bulk modulds and shear modulu§,, the stress—
strain relations read

v=Ko v, (25a)
S = ZGQQJ' . (25b)

We observe that these elastic relations are analogous to the viscoelastic stress—strain re-
lations @d), (3b) and @a), (4b). In fact, we could have inferred these latter viscoelastic
stress—strain relations in the Laplace domain directly from the elastic stress—strain rela-
tions 259, (25b) simply by replacing all elastic coef cients by treemultiplied Laplace
transform (also called the Carson transform) of their corresponding viscoelastic relaxation
functions (Tschoegl et a2002).

In terms of Poisson’s ratio, for an isotropic elastic material, we have the following relation

3Ko S 2Go

07 2(3Ko+ Go)’

(26)

We observe that applying the correspondence principle to this equation makes it possible to
retrieve Eq. 8) if one replaces the elastic Poisson’s ratjowith the s-multiplied Laplace
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transform of the relaxation Poisson’s ratig(t). Therefore, we infer that the correspond-
ing viscoelastic operator of the elastic Poisson’s ratio is the relaxation Poisson’s f&tio

and not the creep Poisson’s ratigt); in other words, the correspondence principle can be
applied to elastic relations that involve the Poisson’s ratio if this latter is replaced with the
s-multiplied Laplace transforns (s) of the relaxation Poisson’s ratig (t) in the corre-
sponding viscoelastic equation.

The validity of correspondence principle is due to the fact that the viscoelastic relations
are “of the convolution type whose integral transforms lead to algebraic relations similar to
the elastic ones” (Hilto2001). Considering the speci c example of a uniaxial creep test, we
observe that the lateral strair(t) and the axial strain,(t) can be related through the use of
either the relaxation Poisson’s ratig(t) or the creep Poisson’s ratig(t) through Eqs.10)
or (2a), respectively. Of those two equations, the former involves a convolution, whereas the
latter does not, which shows that the correspondence principle is not applicable to the creep
Poisson’s ratio ¢, as already noted by Hiltor2001 2009 2011 and Tschoegl et al2002).

Note that Lakes and Winemag@06 found a relationship between the two Poisson’s ratios

r and . that differs from that given in Eq1({). We believe that their equation is not valid
and that the error in their derivation stems from the fact that they applied the correspondence
principle not only to the relaxation Poisson’s ratio(which is valid), but also to the creep
Poisson’s ratio . (which is not valid) (Tschoegl et a2002. This example shows that we
can easily get confused in how to manipulate the various Poisson’s ratios that can be de ned;
in consequence, in the generic case, to perform a viscoelastic characterization, avoiding as
much as possible the use of viscoelastic Poisson’s ratios and restricting oneself to the use of
creep compliances and relaxation moduli seems to be a wise choice.

Since the relaxation Poisson’s ratip is the only Poisson’s ratio to which the corre-
spondence principle can be applied, solving viscoelastic problems analytically can be per-
formed much more easily by using the relaxation Poisson’s ratio rather than the creep
Poisson’s ratio. In contrast, since the relationship between the creep Poisson’s;ratio
and the time-dependent strains does not involve any convolution (se@4Hi).if com-
parison with Eq. 249), back-calculating the creep Poisson’s ratio from experimental
data is more straightforward than back-calculating the relaxation Poisson’s ratio. This
is the reason why, when experimentalists report a Poisson’s ratio, they almost exclu-
sively report the creep Poisson’s ratio (see, e.g., Benboudp@03 Torrenti et al.2014
Hilaire 2014).

For a uniaxial experiment performed on an elastic material, the lateral straiftinked
to the axial strain 5 through | =S (/E) ,. Based on this elastic relation, the fact that
the correspondence principle is applicable to the relaxation Poisson’s ratio makes it possible
to derive how, for a uniaxial experiment with a generic load histqiff) performed on a
viscoelastic solid, the lateral strain(t) must evolve over time. Thus, we nd that, in the
Laplace domain, the following relation holds:

1=S's r(SJE a)- (27)

This relation can be translated back into the time domain:

d

M =S () gr EO 0O - (28)

Thus, for a uniaxial experiment with a generic load history, we can use the relaxation Pois-
son’s ratio to calculate the evolution of the lateral strain over time. Note that we did not
succeed in deriving such an equation based on the creep Poisson’s ratio, which is a direct
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consequence of the fact that the correspondence principle cannot be applied to the creep
Poisson’s ratio.

For triaxial loadings with a generic load history, starting from Eb) énd £8), using
the principle of superposition makes it possible to derive the following equation:

(=) (S () %JE(I) [O+ () wherei =j =k { 1,23},

(29)
which is a direct extension of Eq24g. Thus, if we know the uniaxial creep compliance
and the relaxation Poisson’s ratio of the material, this equation makes it possible to predict
the evolution of the principal strains over time from the history of the triaxial stresses. Note
that, again, we did not succeed in deriving such an equation based on the creep Poisson’s
ratio.

4.3 In uence of duration of loading phase on apparent creep Poisson’s ratio

In order to identify the creep Poisson’s ratio, we may want to perform a creep experiment
and calculate the rati6 ((t)/ A(t) of the lateral dilation to the axial contraction measured
during the creep phase. By doing so, we identify a time-dependent function to which we will
refer as to an “apparent” creep Poisson’s ratio since, in practice, for any creep experiment,
the duration of the loading phase is nite, whereas the creep Poisson’s ratio was de ned with
respect to a creep experiment with an instantaneous loading (se2dgq.Therefore, we

can wonder by how much an apparent creep Poisson’s ratio identi ed on an actual creep ex-
periment differs from the creep Poisson’s ratio of the material. The study of such a difference
is the focus of this section.

To study this difference, we consider two virtual materials whose rheological behaviors
are those described in Figka andl1b in the speci c case wherec  + . Therefore, the
volumetric behavior of the two virtual materials is elastic since they only creep deviatori-
cally. The deviatoric behavior of the rst virtual material is governed by the Maxwell unit
(see Figla), whereas the deviatoric behavior of the second virtual material is governed by
the Kelvin—Voigt unit (see Figlb). Their characteristic viscous time ig = /G g. The
elastic stiffnesses are chosen such that the elastic Poisson’s ratre &2.

On each of those two materials, we consider creep experiments in which the load is in-
creased linearly over time in a duration, after which the load is kept constant. For various
durations | of the loading phase, Fi@.displays what the ratio of the lateral dilation to the
axial contraction is, together with the creep Poisson’s ratio of the material. We observe that
the apparent creep Poisson’s ratio differs from the creep Poisson'’s ratio: the slower the load-
ing, the greater this difference. Also, this difference is maximum at the end of the loading
phase (i.e., at the dimensionless tithe, = 1), but we note that this difference is signi -
cant only for times that are smaller than about 10 times the duration of the loading phase:
at times greater than 10 times the duration of the loading phase, the difference between the
creep Poisson’s ratio and the apparent creep Poisson’s ratio is negligible.

In conclusion, if we aim at identifying the creep Poisson’s ratio as the &tjt)/ a(t)
of a lateral dilation to an axial contraction measured during the creep phase of an actual
creep experiment, we will commit some error. However, the difference between the creep
Poisson’s ratio and the apparent one may only be signi cant for times smaller than about 10
times the duration of the loading phase; for larger times, this difference will be negligible.
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Fig. 6 Ratio S |(t)/ a(t) of the lateral to the axial strairblack line§ observed during creep experi-
ments with various durationg of the loading phase, and creep Poisson’s ragidgray lineg for a ma-
terial that creeps deviatorically and whose deviatoric creep behavior is modelajithg (Maxwell unit or
(b) the Kelvin—Voigt unit

5 Conclusions

Two time-dependent Poisson’s ratios are de ned for linear viscoelastic materials: the relax-
ation Poisson’s ratio; (t) and the creep Poisson’s ratig(t) . Those two Poisson’s ratios are

de ned with respect to creep or relaxation experiments with an instantaneous loading. The
following conclusions are drawn on their differences, in both theory and practice:

— Those two Poisson’s ratios are not equal to each other. They can be expressed as functions
of the creep compliances and relaxation moduli and are linked to each other through the
exact expressiori(l).

— At the initial time of loading, both Poisson’s ratios are equal to the elastic Poisson’s ratio.
Their long-time asymptotic values are identical. Their initial derivatives with respect to
time are also identical, and so are their long-time asymptotic derivatives.

— The parametric study of virtual materials based on simple rheological models indicates
that the two Poisson'’s ratios can differ signi cantly from each other. The maximum char-
acteristic difference  between them at a given time can be as large.asThe creep
Poisson’s ratio evolves slower than the relaxation Poisson’s ratio by a retardffactor
which is in the rang§1.44, 2.08].

— A study of multiaxial creep data on cementitious materials showed that if the Poisson’s
ratios vary little over time, then their difference is negligible. When the Poisson’s ratios
vary signi cantly over time, whether their difference must be taken into account in prac-
tice should be assessed with respect to the application considered. The signi cance of the
difference must also be assessed by keeping in mind the accuracy of the measurement of
creep strains.

— The use of each of the two Poisson’s ratios is of interest: solving viscoelastic problems
analytically can be performed much more easily by using the relaxation Poisson’s ratio
rather than the creep Poisson’s ratio since the elastic—viscoelastic correspondence princi-
ple is applicable to this former parameter; in contrast, back-calculating the creep Poisson’s
ratio from experimental data is more straightforward than back-calculating the relaxation
Poisson’s ratio.

— For materials subjected to a triaxial loading, even if the load history is generic, from the
uniaxial creep compliancé: (t) and the relaxation Poisson'’s ratig(t) we can calculate
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the evolution of the principal strains over time (see E§))X. However, given all confu-

sion in the literature on how to manipulate viscoelastic Poisson’s ratios, in the generic
case, a wise choice to perform viscoelastic characterization or analytical calculations in
viscoelasticity is to restrict oneself to the use of unambiguously de ned creep compli-
ances and relaxation moduli.

— The creep Poisson’s ratio was de ned on a creep experiment with an instantaneous load-
ing. If the loading phase of the creep experiment is not instantaneous (which is the case
in practice), then the ratio of the lateral dilation to the axial contraction during the creep
phase differs from the creep Poisson’s ratio. This difference may be signi cant only for
times that are smaller than about 10 times the duration of the loading phase.

We calculated how the relaxation and creep Poisson’s ratios of cementitious materials
evolved over time. The analysis of those parameters could be translated in terms of volu-
metric and deviatoric creep behaviors, thus paving the way for a more rational choice of
creep models for those materials.
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Appendix A: Relaxation and creep Poisson’s ratios in rheological models

This section is devoted to present an analytical expression of the relaxation Poisson;s ratio
and the creep Poisson’s ratipbased on the rheological models that are presented il Fig.
For a material whose both volumetric and deviatoric behaviors are governed by the Maxwell
units (see Figla), the Poisson’s ratios read as follows:

=5 (Go+ 3Ko)(2 653 k) + I cKoS «Go)exp(S Selerudy)
2( et 3 K)(G0+ 3K0) ’
= 6 k(2GoS 3Ko) + GoKo(2 ¢ S 3 k)t

t)=S
(V) 6 k(Go+ 3Kp) + GoKo( ¢+ 3 k)t

(30)

(€1

For a material whose volumetric and deviatoric behaviors are governed by the Maxwell
unit and the Kelvin—\Voigt unit, respectively (see Fidp), the Poisson’s ratios are expressed
as follows:

Ko
2(Go + 3Ko)

2 kGoS 6 Ko+ 2GoKot + 3 KKoeXF(é G—gt)
2( kGo+ 6 Ko+ GoKoté 3 KKoeXFng_Got))x

() =S 1+ exp(S qt) cosi{ ot)+ zsinh( t) , (32)

() =S

(33)

where the parameters;, ,, 3 are functions 0Ky, Go, «, &:

_ Go(BKo k + Ko+ Go k)
2 ¢ k(Go+ 3Ky) '

1

G2(36 2KZ+ 12 2GoKo+ 2K2S2 g kGoKo+ ZG32)
2 ¢ k(Go+ 3Kp) '
(3 kGo+ 6 kKoS cKo)
(36 2K2+ 12 2GoKo+ 2KZS2 ¢ GoKo+ 2G2)
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For a material whose volumetric and deviatoric behaviors are governed by the Kelvin—
Voigt unit and the Maxwell unit, respectively (see Fitg), the Poisson’s ratios read as
follows:

_ 1. 3G . o
)= 35 3G+ aKg) OXHE ) cosil S esini( s, (39)
3 cKoS 4 ¢Go+ 3KoGot + 2 cGoexpS K_KOt)

1) = — ~ '
<V 2(3 Ko+ 2 6Go+ 3KoGot S cGoexp($ Xot)

(36)

where the parameters,, s, ¢ are functions 0Ky, Go, «, &:

_ Ko(BKg ¢+ 3 kGo+ 2Gg ¢)
2 g k(Go+ 3Ky)

4

K2(9 2K2S 18 ¢ gKoGo+ 12 ZKoGo+ 9 2G2+ 4 2G2)
2 ¢ k(Go+ 3Ky) '

Ko(3 kGoS 9 Ko S 2 5Go)
Kg(g éKéé 18 k cKgGo+ 12 éKoGo"’ 9 &G(%'F 4 éGg)

6=

For a material whose both volumetric and deviatoric behaviors are governed by the
Kelvin—Voigt units (see Figld), the Poisson’s ratios read as follows:

3KO é 2GO 9K0G0 ) . 3
+ expS t)sinh ————= |
2(3Ko+ Go)  3Ko+ Go PSR ) k c(BKo+ Go)
© 6Ko S 4G, S 3Koexp(S 5ot) + 2Goexp(S ot)
t) = _ _ i} > ,
c 2(6Ko+ 2Go S 3Koexp(S “2t) § Goexp(S 0t))

f(t) = (38)

(39)

where the parameters,, s, ¢ are functions 0Ky, Go, «, &:
_ 3K§ e+ 6KoGp k + Gg k + 2KoGo ¢
2 k 6(3Ko+ Go) ’
8= gKg 4G§ 36K0360 K Gé 18KgGS Kk ¢t IZKSGO é

7

+ 36K3G3 2 + 12KoG3 2 + Gj 2 S 4KoG3 « o + 4K3G3 2,
_ Gok SKo g

8

9

Appendix B: Calculation of the two Poisson’s ratios
from the experimental results

This section is devoted to present how the relaxation Poisson’s ra#ind the creep Pois-
son’s ratio . are calculated from the experimental results. By using E4b)(the creep
Poisson’s ratio ¢(t) and the uniaxial creep compliande are computed directly from the
experimental measurement of principals straip@), »(t), 3(t) and applied stress val-
ues 10, 20, 30- Then, to the experimental values of the uniaxial creep complidadbe
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following analytical expression is tted:

.t
Je(t)= at+ o+ zexp S— (41)
1

where 1, ,, 3, and ;are tted parameters.
Further, in order to capture the asymptotic behavior of the Poisson’s ratio, we assumed
that the relaxation Poisson’s ratip(t) has the exponential form

_t
()= ¢+ oexp S—0 , (42)

where ¢, o, and o are parameters to t.

Substituting Egs.41) and @2) into Eq. (L7), the creep Poisson’s ratiq is computed
analytically. By changing the parameteks o, and ¢ in Eq. 42), a best t that gives the
minimum variance for the tted creep Poisson’s ratjois obtained.
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