L. Lassaletta, G. Billen, B. Grizzetti, J. Anglade, and J. Garnier, 50 year trends in 513 nitrogen use efficiency of world cropping systems: the relationship between 514 yield and nitrogen input to cropland, Environmental Research Letters, vol.9, pp.515-105011, 2014.

R. T. Conant, A. B. Berdanier, and P. Grace, Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture, Global Biogeochemical Cycles, vol.99, issue.12, pp.558-566, 2013.
DOI : 10.1073/pnas.122235999

F. Brouwer, Nitrogen balances at farm level as a tool to monitor effects of 524 agri-environmental policy, Nutrient Cycling in Agroecosystems, vol.52, issue.2/3, pp.303-308, 1998.
DOI : 10.1023/A:1009783302364

X. Zhang, D. L. Mauzerall, E. A. Davidson, D. R. Kanter, and R. Cai, The Economic and Environmental Consequences of Implementing Nitrogen-Efficient Technologies and Management Practices in Agriculture, Journal of Environment Quality, vol.44, issue.2, pp.312-324, 2015.
DOI : 10.2134/jeq2014.03.0129

C. Snyder, E. Davidson, P. Smith, and R. Venterea, Agriculture: sustainable crop and animal production to help mitigate nitrous oxide emissions, Current Opinion in Environmental Sustainability, vol.9, issue.10, pp.46-54, 2014.
DOI : 10.1016/j.cosust.2014.07.005

URL : https://doi.org/10.1016/j.cosust.2014.07.005

. World-bank and . Group, World Development Indicators 2012, 2012.
DOI : 10.1596/978-0-8213-8985-0

L. Lassaletta, Food and feed trade as a driver in the global nitrogen cycle: 50-year trends, Biogeochemistry, vol.363, issue.1-3, pp.225-241, 2014.
DOI : 10.1098/rstb.2007.2167

URL : https://hal.archives-ouvertes.fr/hal-01194826

P. Heffer, Assessment of fertilizer use by crop at the global level. International 543 Fertilizer Industry Association, p.544

/. Page and . Library, Publication-database. html/Assessment-of-Fertilizer-Use-by- 545 Crop-at-the-Global-Level, 2006.

C. Monfreda, N. Ramankutty, and J. A. Foley, Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000, Global Biogeochemical Cycles, vol.90, issue.3, 2008.
DOI : 10.1016/j.agsy.2006.01.008

D. F. Herridge, M. B. Peoples, and R. M. Boddey, Global inputs of biological nitrogen fixation in agricultural systems, Plant and Soil, vol.22, issue.1-2, pp.1-18, 2008.
DOI : 10.1016/j.soilbio.2005.05.011

K. Jayanthakumaran, R. Verma, and Y. Liu, CO 2 emissions, energy 553 consumption, trade and income: a comparative analysis of China and India, Energy Policy, vol.554, issue.42, pp.450-460, 2012.

J. He and H. Wang, Economic structure, development policy and environmental quality: An empirical analysis of environmental Kuznets curves with Chinese municipal data, Ecological Economics, vol.76, pp.49-59, 2012.
DOI : 10.1016/j.ecolecon.2012.01.014

U. Al-mulali, B. Saboori, and I. Ozturk, Investigating the environmental Kuznets curve hypothesis in Vietnam, Energy Policy, vol.76, pp.123-131, 2015.
DOI : 10.1016/j.enpol.2014.11.019

M. S. Alam and N. Kabir, Economic Growth and Environmental Sustainability: Empirical Evidence from East and South-East Asia, International Journal of Economics and Finance, vol.5, issue.2, 2013.
DOI : 10.5539/ijef.v5n2p86

X. Diao, S. Zeng, C. M. Tam, and V. W. Tam, EKC analysis for studying economic 564 growth and environmental quality: a case study in China, Journal of Cleaner, vol.565, issue.17, pp.541-548, 2009.

M. Song, W. Zhang, and S. Wang, Inflection point of environmental Kuznets curve in Mainland China, Energy Policy, vol.57, pp.14-20, 2013.
DOI : 10.1016/j.enpol.2012.04.036

M. Wagner, The carbon Kuznets curve: A cloudy picture emitted by bad econometrics?, Resource and Energy Economics, vol.30, issue.3, pp.388-408, 2008.
DOI : 10.1016/j.reseneeco.2007.11.001

G. Müller-fürstenberger and M. Wagner, Exploring the environmental Kuznets hypothesis: Theoretical and econometric problems, Ecological Economics, vol.62, issue.3-4, pp.648-660, 2007.
DOI : 10.1016/j.ecolecon.2006.08.005

G. C. Chow and J. Li, Environmental Kuznets Curve, Pacific Economic Review, vol.19, pp.1-7, 2014.
DOI : 10.1142/9789814390408_0010

M. H. Pesaran, Y. Shin, and R. J. Smith, Bounds testing approaches to the analysis of level relationships, Journal of Applied Econometrics, vol.52, issue.3, pp.289-326, 2001.
DOI : 10.1080/01621459.1988.10478707

M. Wagner, The environmental Kuznets curve, cointegration and 579 nonlinearity, Journal of Applied Econometrics, 2014.
DOI : 10.1002/jae.2421

M. Wagner and S. H. Hong, Cointegrating Polynomial Regressions: Fully 581
DOI : 10.1017/s0266466615000213

URL : http://irihs.ihs.ac.at/2047/1/es-264.pdf

D. I. Stern, The Rise and Fall of the Environmental Kuznets Curve, World Development, vol.32, issue.8, pp.1419-1439004, 2004.
DOI : 10.1016/j.worlddev.2004.03.004

T. A. Cavlovic, K. H. Baker, R. P. Berrens, and K. Gawande, A Meta-Analysis of Environmental Kuznets Curve Studies, Agricultural and Resource Economics Review, vol.34, issue.01, pp.32-42, 2000.
DOI : 10.2307/3146990

M. A. Sutton, The European Nitrogen Assessment, 2011.
DOI : 10.1017/CBO9780511976988

H. Van-grinsven, Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study, Biogeosciences, vol.9, issue.12, pp.5143-5160, 2012.
DOI : 10.5194/bg-9-5143-2012

H. J. Van-grinsven, Losses of Ammonia and Nitrate from Agriculture and 593 Their Effect on Nitrogen Recovery in the European Union and the United 594 States between 1900 and 2050, J. Environ. Qual, 2015.

R. B. Ferguson, Groundwater Quality and Nitrogen Use Efficiency in 596 Nebraska's Central Platte River Valley, J. Environ. Qual, 2014.
DOI : 10.2134/jeq2014.02.0085

URL : https://dl.sciencesocieties.org/publications/jeq/pdfs/44/2/449

D. L. Osmond, D. L. Hoag, A. E. Luloff, D. W. Meals, and K. Neas, Farmers' Use of 598 Nutrient Management: Lessons from Watershed Case Studies, J. Environ, vol.599, 2014.

M. R. Perez, Regulating Farmer Nutrient Management: A Three-State Case Study on the Delmarva Peninsula, Journal of Environment Quality, vol.44, issue.2, pp.402-414, 2015.
DOI : 10.2134/jeq2014.07.0304

E. Davidson, J. Galloway, N. Millar, and A. Leach, N-related greenhouse gases in 607 North America: innovations for a sustainable future. Current Opinion in 608, Environmental Sustainability, vol.9, pp.1-8, 2014.

J. E. Sawyer, Concepts and Rationale for Regional Nitrogen Rate 610 Guidelines for Corn, 2006.

G. P. Robertson and P. M. Vitousek, Nitrogen in Agriculture: Balancing the Cost of an Essential Resource, Annual Review of Environment and Resources, vol.34, issue.1, pp.97-125, 2009.
DOI : 10.1146/annurev.environ.032108.105046

T. D. Setiyono, Maize-N: A Decision Tool for Nitrogen Management in Maize, Agronomy Journal, vol.103, issue.4, p.615
DOI : 10.2134/agronj2011.0053

Y. Li, An Analysis of China???s Fertilizer Policies: Impacts on the Industry, Food Security, and the Environment, Journal of Environment Quality, vol.42, issue.4, pp.972-981, 2013.
DOI : 10.2134/jeq2012.0465

X. Ju, C. Kou, P. Christie, Z. Dou, and F. Zhang, Changes in the soil environment 619 from excessive application of fertilizers and manures to two contrasting 620 intensive cropping systems on the North China Plain, Environ. Pollut, vol.145, pp.621-497, 2007.

J. E. Hickman, K. L. Tully, P. M. Groffman, W. Diru, and C. A. Palm, A potential 623 tipping point in tropical agriculture: Avoiding rapid increases in nitrous 624 oxide fluxes from agricultural intensification in Kenya, Journal of Geophysical Biogeosciences, vol.625, 2015.

J. E. Hickman, M. Havlikova, C. Kroeze, and C. A. Palm, Current and future 627 nitrous oxide emissions from African agriculture. Current Opinion in 628, Environmental Sustainability, vol.3, pp.370-378, 2011.
DOI : 10.1016/j.cosust.2011.08.001

M. Zhou, Regional nitrogen budget of the Lake Victoria Basin, p.630

T. S. Jayne and S. Rashid, Input subsidy programs in sub-Saharan Africa: a synthesis of recent evidence, Agricultural Economics, vol.36, issue.4, pp.547-562, 2013.
DOI : 10.1016/j.foodpol.2011.09.001

G. Billen, L. Lassaletta, and J. Garnier, A vast range of opportunities for feeding the world in 2050: trade-off between diet, N contamination and international trade, Environmental Research Letters, vol.10, issue.2, p.25001, 2015.
DOI : 10.1088/1748-9326/10/2/025001

URL : https://hal.archives-ouvertes.fr/hal-01194904

P. Heffer, Assessment of fertilizer use by crop at the global level 2010- 638 2010/11. International Fertilizer Industry Association, 2013.

W. Shi, J. Yao, and F. Yan, Vegetable cultivation under greenhouse 642 conditions leads to rapid accumulation of nutrients, acidification and salinity 643 of soils and groundwater contamination in South-Eastern China, Nutr. Cycl, p.644

X. Ju, Reducing environmental risk by improving N management in 646 intensive Chinese agricultural systems, Proceedings of the National Academy Sciences, vol.647, issue.106, pp.3041-3046, 2009.
DOI : 10.1073/pnas.0813417106

URL : http://www.pnas.org/content/106/9/3041.full.pdf

L. E. Drinkwater, P. Wagoner, and M. Sarrantonio, Legume-based cropping systems have reduced carbon and nitrogen losses, Nature, vol.88, issue.6708, pp.262-265, 1998.
DOI : 10.2134/agronj1996.00021962008800020023x

T. Searchinger, Creating a Sustainable Food Future: A Menu of Solutions 652 to Sustainably Feed More than 9 Billion People by 2050, World Resources, vol.653, 2013.

B. L. Bodirsky, Reactive nitrogen requirements to feed the world in 655 2050 and potential to mitigate nitrogen pollution, Nature communications, vol.5, p.656, 2014.

D. Tilman, C. Balzer, J. Hill, and B. L. Befort, Global food demand and the sustainable intensification of agriculture, Proceedings of the National Academy of Sciences, vol.88, issue.1, pp.20260-2026410, 2011.
DOI : 10.1007/s10705-008-9200-4

W. De-vries, J. Kros, C. Kroeze, and S. P. Seitzinger, Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts, Current Opinion in Environmental Sustainability, vol.5, issue.3-4, pp.392-402, 2013.
DOI : 10.1016/j.cosust.2013.07.004

N. Nakicenovic and R. Swart, Special report on emissions scenarios, p.666

D. J. Mulla, Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps, Biosystems Engineering, vol.114, issue.4, pp.358-371, 2013.
DOI : 10.1016/j.biosystemseng.2012.08.009

M. B. David, Navigating the socio-bio-geo-chemistry and engineering of 671 nitrogen management in two Illinois tile-drained watersheds, J. Environ. Qual, p.672, 2014.

C. Weber and L. Mccann, Adoption of Nitrogen-Efficient Technologies by US 674 Corn Farmers, J. Environ. Qual, 2014.

J. Powell, C. Gourley, C. Rotz, and D. Weaver, Nitrogen use efficiency: A 676 potential performance indicator and policy tool for dairy farms. 677 environmental science & policy 13, pp.217-228, 2010.
DOI : 10.1016/j.envsci.2010.03.007

J. Powell and C. Rotz, Measures of Nitrogen Use Efficiency and Nitrogen Loss from Dairy Production Systems, Journal of Environment Quality, vol.44, issue.2, pp.336-344, 2015.
DOI : 10.2134/jeq2014.07.0299

G. K. Macdonald, E. M. Bennett, P. A. Potter, and N. Ramankutty, Agronomic 681 phosphorus imbalances across the world's croplands, Proceedings of the 682 National Academy of Sciences, pp.3086-3091, 2011.

G. K. Macdonald, E. M. Bennett, and Z. Taranu, The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis, Global Change Biology, vol.8, issue.6, pp.1904-1917, 2012.
DOI : 10.1007/978-0-387-87458-6

D. Cordell, J. Drangert, and S. White, The story of phosphorus: Global food security and food for thought, Global Environmental Change, vol.19, issue.2, pp.292-305, 2009.
DOI : 10.1016/j.gloenvcha.2008.10.009

O. Schoumans, Mitigation options to reduce phosphorus losses from the 690 agricultural sector and improve surface water quality: A review. Sci. Total 691 Environ, pp.1255-1266, 2014.