A. Redondo and J. G. Beery, Thermal conductivity of optical coatings, Journal of Applied Physics, vol.51, issue.11, pp.3882-3885, 1986.
DOI : 10.1016/0030-4018(84)90277-3

R. Papitha, . Suresh, R. Das, and . Johnson, Effect of micro-cracking on the thermal conductivity and thermal expansion of tialite (Al2TiO5) ceramics, Processing and Application of Ceramics, vol.7, issue.3, pp.143-146, 2013.
DOI : 10.2298/PAC1303143P

J. R. Nicholls, K. J. Lawson, A. Johnstone, and D. S. Rickerby, Methods to reduce the thermal conductivity of EB-PVD TBCs, Surface and Coatings Technology, vol.151, issue.152, pp.383-391, 2002.
DOI : 10.1016/S0257-8972(01)01651-6

F. Cernuschi, S. Ahmaniemi, P. Vuoristo, and T. Mäntylä, Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, Journal of the European Ceramic Society, vol.24, issue.9, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.09.012

I. Sevostianov, M. Kachanov, J. Ruud, P. Lorraine, and M. Dubois, Quantitative characterization of microstructures of plasma-sprayed coatings and their conductive and elastic properties, Materials Science and Engineering A, vol.386, issue.1-2, pp.386-164, 2004.
DOI : 10.1016/S0921-5093(04)00924-4

T. J. Lu and J. W. Hutchinson, Thermal conductivity and expansion of cross-ply composites with matrix cracks, Journal of the Mechanics and Physics of Solids, vol.43, issue.8, p.43, 1995.
DOI : 10.1016/0022-5096(95)00033-F

L. Dao, P. Delage, A. Tang, Y. Cui, J. Pereira et al., Anisotropic thermal conductivity of natural Boom Clay, Anisotropic thermal conductivity of natural Boom Clay, pp.282-287, 2014.
DOI : 10.1016/j.clay.2014.09.003

URL : https://hal.archives-ouvertes.fr/hal-01111299

M. Bonnet, T. Burczy?ski, and M. Nowakowski, Sensitivity analysis for shape perturbation of cavity or internal crack using BIE and adjoint variable approach, International Journal of Solids and Structures, vol.39, issue.9, pp.2365-2385, 2002.
DOI : 10.1016/S0020-7683(02)00131-2

URL : https://hal.archives-ouvertes.fr/hal-00092387

M. Bonnet, Higher-order topological sensitivity for 2-D potential problems. Application to fast identification of inclusions, International Journal of Solids and Structures, vol.46, issue.11-12, pp.11-12, 2009.
DOI : 10.1016/j.ijsolstr.2009.01.021

URL : https://hal.archives-ouvertes.fr/hal-00495407

S. R. Stock, Recent advances in X-ray microtomography applied to materials, International Materials Reviews, vol.75, issue.189, pp.129-181, 2008.
DOI : 10.1359/jbmr.2003.18.8.1486

A. Pouya and M. Ghoreychi, Determination of rock mass strength properties by homogenization, International Journal for Numerical and Analytical Methods in Geomechanics, vol.15, issue.13, pp.1285-1303, 2001.
DOI : 10.1016/0022-5096(63)90036-X

URL : https://hal.archives-ouvertes.fr/hal-00576675

P. N. Saevik, I. Berre, M. Jakobsen, and M. Lien, A 3D Computational Study of Effective Medium Methods Applied to Fractured Media, Transport in Porous Media, pp.115-142, 2013.

I. I. Bogdanov, V. V. Mourzenko, J. F. Thovert, and P. M. Adler, Effective permeability of fractured porous media in steady state flow, Water Resources Research, vol.452, issue.1, pp.1-16, 2003.
DOI : 10.1098/rspa.1996.0091

V. V. Mourzenko, I. I. Bogdanov, J. F. Thovert, and P. M. Adler, Three-dimensional numerical simulation of single-phase transient compressible flows and well-tests in fractured formations, Mathematics and Computers in Simulation, vol.81, issue.10, pp.2270-2281, 2010.
DOI : 10.1016/j.matcom.2010.12.014

I. I. Bogdanov, V. V. Mourzenko, J. F. Thovert, and P. M. Adler, Effective permeability of fractured porous media with power-law distribution of fracture sizes, Physical Review E, vol.39, issue.3, p.36309, 2007.
DOI : 10.1103/PhysRevLett.27.1722

V. V. Mourzenko, J. F. Thovert, and P. M. Adler, Percolation and permeability of fracture networks in excavated damaged zones, Physical Review E, vol.86, issue.2, p.26312, 2012.
DOI : 10.1140/epje/i2002-10161-6

URL : https://hal.archives-ouvertes.fr/hal-01196684

C. A. Brebbia and J. Dominguez, Boundary Elements: An Introductory Course, Journal of Applied Mechanics, vol.58, issue.3, 1989.
DOI : 10.1115/1.2897280

M. Bonnet, Equations Intégrales et Éléments de Frontière, CNRS Editions/Eyrolles, 1995.

M. A. Atalay, E. D. Aydin, and M. Aydin, Multi-region heat conduction problems by boundary element method, International Journal of Heat and Mass Transfer, vol.47, issue.6-7, pp.47-1549, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.03.002

B. Shen, H. M. Kim, E. S. Park, T. K. Kim, M. W. Wuttke et al., Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials, Rock Mechanics and Rock Engineering, vol.42, issue.1, pp.135-151, 2013.
DOI : 10.1016/j.ijrmms.2005.03.003

A. Pouya and M. N. Vu, Numerical Modelling of Steady-State Flow in 2D Cracked Anisotropic Porous Media by Singular Integral Equations Method, Transport in Porous Media, vol.452, issue.10, pp.475-493, 2012.
DOI : 10.1098/rspa.1996.0091

URL : https://hal.archives-ouvertes.fr/hal-00790536

A. Pouya, Three-dimensional flow in fractured porous media: A potential solution based on singular integral equations, Advances in Water Resources, vol.35, pp.30-40, 2012.
DOI : 10.1016/j.advwatres.2011.10.009

URL : https://hal.archives-ouvertes.fr/hal-00668190

A. Pouya and M. Vu, Fluid flow and effective permeability of an infinite matrix containing disc-shaped cracks, Advances in Water Resources, vol.42, pp.37-46, 2012.
DOI : 10.1016/j.advwatres.2012.03.005

URL : https://hal.archives-ouvertes.fr/hal-00700099

M. N. Vu, Modélisation des écoulements dans des milieux poreux fracturés par la méthode des équations intégrales singulières

E. Charlaix, E. Guyon, and N. Rivier, A criterion for percolation threshold in a random array of plates, Solid State Communications, vol.50, issue.11, pp.999-1002, 1984.
DOI : 10.1016/0038-1098(84)90274-6

V. V. Mourzenko, J. F. Thovert, and P. M. Adler, Trace analysis for fracture networks with anisotropic orientations and heterogeneous distributions, Physical Review E, vol.83, issue.3, p.31104, 2011.
DOI : 10.1103/PhysRevE.57.4466

V. V. Mourzenko, J. F. Thovert, and P. M. Adler, Permeability of isotropic and anisotropic fracture networks, from the percolation threshold to very large densities, Physical Review E, vol.28, issue.3, p.36307, 2011.
DOI : 10.1239/aap/1246886615

I. Sevostianov, Thermal conductivity of a material containing cracks of arbitrary shape, International Journal of Engineering Science, vol.44, issue.8-9, pp.513-528, 2006.
DOI : 10.1016/j.ijengsci.2006.04.001

A. Giraud, C. Gruescu, D. P. Do, F. Homand, and D. Kondo, Effective thermal conductivity of transversely isotropic media with arbitrary oriented ellipso??dal inhomogeneities, International Journal of Solids and Structures, vol.44, issue.9, pp.2627-2647, 2007.
DOI : 10.1016/j.ijsolstr.2006.08.011

C. Gruescu, A. Giraud, F. Homand, D. Kondo, and D. P. Do, Effective thermal conductivity of partially saturated porous rocks, International Journal of Solids and Structures, vol.44, issue.3-4, pp.3-4, 2007.
DOI : 10.1016/j.ijsolstr.2006.05.023

URL : https://hal.archives-ouvertes.fr/hal-00142299

D. P. Do, Application des approches d'homogénéisation à l'étude des propriétés thermo hydro-mécaniques des roches. Application aux argilites, Institut National Polytechnique de Lorraine (INPL), 2008.

Q. D. To and G. Bonnet, A numerical-analytical coupling computational method for homogenization of effective thermal conductivity of periodic composites, Asia Pacific Journal on Computational Engineering, vol.1, issue.1, p.5, 2014.
DOI : 10.1016/j.jmps.2006.11.007

URL : https://hal.archives-ouvertes.fr/hal-01066861

Q. D. To, G. Bonnet, and V. T. To, Closed-form solutions for the effective conductivity of twophase periodic composites with spherical inclusions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, p.469, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00764368

S. T. Nguyen, Micromechanical approach for electrical resistivity and conductivity of sandstone, Journal of Applied Geophysics, vol.111, pp.135-140, 2014.
DOI : 10.1016/j.jappgeo.2014.10.001

Y. Chen, S. Zhou, R. Hu, and C. Zhou, Estimating effective thermal conductivity of unsatur ated bentonites with consideration of coupled thermo -hydro-mechanical effects, Int. J. Heat Mass Transf, pp.72-656, 2014.

S. T. Nguyen, L. Dormieux, L. E. Yann, and J. Sanahuja, A Burger Model for the Effective Behavior of a Microcracked Viscoelastic Solid, International Journal of Damage Mechanics, vol.316, issue.8, pp.1116-1129, 2011.
DOI : 10.1016/j.ijsolstr.2006.04.038

S. T. Nguyen, Generalized Kelvin model for micro-cracked viscoelastic materials, Engineering Fracture Mechanics, vol.127, pp.226-234, 2014.
DOI : 10.1016/j.engfracmech.2014.06.010

A. Sutradhar, H. P. Glaucio, and J. G. Leonard, Symmetric Galerkin Boundary Element Method, 2008.

H. D. Bui, Mécanique de la rupture fragile, 1978.

J. T. Guidera and R. W. Lardner, Penny-shaped cracks, Journal of Elasticity, vol.135, issue.1, pp.59-73, 1975.
DOI : 10.1016/S0081-1947(08)60703-1

M. Abramowitz and I. A. Stegun, The Process of the Arithmetic-Geometric Mean, §17.6 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, pp.598-599, 1972.

R. Mclaughlin, A study of the differential scheme for composite materials, International Journal of Engineering Science, vol.15, issue.4, pp.237-244, 1977.
DOI : 10.1016/0020-7225(77)90058-1

A. N. Norris, A differential scheme for the effective moduli of composites, Mechanics of Materials, vol.4, issue.1, pp.1-16, 1985.
DOI : 10.1016/0167-6636(85)90002-X

B. Shafiro and M. Kachanov, Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes, Journal of Applied Physics, vol.106, issue.5, pp.8561-8569, 2000.
DOI : 10.1023/A:1018345702490

Y. Liu, Fast Multipole Boundary Element Method: Theory and Applications in Engineering, 2009.
DOI : 10.1017/CBO9780511605345