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Abstract This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable)
strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at finite
strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those
bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The
simplest form of the bounds presented is obtained by combining recent results for single crystals with a ho-
mogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound
delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is
demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the
development of a more detailed analysis, leading to improved polycrystalline bounds that are notably con-
sistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal
martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and
the results are compared with lower bounds obtained by considering laminate textures.

Keywords Shape memory alloys · Polycrystal · Energy minimization · Finite strains
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1 Introduction

The peculiar properties of shape memory alloys (SMAs) – such as the shape memory effect or the superelas-
tic behavior – are the macroscopic result of a diffusionless solid/solid phase transformation between different
crystallographic structures, known as austenite and martensite [20,4]. Since the austenite has a crystallo-
graphic structure with higher symmetry than the martensite, several martensitic variants need to be distin-
guished depending on the orientation of the martensitic lattice with respect to the austenitic lattice. Each
martensitic variant is characterized by a transformation strain that is defined as the deformation gradient
between the austenitic and martensitic lattices. The number of martensitic variants and the corresponding
transformation strains depend on the alloy considered. MnCu and MnNi are examples of alloys undergoing
a cubic to tetragonal transformation (i.e. the austenite has a cubic lattice and the martensite has a tetragonal
lattice). In that case, there are 3 martensitic variants. Widely used alloys such as NiTi or γCuAlNi obey a
cubic-to-monoclinic transformation, in which case there are 12 martensitic variants to be considered.

The phase transformation between austenite and martensite can be triggered both by mechanical and ther-
mal loading. The most striking illustration of that phenomenon is the shape memory effect displayed by alloys
such as NiTi or CuAlNi: cooling down a stress-free sample below a critical temperature T 0 transforms the
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homogeneous austenite (stable at high temperature) to a martensitic microstructure, in which the marten-
sitic variants arrange themselves so as to produce a stress- free state with no macroscopic deformation. Once
in the cooled state, deforming the sample mechanically entails a phase transformation of some martensitic
variants to others. After unloading, a macroscopic residual stress-free strain is observed as a result from the
cooperative effect of the microscopic transformation strains in each variant. Heating the sample transforms
the martensite back in austenite, thus restoring the initial configuration. We note that, in a polycrystalline
sample (which is the common form of commercially available SMAs), the formation of austenite/martensite
microstructures is typically observed in each grain. This leads one to distinguish between three length scales:
the microscopic scale of the austenite/martensite microstructures, the mesoscopic scale of the constitutive
grains, and the macroscopic scale of the polycrystal consisting in numerous grains. The macroscopic scale
can be interpreted as the length scale of a representative volume element (RVE) of the polycrystal. Express-
ing the macroscopic free energy in terms of the mesoscopic free energies in the constitutive grains is a long
standing topic in the study of polycrystals and granular materials (see e.g. [18] for a recent work in the field
of granular materials).

A possible route to study the formation of microstructures in SMAs is to adopt a nonlinear elasticity
model of phase transformation [2]. The general principle is that, under a prescribed loading, the system tends
to minimize its free energy. This approach amounts to consider that the evolutions are thermodynamically
reversible and to look for stable equilibria. Assuming the microscopic, mesoscopic and macroscopic scales to
be well separated, the energy minimization principle leads to different expressions of the free energy at each
scale. Denoting the microscopic free energy by Ψ , the mesoscopic energy Ψ̃ is obtained as the relaxation (or
quasiconvexification) of Ψ , which essentially amounts to solve an optimal design problem with respect to the
martensite/austenite geometric arrangement (see Section 2 for a precise definition). Viewing group of grains
with the same orientation as individual homogeneous materials (governed by mesoscopic free energies), the
polycrystal can be regarded as a composite material with a macroscopic energy Ψ̄ obtained by homogenization
of the constitutive free energy functions.

Assuming the microscopic free energy Ψ to be known, determining its relaxation Ψ̃ largely remains an
open problem. Estimating the macroscopic free energy Ψ̄ is even more challenging as stress and strain com-
patibility conditions between the grains need to be taken into account. Of special interest are the strains that
minimize the mesoscopic (resp. macroscopic) free-energy. Those energy-minimizing strains can indeed be
interpreted as the recoverable strains of a monocrystalline (resp. polycrystalline) shape memory alloy, i.e. the
strains that can be recovered by the shape memory effect [6]. Knowing the set of recoverable strains is crucial
for designing SMA systems. Experiments only give partial insight in the structure of that set, as they usu-
ally only give measurements along prescribed directions (see e.g. [33]). In this paper, we propose theoretical
bounds on the whole set of recoverable strains, i.e. in the space of three-dimensional deformation gradients.
Those bounds are expressed in terms of the lattice parameters and of statistical information on the polycrys-
talline texture (namely the orientation distribution function). Such data can be obtained experimentally using
X-ray diffraction or EBSD (Electron Back Scattering Diffraction).

The problem can be formulated either in the geometrically nonlinear setting or in the geometrically lin-
ear setting. The latter assumes small deformations with respect to a reference configuration. Although that
assumption can be regarded as questionable for shape memory alloys (notably because of possibly large ro-
tation effect), it allows the analysis to be simplified significantly. In the geometrically linear setting, the exact
expression of the relaxation of a (piecewise quadratic) double-well energy can been obtained [15,27]. Lower
and upper bounds have been proposed for the relaxation of a three- or more-well energy [29,11,10,23]. The
structure of the set of mesoscopic energy-minimizing strains has been studied in detail, notably for the most
challenging case of monoclinic martensite [6,7,25]. Concerning polycrystals, bounds are available for the
macroscopic energy-minimizing strains as well as for the macroscopic free energy [12,23,6,28].

In the geometrically non linear setting, the set of mesoscopic energy-minimizing strains has been obtained
in closed-form for a double-well energy [2]. Using known restrictions on Young measure, an upper bound
on the mesoscopic energy-minimizing strains has been proposed in the case of three or more wells [24].
Regarding polycrystals, a general method has been introduced in [22] for generating upper bounds on the set of
macroscopic energy-minimizing strains, assuming that the set of energy-minimizing strains of the constitutive
single crystals (or at least an upper bound on it) is known. The approach used in [22] is based on the translation
method [16], which has proved to be a powerful tool in various problems related to homogenization. In
particular, for nonlinear composites, variations of that method allows one to obtain bounds on the macroscopic
strains that are compatible with a given macroscopic stress [17,30,21].
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In this paper, we focus on upper bounds of the macroscopic energy-minimizing strains of martensitic poly-
crystals, in the geometrically non-linear setting. We begin in Section 2 by describing the nonlinear elasticity
model of phase transformation and presenting the upper bound of [24] for single crystals. In Section 3 we com-
bine the monocrystalline bound with the methodology of [22] to derive explicit upper bounds for polycrystals.
It turns out, however, that the upper bounds that are obtained may fail to recover the single crystal bound in the
homogeneous limit, as discussed in Section 4. Motivated by that observation, we modify the polycrystalline
approach so as to take the special structure of the single crystal bound into account (Section 5). This results
in new upper bounds for polycrystals, which improve on the bounds of Section 3 and are consistent with the
single crystal bound in the homogeneous limit. In Section 6, we study a two-orientation/three-well polycrystal
and compare the proposed upper bounds with lamination lower bounds.

2 Single crystal

In the framework of nonlinear elasticity at finite strains, the microscopic behavior of a shape-memory alloy is
described by its free energy density Ψ , which is a function of the deformation gradient F. We denote by K the
set of deformation gradients that minimize Ψ . Without loss of generality, we can assume that the minimum
value of Ψ is equal to 0, so that Ψ ≥ 0 and

K= {F|Ψ(F) = 0}.

The principle of frame indifference implies that Ψ(R.F) = Ψ(F) for any rotation R and deformation
gradient F. Moreover, in the case of shape memory alloys, Ψ has a multi well structure. Accordingly, the set
K takes the form

K=
m⋃

i=1

SO(3)Ui

where U1, · · · ,Um are given symmetric positive definite tensors that depend both on the temperature and on
the alloy considered. At a temperature T below the transformation temperature T 0, the number m of wells
is equal to the number nv of martensitic variants. The corresponding transformation strains U1, · · · ,Um are
all symmetry related, i.e. for any (i, j) there exists a rotation Ri j such that U j =

tRi j.Ui.Ri j (here and in
the following, the pre-superscript t denotes the transpose operator). At T = T 0, both the austenite and the
martensite variants minimize the microscopic energy, so that m = nv+1. In general, the deformation gradient
Unv+1 corresponding to the austenite is not symmetry related to any of the martensitic transformation strain.
At T > T 0, there is only one well which corresponds to the austenite phase.

Consider a reference configuration where a domain Ω is occupied by a single crystal of shape memory
alloy. Each material particle is identified by its location x in the reference configuration. The deformation of
the crystal is described by a mapping u : Ω 7→ R3 which gives the location (in the deformed configuration)
of the material particle x. We study the equilibrium of the crystal under boundary conditions of the form
u(x) = F̃.x where F̃ is a given mesoscopic deformation gradient (here and in the following, the superscript .̃
denotes quantities defined at the mesoscopic scale). The effective free energy at equilibrium is given by

Ψ̃(F̃) = inf
F∈A (F̃)

〈Ψ(F)〉 (1)

where 〈.〉 denotes volume average over the domain Ω and the set A (F̃) of admissible deformation gradient
fields is defined by

A (F̃) = {F|detF > 0,∃u(x) ∈W 1,∞(Ω ,R3) such that F = ∇u in Ω ;u(x) = F̃.x on ∂Ω}. (2)

The infimum problem in (1) is easily solved if F̃ ∈K: in that case, the homogeneous field F(x) = F̃ realizes
the infimum and we have Ψ̃(F̃) = Ψ(F̃) = 0. The situation gets more complicated if F̃ /∈ K: in that case,
a minimizer of (1) does not necessarily exist. This is a consequence of the multi well structure of Ψ .The
non existence of a minimizer physically corresponds to the formation of microstructures at a very fine scale
(twinned laminates are examples of microstructures which are frequently observed in shape memory alloys,
see e.g. [20]). In such a situation, the evaluation ofΨ̃(F̃) requires to study the weak convergence of minimizing
sequences, which involves mathematical concepts such as Young measures [14] and quasiconvexity [8]. The
function F̃ 7→ Ψ̃(F̃) is mathematically referred to as the quasiconvexification (or relaxation) of Ψ and can be
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interpreted as the mesoscopic energy of the material. Let K̃ be the set of deformation gradients that minimize
Ψ̃ . Since Ψ̃ is positive and vanishes on K, the minimum value of Ψ̃ is equal to 0 and we have

K̃= {F̃|Ψ̃(F̃) = 0}.

The set K̃ is also known as the quasiconvex hull of K [8,19]. The exact calculation of K̃ still remains
a largely open question. In the framework of finite strains as considered in this paper, the problem has been
solved exactly [2,5] only in the case where

(i) the strains U1, · · · ,Um have same determinant,
(ii) there exists µ > 0 and v ∈ R3 such that Uiv = µv for all 1≤ i≤ m.

(3)

The assumption (3ii) show that problems of the form (3) are fundamentally two-dimensional. Commonly used
shape-memory alloys, such as TiNi or CuAlNi, do not fulfill the assumption (3ii) and the exact expression
of K̃ for such materials is unknown. In such a situation, one may look for bounds (in the sense of inclusion
of sets) to obtain some rigorous information on K̃. In this paper we primarily focus on upper bounds (the
question of constructing lower bounds is addressed in Section 6).

Upper bounds on K̃ can be obtained using known restrictions on Young measures [24]. Some notations
are in order. We introduce the frame-indifferent function Φ : R3×3 7→ R defined by

Φ(M) = max
R∈SO(3)

tr(R.M). (4)

The supremum problem defining Φ(M) can be solved in closed form : we have indeed

Φ(M) = λ3 +λ2 +λ1sgn(detM) (5)

where 0≤ λ1 ≤ λ2 ≤ λ3 are the eigenvalues of
√

tM.M.
Let F∗ denote the adjugate of a matrix F ∈ R3×3, i.e. F∗ = detF. tF−1. For any a ∈ R3×3, b ∈ R3×3 and

c ∈ R, the function h defined by
h(F) = tr(F.a+F∗.b)+ cdetF (6)

is known to be quasiconvex [8], i.e. satisfies

h(F̃)≤ 〈h(F)〉 for all F̃ and F ∈A (F̃). (7)

The functions Φ in (4) and h in (6) are related by the following identity, which will be frequently used in this
paper:

sup
R∈SO(3)

h(R.F) = Φ(F.a+F∗.b)+ cdetF. (8)

Finally, we set

T = {θ = (θ1, · · · ,θm) ∈ Rm : θi ≥ 0;
m

∑
i=1

θi = 1}. (9)

Using those notations, it can be proved [24] that the set K̃+ defined by

K̃+ = {F̃ ∈ R3×3 : ∃θ ∈ T such that det F̃ =
m

∑
i=1

θi detUi

and 0≥ sup
(a,b)∈C

{Φ(F̃.a+ F̃∗.b)−
m

∑
i=1

θiΦ(Ui.a+U∗i .b)} }
(10)

is an upper bound on K̃, i.e. satisfies K̃⊂ K̃+. For a given F̃ in K̃+, the vector θ in (10) can be interpreted as
the volume fractions of the different wells in a microstructure realizing F̃. In general there is no uniqueness
for θ . This is connected to the fact that, except in special cases, energy-minimizing deformation gradients F̃
can be realized by several microstructures.

In (10), C is a given arbitrary subset of R3×3×R3×3. Note that each choice of C generates a corresponding
bound on K̃. In principle, the best bound is obtained by taking C as large as possible, i.e. C = R3×3×R3×3.
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In practice, however, one may restrict C to a smaller family to ease the calculations and notably obtain closed
form expressions.

For later reference, we close this section with a brief derivation of the bound K̃+. A fundamental property
of K̃ is that any given F̃ ∈ K̃ can be written as

F̃ =
∫

R3×3

Adν(A) (11)

for some Young measure ν supported on K [2,19]. For our purpose, we only need to record the following
properties of Young measures [14]:

(i) ν ≥ 0 ,
∫
R3×3

dν(A) = 1,

(ii) f
( ∫
R3×3

Adν(A)
)
≤
∫

R3×3

f (A)dν(A) for any f quasiconvex. (12)

Moreover, since K= ∪m
i=1Ki where the wells Ki = SO(3)Ui are closed and disjoint, the Young measure ν in

(11) can be written as

ν =
m

∑
i=1

νi

where νi is a positive measure supported on Ki [2]. Using the properties (11-12) with quasiconvex functions
h of the form (6), we obtain

h(F̃)≤
m

∑
i=1

∫
SO(3)Ui

h(A)dνi(A).

The identity (8) gives h(A)≤Φ(Ui.a+U∗i .b)+ cdetUi for any A ∈ SO(3)Ui. Consequently we find

h(F̃)≤
m

∑
i=1

θi
{

Φ(Ui.a+U∗i .b)+ cdetUi
}

(13)

where θi =
∫
R3×3 dνi(A). As a consequence of (12i), the vector θ = (θ1, · · · ,θn) belongs to the set T in (9).

Let now R̃ be an arbitrary rotation. Observing that F 7→ h(R̃.F) is quasiconvex and proceeding as in (13),
we obtain

h(R̃.F̃)≤
m

∑
i=1

θi
{

Φ(Ui.a+U∗i .b)+ cdetUi
}
.

Taking the supremum over R̃ in this last equation and using the identity (8), we get

Φ(F̃.a+ F̃∗.b)+ cdet F̃≤
m

∑
i=1

θi{Φ(Ui.a+U∗i .b)+ cdetUi}. (14)

The conclusion is that for any F̃ ∈ K̃, there exists θ ∈ T such that (14) holds for any (a,b,c). In other words,
the set K̃+ in (10) is an upper bound on K̃.

As detailed in [24], the bound given by (10) coincides with K̃ for the reference cases where the exact
expression of K̃ is available, such as problems of the form (3).
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3 Polycrystal

Now consider a polycrystal occupying a domain Ω . We can decompose Ω as Ω = ∪n
r=1Ω r where each sub-

domain Ω r is formed by grains with the same orientation. The microscopic free energy in Ω r can be written
as

Ψ
r(F) =Ψ(tRr.F.Rr) (15)

where Rr is a rotation describing the orientation in Ω r relative to a reference single crystal. Defining χr the
characteristic function of Ω r (i.e. χr(x) = 1 if x ∈Ω r, and χr(x) = 0 otherwise), the microscopic free energy
of the polycrystal is a heterogeneous function of the form

Ψ(F,x) =
n

∑
r=1

χ
r(x)Ψ r(F).

The set K(x) of deformation gradients minimizing F 7→Ψ(F,x) is thus

K(x) =
m⋃

i=1

SO(3)Ui(x) (16)

where Ui(x)=∑
n
r=1 χr(x)Ur

i and Ur
i =Rr.Ui.

tRr. The functions χ1, · · · ,χn together with the rotations R1, · · · ,Rn

fully describe the texture of the polycrystal, i.e. the shapes, distributions and orientations of the grains.
Consider boundary conditions of the form u(x) = F̄.x where F̄ is a given macroscopic deformation gradi-

ent (here and in the following, the superscript .̄ denotes macroscopic quantities). At equilibrium, one expects
the formation of microstructures in each grain. Assuming the scale of such microstructures to be much smaller
than the scale of the grains, the macroscopic free energy Ψ̄(F̄) of the polycrystal is given by

Ψ̄(F̄) = min
F∈A (F̄)

〈
n

∑
r=1

χ
r
Ψ̃

r
(F)〉 (17)

where Ψ̃
r is the relaxation of Ψ r, as defined in (1) (see e.g.[4] for a detailed justification). In the following,

we primarily focus on the set K̄ of deformation gradients that minimize the macroscopic energy, i.e.

K̄= {F̄|Ψ̄(F̄) = 0}.

In view of (17), we have the following characterization of K̄:

K̄= {F̄|∃F ∈A (F̄);F(x) ∈ K̃(x) for all x ∈Ω}. (18)

Hence the distinctive property of strains F̄ in K̄ is that they can be realized by a deformation u(x) whose
gradient F = ∇u satisfies the local constraint F(x) ∈ K̃(x) at each point.

Let K̃r be the quasi convex hull of ∪m
i=1SO(3)Ur

i , i.e. the set of strains minimizing Ψ̃
r. For any F̄ in

∩n
r=1K̃

r, the homogeneous field F(x) = F̄ is in A (F̄) and satisfies the constraint F(x) ∈ K̃(x) in Ω . The
set K̄− = ∩n

r=1K̃
r is thus a lower bound on K̄, in the sense that K̄− ⊂ K̄. That lower bound (referred to as

the Taylor bound) has been studied in detail in the geometrically linear setting [6]. Note that the bound K̄−
only depends on the rotations R1, · · · ,Rn, and not on the functions χ1, · · · ,χn, therefore ignoring a lot of
information about the texture.

Using the quasiconvexity of the function h in (6), upper bounds on K̄ that take one-point statistics of the
functions χr can be derived [22]. Let indeed F̄ be in K̄ and consider a deformation gradient field F in A (F̄)
such that F(x) ∈ K̃(x) for all x (recall that such F exists by (18)). Using the property (7) and noting that
∑r χr = 1, we have

h(F̄)≤ 〈h(F)〉=
n

∑
r=1
〈χrh(F)〉. (19)

Observe from (8) that h(F(x)) ≤ Φ(F(x).a + F∗(x).b) + cdetF(x). For x ∈ Ω r, we have F(x) ∈ K̃
r and

consequently

h(F(x))≤Φ(F(x).a+F∗(x).b)+ cdetF(x)≤ sup
F∈K̃

r
{Φ(F.a+F∗.b)+ cdetF}.
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Substituting in (19) gives

h(F̄)≤
n

∑
r=1

{
〈χr〉 sup

F∈K̃
r
{Φ(F.a+F∗.b)+ cdetF}

}
. (20)

The frame-indifference of K̄ implies that R.F̄ also satisfies (20) for any rotation R, which using (8) leads to

Φ(F̄.a+ F̄∗.b)+ cdet F̄≤
n

∑
r=1

{
〈χr〉 sup

F∈K̃
r
{Φ(F.a+F∗.b)+ cdetF}

}
. (21)

Let C ′ denote a given subset of R3×3×R3×3. From (21) we obtain that any F̄ in K̄ necessarily satisfies

sup
c

sup
(a,b)∈C ′

{
Φ(F̄.a+ F̄∗.b)+ cdet F̄−

n

∑
r=1
〈χr〉 sup

F∈K̃
r
{Φ(F.a+F∗.b)+ cdetF}

}
≤ 0. (22)

The set of deformation gradient F̄ verifying (22) is thus an upper bound of K̄. That upper bound has been
used in [22] on some examples where the constitutive single crystals fulfill the conditions (3), in which case
the sets K̃

r are known. For polycrystals that do not satisfy (3), the direct application of the bound (22) is
hampered by the fact that K̃r is unknown. In such case, calculating the supremum over K̃r that appears in
(22) remains out of reach. Such a difficulty can be overcome by using the results from Section 2. Let indeed
K̃r

+ be the upper bound of K̃r defined in Eq. (10). Since K̃
r ⊂ K̃r

+, we have sup
K̃

r Φ(F.a+F∗.b)+ cdetF≤
sup

K̃r
+

Φ(F.a+F∗.b)+ cdetF. Therefore, we obtain from (22) that any F̄ in K̄ necessarily satisfies

sup
c

sup
(a,b)∈C ′

{Φ(F̄.a+ F̄∗.b)+ cdet Ū−
n

∑
r=1
〈χr〉 sup

F∈K̃r
+

{Φ(F.a+F∗.b)+ cdetF}} ≤ 0. (23)

The calculation of the right-hand side in (23) can be further simplified if C ′ =C , i.e. if the bound (23) and the
bound K̃r

+ given by (10) and are calculated using the same set of tensors (a,b). In that case, we have indeed

sup
F∈K̃r

+

{Φ(F.a+F∗.b)+ cdetF}= max
1≤i≤m

{Φ(Ur
i .a+Ur,∗

i .b)+ cdetUr
i} (24)

for any (a,b) ∈ C . That last property is easily proved: for a given F in K̃r
+, Eq. (10) yields

Φ(F.a+F∗.b)+ cdetF≤
m

∑
i=1

θi{Φ(Ur
i .a+Ur,∗

i .b)+ cdetUr
i} (25)

for some θ ∈ T. Since any θ in T verifies θi ≥ 0 and ∑i θi = 1, the right hand side of (25) is bounded from
above by max1≤i≤m{Φ(Ur

i .a+Ur,∗
i .b)+ cdetUr

i}. Therefore we have

sup
F∈K̃r

+

{Φ(F.a+F∗.b)+ cdetF} ≤ max
1≤i≤m

{Φ(Ur
i .a+Ur,∗

i .b)+ cdetUr
i}.

The converse inequality follows directly from the fact that Ur
i ∈ K̃r

+ for i = 1, · · · ,m.

Combining (23) and (24) gives
K̄⊂ K̄

0
+ (26)

where

K̄
0
+ =

{
F̄∈R3×3 : 0≥ sup

c
sup

(a,b)∈C

{
Φ(F̄.a+ F̄∗.b)+cdet F̄−

n

∑
r=1
〈χr〉 max

1≤i≤m
{Φ(Ur

i .a+Ur,∗
i .b)+cdetUr

i}
}}

.

(27)
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In the most usual situation when all the transformation strains Ur
i have the same determinant, the set K̄0

+
can be rewritten more simply as

K̄
0
+ =

{
F̄ ∈ R3×3 : det F̄ = detU1

1, 0≥ sup
(a,b)∈C

{Φ(F̄.a+ F̄∗.b)−
n

∑
r=1
〈χr〉 max

1≤i≤m
Φ(Ur

i .a+Ur,∗
i .b)}

}
. (28)

The set K̄0
+ is an explicit upper bound that depends on one-point statistics of the texture, i.e. on the volume

fractions 〈χr〉 of the different orientations.
For a discrete C , checking if a given deformation gradient F̄ is in K̄

0
+ amounts to check if F̄ satisfies a

finite number of constraints. A similar remark holds if C is not discrete but with the form

N⋃
j=1

⋃
w∈R3

{(u j⊗w,u′j⊗w)}.

In that case, Eq. (5) indeed shows that Φ(F̄.u j⊗w+ F̄∗.u′j⊗w) = ‖F̄.u j + F̄∗.u′j‖.‖w‖ so that the condition

0≥ sup
(a,b)∈C

{Φ(F̄.a+ F̄∗.b)−
n

∑
r=1
〈χr〉 max

1≤i≤m
Φ(Ur

i .a+Ur,∗
i .b)}

is equivalent to

0≥ max
1≤ j≤N

{‖F̄.u j + F̄∗.u′j‖−
n

∑
r=1
〈χr〉 max

1≤i≤m
‖Ur

i .u j +Ur,∗
i .u′j‖},

i.e. to a set of N constraints on F̄.

4 Homogeneous limit

In this Section we study the behavior of the polycrystalline bound (27) in the limit 〈χ1〉 → 1. In that case, the
set K̄0

+ in Eq. (27) is characterized by

0≥ sup
c

sup
(a,b)∈C

{
Φ(F̄.a+ F̄∗.b)+ cdet F̄− max

1≤i≤m
{Φ(U1

i .a+U1,∗
i .b)+ cdetU1

i }
}
. (29)

In the homogeneous limit 〈χ1〉→ 1, there is no distinction between the mesoscopic scale and the macroscopic
scale. Since the bound K̄

0
+ is the result of substituting the monocrystalline upper bound (10) in the general

prescription (22), one would expect the set defined by (29) to coincide with the monocrystalline bound K̃+

generated from the same family C . This can be proved to be indeed the case for problems of the form (3), but
it is not true in general. To illustrate that point, consider the cubic to tetragonal transformation at T < T 0: we
have K1 =

⋃3
i=1 SO(3)U1

i where

U1
1 =

η2 0 0
0 η1 0
0 0 η1

 , U1
2 =

η1 0 0
0 η2 0
0 0 η1

 , U1
3 =

η1 0 0
0 η1 0
0 0 η2

 . (30)

These matrix representations are relative to the reference orthonormal basis (v1,v2,v3) of the cubic austenitic
lattice in orientation 1. The parameters (η1, η2) are non-negative and distinct. We assume in the following
that η2 < η1.

We determine the bounds K̃+ in (10) and K̄
0
+ in (29) corresponding to the family C of tensors (a,b)

defined by
C =

⋃
j∈{1,2,3},w∈R3

{(v j⊗w,0),(0,v j⊗w)}. (31)
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Let us first determine the set K̃+ in (10). For a fixed F̃ in K̃+, we can see from (10) that det F̃ = η2
1 η2.

Moreover, there exists θ ∈ T such that

0≥Φ(F̃.a+ F̃∗.b)−
3

∑
i=1

θiΦ(U1
i .a+U1,∗

i .b) (32)

for all (a,b) in the family C defined by (31). Any such (a,b) can either be written as (v j⊗w,0) or (0,v j⊗w).
In the first case, the definition (4) gives Φ(F.a+F∗.b) = ‖F.v j‖.‖w‖ so that (32) becomes

0≥ ‖F̃.v j‖−
3

∑
i=1

θi‖U1
i .v j‖.

Observing that ‖U1
i .v j‖= η1 +(η2−η1)δi j and recalling that ∑

3
i=1 θi = 1, we obtain

0≥ ‖F̃.v j‖−η1−θ j(η2−η1). (33)

In the case (a,b) = (0,v j⊗w), a similar reasoning leads to

0≥ ‖F̃∗.v j‖−η1η2−θ jη1(η1−η2). (34)

This inequalities (33) and (34) can be combined as as

‖F̃∗.v j‖−η1η2

η1(η1−η2)
≤ θ j ≤

η1−‖F̃.v j‖
η1−η2

. (35)

Any θ in T is such that θ j ≥ 0 and ∑
3
j=1 θ j = 1. It follows that any F̃ in K̃+ satisfies

0≤
η1−‖F̃.v j‖

η1−η2
;
‖F̃∗.v j‖−η1η2

η1(η1−η2)
≤ 1;

‖F̃∗.v j‖−η1η2

η1(η1−η2)
≤

η1−‖F̃.v j‖
η1−η2

for j = 1,2,3;

−3η2 +
1

η1

3

∑
j=1
‖F̃∗.vi‖ ≤ η1−η2 ≤ 3η1−

3

∑
j=1
‖F̃.v j‖;

(36)

which can be rewritten more simply as

‖F̃.v j‖ ≤ η1 , ‖F̃
∗
.v j‖ ≤ η2

1 , η1‖F̃.v j‖+‖F̃
∗
.v j‖ ≤ η1(η1 +η2) for j = 1,2,3;

3

∑
j=1
‖F̃.v j‖ ≤ 2η1 +η2 ,

3

∑
j=1
‖F̃∗.v j‖ ≤ η1(2η2 +η1).

(37)

Conversely, for any F̃ satisfying (37), it can be verified that there exists θ ∈ T satisfying (32) for all (a,b)
in C . Therefore, the inequalities (37) (complemented by the restriction det F̃ = η2

1 η2) characterize the upper
bound K̃+ that is generated by the family C defined in Eq. (31).

Let us now calculate the bound K̄
0
+ in (29). Since the transformation strains U1

1,U
1
2,U

1
3 in (30) have same

determinant, we obtain from (29) that any F̃ in K̄
0
+ satisfies det F̃ = η2

1 η2 and

0≥Φ(F̃.a+ F̃∗.b)− max
1≤i≤3

Φ(U1
i .a+U1,∗

i .b) (38)

for all (a,b) in C . Using the special form of the tensors (a,b) defined in (31) and the corresponding values of
Φ(U1

i .a+U1,∗
i .b), the inequality (38) is found to be equivalent to

‖F̃.v j‖ ≤ η1 ,‖F̃
∗
.v j‖ ≤ η

2
1 for j = 1,2,3. (39)

Comparing (39) with (37) shows that K̃+ ⊂ K̄
0
+. That inclusion is actually strict: consider indeed the defor-

mation gradient F̃0 defined by

F̃0 = (η2
1 η2)

1/3
(

I+
(√

(
η1

η2

)2/3−1
)
v1⊗v2

)
.



10 Michaël Peigney

We have det F̃0 = η2
1 η2 and

‖F̃0.v1‖= ‖F̃0.v3‖= (η2
1 η2)

1/3 , ‖F̃0.v2‖= η1 , ‖F̃
∗
0.v2‖= ‖F̃

∗
0.v3‖= (η2

1 η2)
2/3 , ‖F̃∗0.v1‖= η

5/3
1 η

1/3
2 .

Since η2 < η1, it can easily be verified that F̃0 satisfies (39) and therefore is in K̄
0
+. However, we have

η1‖F̃0.v2‖+‖F̃
∗
0.v2‖= η2

1 +(η2
1 η2)

2/3 > η1(η1 +η2). Therefore, F̃0 does not satisfy (37) and is not in K̃+.
This example shows that the bound in (27) may fail to recover the single crystal bound in the homogeneous

limit. This is an indication that some information is lost when directly plugging the monocrystalline bound
(10) in the general prescription (22). In the following, we derive an improved upper bound on K̄ that notably
coincides with the single crystal bound (10) in the homogeneous limit.

5 Improved bound for polycrystals

The bound K̄
0
+ in (27) can be improved upon by taking the special structure of the monocrystalline bound

(10) into account, as is now explained. Consider a given F̄ in K̄. By (18), there exists a field F ∈A (F̄) such
that F(x) ∈ K̃(x) for all x ∈Ω . Recall that K(x) =

⋃m
i=1 SO(3)Ui(x) where Ui(x) = ∑

n
r=1 χr(x)Ur

i . Using the
bound (10) on K̃(x), we know there exists θ(x) ∈ T such that

0≥ sup
c

sup
(a,b)∈C

{
Φ(F(x).a+F∗(x).b)+ cdetF(x)−

m

∑
i=1

θi(x){Φ(Ui(x).a+U∗i (x).b)+ cdetUi(x)}
}
. (40)

Since χr(x) ∈ {0,1} and ∑r χr(x) = 1, Eq. (40) can be rewritten as

0≥ sup
c

sup
(a,b)∈C

{
Φ(F(x).a+F∗(x).b)+cdetF(x)−

n

∑
r=1

m

∑
i=1

χ
r(x)θi(x){Φ(Ur

i .a+Ur,∗
i .b)+cdetUr

i}
}
. (41)

For any r = 1, · · · ,n and i = 1, · · · ,m, define

θ
r
i (x) = χ

r(x)θi(x). (42)

Taking volume averages in (41) yields

0≥ sup
c

sup
(a,b)∈C

{
〈Φ(F.a+F∗.b)+ cdetF〉−

n

∑
r=1

m

∑
i=1
〈θ r

i 〉{Φ(Ur
i .a+Ur,∗

i .b)+ cdetUr
i}
}

(43)

The crucial point is that the function F 7→ Φ(F.a+F∗.b)+ cdetF is quasiconvex. Using (7) and observing
from (8) that h(F)≤Φ(F.a+F∗.b)+ cdetF, we have indeed

h(F̄)≤ 〈h(F)〉 ≤ 〈Φ(F.a+F∗.b)+ cdetF〉. (44)

Consider a given rotation R̄. Since R̄.F ∈A (R̄.F̄), we obtain, in a similar way to (44),

h(R̄.F̄)≤ 〈Φ(R̄.F.a+ R̄.F∗.b)+ cdet(R̄.F)〉. (45)

The function Φ being frame-indifferent, the last term in (45) is equal to 〈Φ(F.a+F∗.b)+ cdetF〉. Therefore,
taking the supremum over R̄ in (45) and using the identity (8), we get

Φ(F̄.a+ F̄∗.b)+ cdet F̄≤ 〈Φ(F.a+F∗.b)+ cdetF〉.

That last inequality, holding for any F̄ and F ∈ A (F̄), proves that F 7→ Φ(F.a+F∗.b) is quasiconvex. Al-
though it has not been stated explicitely up to this point, the quasiconvexity of Φ can be regarding as the main
argument behind the bounds (10) and (27) considered in Sections 2-3. Here, in view of (43), the quasiconvex-
ity of Φ implies that

0≥ sup
c

sup
(a,b)∈C

{
Φ(F̄.a+ F̄∗.b)+ cdet F̄−

n

∑
r=1

m

∑
i=1
〈θ r

i 〉{Φ(Ur
i .a+Ur,∗

i .b)+ cdetUr
i}
}
. (46)



Bounds on the energy-minimizing strains in martensitic polycrystals 11

The scalar 〈θ r
i 〉 can be interpreted as the volume fraction of martensitic variant i with orientation r. Note from

(42) that {〈θ r
i 〉}

1≤r≤n
1≤i≤m belongs to the set T̄ defined by

T̄ = {Θ ∈ Rn
m|Θ r

i ≥ 0 ;
m

∑
i=1

Θ
r
i = 〈χr〉 ∀r = 1, · · · ,n}. (47)

The developments so far show that for any F̄ in K̄, there exists Θ ∈ T̄ verifying the inequality (46). This last
statement can be rewritten as

K̄⊂ K̄+ (48)

where

K̄+ =
{

F̄ : ∃Θ ∈ T̄ such that

0≥ sup
c

sup
(a,b)∈C

{
Φ(F̄.a+ F̄∗.b)+ cdet F̄−

n

∑
r=1

m

∑
i=1

Θ
r
i {Φ(Ur

i .a+Ur,∗
i .b)+ cdetUr

i}
}}

.
(49)

In the case where all the transformation strains have the same determinant, the set K̄+ can be rewritten more
simply as

K̄+ =
{

F̄ : det F̄ = detU1
1;∃Θ ∈ T̄ such that 0≥ sup

(a,b)∈C
{Φ(F̄.a+ F̄∗.b)−

n

∑
r=1

m

∑
i=1

Θ
r
i Φ(Ur

i .a+Ur,∗
i .b)}

}
.

(50)
Eq. (48) means that K̄+ is an upper bound on the set of macroscopic energy-minimizing strains for the
polycrystal. In a way similar to the bound K̄

0
+ considered in Sec. 3, K̄+ depends on the texture through the

volume fractions 〈χr〉 of the different orientations (the later indeed appear in the definition (47) of the set T̄).
Observe that the bound K̄+ is always tighter than the bound K̄

0
+ obtained from the same set C . By (47), any

Θ ∈ T̄ indeed satisfies

m

∑
i=1

Θ
r
i (Φ(Ur

i .a+Ur,∗
i .b)+ c detUr

i )≤ 〈χr〉 max
1≤i≤m

{Φ(Ur
i .a+Ur,∗

i .b)+ c detUr
i} (51)

for r = 1, · · · ,n. It follows that K̄+ ⊂ K̄
0
+. We also note that, contrary to the bound K̄

0
+, the bound K̄+ in

(49) coincides with the monocrystalline bound K̃+ in the homogeneous limit. This shows that the inclusion
K̄+ ⊂ K̄

0
+ can be strict, i.e. that the bound K̄+ can bring a genuine improvement.

Regarding the practical calculation of the bound K̄+, observe that the inequality 0 ≥ Φ(F̄.a+ F̄∗.b)−
∑r,i Θ

r
i Φ(Ur

i .a+Ur,∗
i .b) in (49) can be viewed as a linear constraint on Θ , parametrized by F̄. Deformation

gradients F̄ in K̄+ are characterized by the fact that those linear constraints (supplemented by the conditions
Θ ∈ T̄) define a non empty set of Rn

m. In the language of linear programming, this amounts to detect feasibility
of the linear constraints [31], which is not a direct calculation – even for a discrete C . In the next section, we
show how the problem can be conveniently solved in the case of a two-orientation / three-well polycrystal.

6 Analytical example

6.1 Upper bounds

We consider a polycrystal with two orientations, assuming without loss of generality that orientation 1 is
the reference orientation. The constitutive single crystals obey a cubic to tetragonal transformation. We are
interested in estimating the energy-minimizing strains at T < T 0, i.e. in the case where K1 =

⋃3
i=1 SO(3)U1

i
with U1

1, U1
2, U1

3 given by (30). The set K2 of strains that minimize the microscopic free energy in orientation
2 can be written as K2 = R2.K1. tR2 where R2 ∈ SO(3).
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Table 1 Values of (a,b) used for the cubic to tetragonal transformation

a b Φ
1
k(a,b) Φ

1
i (a,b) (i 6= k)

vk⊗vk 0 η2 η1
0 vk⊗vk η2

1 η1η2

(vi±v j)⊗vk 0
√

2η1

√
η2

1 +η2
2

0 (vi±v j)⊗vk
√

2η1η2 η1

√
η2

1 +η2
2

η1

η2
1 −η2

2
vk⊗vk − η2

η1(η2
1 −η2

2 )
vk⊗vk 0 1

η2

η2
1 −η2

2
vk⊗vk − 1

η2
1 −η2

2
vk⊗vk 1 0

We first illustrate how the prescription (49) can be used to derive a closed-form bound on K̄. By (49) we
know that for any given F̄ in K̄, there exists Θ ∈ T̄ verifying

0≥Φ(F̄.a+ F̄∗.b)−
2

∑
r=1

3

∑
l=1

Θ
r
l Φ

r
l (a,b) (52)

with the notation Φ
r
l (a,b) = Φ(Ur

l .a+Ur,∗
l .b). Assume we can pick out (a,b) such that

Φ
1
i (a,b) = Φ

1
j(a,b) 6= Φ

1
k(a,b) (53)

for some permutation (i, j,k) of (1,2,3). Since ∑
3
l=1 Θ 1

l = 〈χ1〉, the relation (52) gives

0≥Φ(F̄.a+ F̄∗.b)+Θ
1
k (Φ

1
i (a,b)−Φ

1
k(a,b))−〈χ1〉Φ1

i (a,b)−
3

∑
l=1

Θ
2
l Φ

2
l (a,b).

Using the fact that Θ 2
l ≥ 0 and ∑

3
l=1 Θ 2

l = 〈χ2〉, we get

0≥Φ(F̄.a+ F̄∗.b)+Θ
1
k (Φ

1
i (a,b)−Φ

1
k(a,b))−〈χ1〉Φ1

i (a,b)−〈χ2〉 max
1≤l≤3

Φ
2
l (a,b).

That last inequality can be rewritten as

Θ 1
k ≤
−Φ(F̄.a+ F̄∗.b)+ 〈χ1〉Φ1

i (a,b)+ 〈χ2〉maxl Φ
2
l (a,b)

Φ
1
i (a,b)−Φ

1
k(a,b)

if Φ
1
i (a,b)−Φ

1
k(a,b)> 0,

Θ 1
k ≥
−Φ(F̄.a+ F̄∗.b)+ 〈χ1〉Φ1

i (a,b)+ 〈χ2〉maxl Φ
2
l (a,b)

Φ
1
i (a,b)−Φ

1
k(a,b)

if Φ
1
i (a,b)−Φ

1
k(a,b)< 0.

(54)

Observe that tensors (a,b) of the form (31) verify the condition (53). In a separate study of the monocrystalline
cubic to tetragonal transformation [24], other tensors (a,b) verifying (53) have been found. Those tensors
(a,b) are listed in Table 1, along with the corresponding values of Φ

1
l (a,b). The tensors (a,b) in Table 1 have

been found in the course of a full optimization of (10) with respect to tensors (a,b) that are diagonal in the
reference cubic lattice (see [24] for more details).

Substituting the values of Table 1 in (54), we find that

A1
k(F̄)≤Θ

1
k ≤ B1

k(F̄) (55)

where A1
k(F̄) and B1

k(F̄) are explicit functions whose expressions are reported in Appendix A. A similar
analysis can be performed to the orientation r = 2. This is simply achieved by replacing vk by R2.vk and
swapping the roles of orientations 1 and 2 in the previous developments. Such a procedure leads to

A2
k(F̄)≤Θ

2
k ≤ B2

k(F̄) (56)
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Fig. 1 Representation of the deformation I+δu(ω)⊗v(ω) : reference (left) and deformed (right) configuration.

where the expressions of A2
k(F̄) and B2

k(F̄) are detailed in Appendix A. In view of (55-56), some necessary
conditions for F̄ to be in K̄ are

Ar
k(F̄)≤ Br

k(F̄) for k = 1,2,3;
3

∑
k=1

Ar
k(F̄)≤ 〈χr〉 ≤

3

∑
k=1

Br
k(F̄);

(57)

with r = 1,2. The second inequality in (57) stems from the fact that ∑
3
k=1 Θ r

k = 〈χr〉. The relations (57) define
the upper bound K̄+ corresponding to the set of tensors (a,b) listed in Table 1 (along with their rotated
versions obtained by replacing vk with R2.vk in Table 1).

So as to illustrate the bound obtained, consider deformation gradients F(ω,δ ) of the form

F(ω,δ ) = (η2
1 η2)

1/3(I+δu(ω)⊗v(ω)) (58)

where
u(ω) = cosω v1 + sinω v2 and v(ω) =−sinω v1 + cosω v2.

The deformation gradient F(ω,δ ) is a simple shear between the directions u(ω) and v(ω) (Figure 1), followed
by a uniform dilatation (η2

1 η2)
1/3I. The parameter ω is the angle made by the shear directions (u(ω),v(ω))

with the directions (v1,v2) of the cubic austenitic lattice in orientation 1.
In the following, we are interested in estimating the values (ω,δ ) for which F(ω,δ ) is energy-minimizing.

Except stated otherwise, all the results presented next are obtained with the lattice parameters of MnCu, i.e.
η1 = 1.0099, η2 = 0.9656 [3]. The rotation R2 defining the orientation 2 is taken as

R2 =


√

2
2 −

√
2

2 0√
2

2

√
2

2 0
0 0 1

 . (59)

Textures satisfying the assumptions made so far (i.e. n= 2 with R1 = I and R2 given by Eq. (59) ) are observed
in some ribbons of shape memory alloys [9].

Let
∆+ = {(ω,δ ) : F(ω,δ ) ∈ K̄+}

be the trace of K̄+ on deformation gradients of the form (58). The boundary of ∆+ is represented in Figures
2-4 (solid lines in blue) for several values of 〈χ1〉: the deformation gradient F(ω,δ ) satisfies Eq. (57) for any
(ω,δ ) within the bounded domain ∆+ delimited by the solid lines in Figures 2-4. The solid curves in Figures
2-4 can thus be interpreted as lower and upper bounds on the shear δ for F(ω,δ ) to be energy-minimizing.

Similarly, we set
∆

0
+ = {(ω,δ ) : F(ω,δ ) ∈ K̄

0
+}

where K̄
0
+ is calculated by applying (28) with the tensors (a,b) listed in Table 1 (along with their rotated

versions obtained by replacing vk with R2.vk). The boundary of ∆ 0
+ is plotted in dotted lines in Figures 2-4.

This allows one to appreciate the improvement brought by the consideration of (49) over (27). For instance,
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Fig. 2 Bounds on the shear δ for MnCu, 〈χ1〉= 0.9.

in the case 〈χ1〉= 0.7 (Figure 3), the relative improvement of the bound on the shear δ varies between 0 and
52% (depending on the angle ω considered), with an average of approximatively 35%. In the case 〈χ1〉= 0.5
(Figure 4), the relative improvement is non-negative for all ω , with an average of approximatively 26% .

6.2 Lamination lower bound

Although the fact that K̄+ significantly improves on K̄
0
+ is promising, it does not give any clue regarding the

sharpness of the bound. The relations defining K̄+ (49) are indeed necessary- but not sufficient - conditions
for a deformation gradient to be energy-minimizing. The issue is to determine which deformation gradients
in K̄+ are indeed energy-minimizing for some polycrystalline texture that is compatible with the prescribed
statistics (i.e. with prescribed volume fractions of the different orientations). In order to address that question,
we consider the special class of laminated textures and adapt an argument introduced in [2]: let F1 ∈ K̃

1 and
F2 ∈ K̃

2 be rank-1 connected, i.e. such that

R.F2−F1 = p⊗n (60)

for some vectors (p,n) and some rotation R. Following [2], we know that the effective deformation gradient
〈χ1〉F1 +(1−〈χ1〉)R.F2 is energy-minimizing for an (infinitely fine) laminate texture mixing orientations
1 and 2 in proportions 〈χ1〉 and 1−〈χ1〉, respectively. The vector n in (60) corresponds to the normal to
the interfaces in such a laminate texture. We wish to use that argument to construct values of (ω,δ ) such
that F(ω,δ ) is energy-minimizing for some well-chosen laminate texture. This requires to find deformation
gradients (F1,F2) that fulfill the two following conditions:

(1) F1 ∈ K̃
1, F2 ∈ K̃

2.
(2) F1 and F2 are rank-1 connected.

The condition (1) means that Fi is energy-minimizing for a single crystal with orientation i. The issue
of finding deformation gradients that are energy-minimizing for a single crystal of tetragonal martensite has
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Fig. 3 Bounds on the shear δ for MnCu, 〈χ1〉= 0.7.

Fig. 4 Bounds on the shear δ for MnCu, 〈χ1〉= 0.5.
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been addressed in [24]: it can be shown that K̃1 contains all the deformation gradients of the formu11 u12 0
u12 u22 0
0 0 (η2

1 η2)
1/3

 (61)

with (u11,u22,u12) verifying

u11u22−u2
12 = (η2

1 η2)
2/3 , u2

11 +u2
22 +2u2

12 +2|u12(u11 +u22)| ≤ η
2
1 +(η1η

2
2 )

2/3. (62)

Since K̃
2
= R2.K̃

1
. tR2, it follows that K̃2 contains all the deformation gradients of the form

R2.

u′11 u′12 0
u′12 u′22 0
0 0 (η2

1 η2)
1/3

 . tR2 (63)

where (u′11,u
′
22,u

′
12) are submitted to the same restrictions as (62). As explained in [24], the deformation gra-

dient in (61) can be realized by some fourth-rank laminated microstructure that involves the three martensitic
variants.

Let now F1 ∈ K̃
1 and F2 ∈ K̃

2 be two deformation gradients of the form (61) and (63), respectively. We
claim that F1 and F2 are rank-1 connected. This can be checked by applying a general procedure proposed
in [1,13]: setting Ui =

√
tFi.Fi and C = U−1

1 .U2
2.U
−1
1 , given deformation gradients F1 and F2 are rank-1

connected if and only if the eigenvalues λ1 ≤ λ2 ≤ λ3 of C are such that

λ2 = 1. (64)

In that case, the vectors p and n solving the twinning equation (60) are given by

p =

√
λ3(1−λ1)

λ3−λ1
u1 +κ

√
λ1(λ3−1)

λ3−λ1
u3,

U−1
1 .n = (

√
λ3−

√
λ1√

λ3−λ1
)(−
√

1−λ1 u1 +κ

√
λ3−1u3)

(65)

where κ ∈ {−1,1} and ui is a normalized eigenvector of C for the eigenvalue λi.
In the present case, observe from Eqs. (59)-(61)-(63) that detC = 1 and C.v3 = v3, so that the condition

(64) is necessarily satisfied. We can thus conclude that there exists a polycrystalline texture having a volume
fraction 〈χ1〉 of orientation 1 and for which the deformation gradient G defined by

G = F1 +(1−〈χ1〉)p⊗n (66)

is energy-minimizing, i.e. is in the set K̄.
The final step is to observe that the deformation gradient G in (66) can be written as G = R∗.F(ω∗,δ ∗)

for some rotation R∗ and some well-chosen values (ω∗,δ ∗). To that purpose, we first note that v3 being an
eigenvector of the symmetric tensor C for the eigenvalue λ2 = 1, the two eigenvectors (u1,u3) in (65) are
orthogonal to v3. It follows from the expressions (65) that the vectors p and n are also orthogonal to v3. We
thus have

G.v3 =
tG.v3 = (η2

1 η2)
1/3v3

Using matrix representations in the basis (v1,v2,v3), the tensor tG.G/(η2
1 η2)

2/3 can therefore be written as(
S 0
0 1

)
where S is a symmetric positive definite matrix in R2×2 with a determinant equal to 1. Let (µ1,µ2) be the
eigenvalues of S, ordered in such a way that µ1≤ µ2. Since µ1µ2 = detS= 1, we have necessarily µ1≤ 1≤ µ2.
Now the continuous function ω 7→ u(ω).S.u(ω) takes values in [µ1,µ2], so there exists ω∗ verifying

u(ω∗).S.u(ω∗) = 1. (67)
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Setting

δ
∗ = u(ω∗).S.v(ω∗), (68)

the relation detS = 1 implies that the matrix representation of S in (u(ω∗),v(ω∗)) is

(
1 δ ∗

δ ∗ 1+δ ∗,2

)
.

It follows that tG.G and tF(ω∗,δ ∗).F(ω∗,δ ∗) have the same matrix representation in the basis (u(ω),v(ω),v3),
i.e. that tG.G = tF(ω∗,δ ∗).F(ω∗,δ ∗). That last equality implies that G = R∗.F(ω∗,δ ∗) for some rotation R∗.
Since K̄ is frame-indifferent and G is in K̄, we can conclude that F(ω∗,δ ∗) is in K̄ for the values (ω∗,δ ∗)
given by (67)-(68).

As a first example of the above construction, set s = (η1/η2)
1/3 and consider the deformation gradient

F0
1 ∈ K̃

1 defined by

F0
1 = (η2

1 η2)
1/3 diag(s,1/s,1) (69)

which satisfies (61-62). We take F1 = F0
1 and F2 = R2.F0

1.
tR2. Setting t = s4, the eigenvalues λ1 and λ3 of C

are

λ1 =
1
4t
(1+2t + t2− (t−1)

√
t2 +6t +1), λ3 =

1
4t
(1+2t + t2 +(t−1)

√
t2 +6t +1),

and the corresponding eigenvectors are

u1 = v2−
(
√

t2 +6t +1+ t +1)
2t

v1, u3 = v2 +

√
t2 +6t +1− t−1

2t
v1.

Substituting in Eq. (65) gives two energy-minimizing strains for the polycrystal. The corresponding values
of (ω∗,δ ∗) are shown as red dots in Figures 2-4. A corresponding laminate texture is shown in Figure 5(a-b)
for 〈χ1〉 = 0.7, η1 = 1.5, η2 = 1. Layers of material with orientation 1 (shown in blue) are alternated with
layers of material with orientation 2 (shown in red). In the reference configuration, Figure 5(a), the normal
to the layers is taken as a vector n that is a solution of (65). In the deformed configuration, Figure 5(b), a
homogeneous deformation gradient F0

1 (resp. F0
1 +p⊗n) is applied in the layers with orientation 1 (resp. 2).

The macroscopic deformation gradient F(ω∗,δ ∗) that is realized that way is of the form (58). In Figure 5(a),
the cubic domain is chosen in a such a way that the edges of the top section are oriented along the shear
directions (u(ω∗),v(ω∗)).

The deformation of each monocrystalline layer in Figure 5(b) is achieved by some geometric arrange-
ment of the martensitic variants at the microscopic level. Such a geometric arrangement is represented in
Figure 5(c) for a layer with orientation 1. As detailed in Appendix, the deformation in such a layer can be
achieved by a second-rank laminate involving only variants 2 and 3 (in proportion approximatively equal to
0.3338 and 0.6662, respectively). The deformation of a layer with orientation 2 can be realized by a similar
microstructure.

The procedure described so far can be repeated for any F1 and F2 of the form (61)-(63), thus generat-
ing a set of values (ω∗,δ ∗) for which F(ω∗,δ ∗) is energy-minimizing. That set is denoted by ∆− in the
following. Although difficult to carry out by hand, the calculation of ∆− can conveniently be performed nu-
merically. The results are represented as green dotted domains in Figures 2-4. The corners of the domain
∆− correspond to all combinations of F1 in {(η2

1 η2)
1/3 diag(s,1/s,1), (η2

1 η2)
1/3 diag(1/s,s,1)} and F2 in

R2.{(η2
1 η2)

1/3 diag(s,1/s,1), (η2
1 η2)

1/3 diag(1/s,s,1)}. tR2. As can be observed in Figures 2-4, the green
domain ∆− fills most of the domain ∆+, which means that most of the values of (ω,δ ) in ∆+ can be realized
by laminate textures. The gap between ∆− and ∆+ could possibly be reduced by considering more complex
polycrystalline textures.
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Fig. 5 Example of energy-minimizing strain in a laminated texture, 〈χ1〉 = 0.7: (a) reference configuration; (b) deformed con-
figuration; (c) details of the martensitic microstructure in a monocrystalline layer.

6.3 Bounds on the volume fractions

The functions (Ar
i ,B

r
i ) that define the bound K̄+ in (57) are of special interest as they give some informa-

tion on the martensitic microstructures realizing any given energy-minimizing deformation gradient F̄. From
(55), Ar

i (F̄) and Br
i (F̄) are indeed lower and upper bounds on the volume fractions of martensitic variant i in

orientation r.
As a first example, calculating Ar

i (F̄) and Br
i (F̄) for the deformation gradient F̄ corresponding to Figure 5

gives the restrictions

0 ≤Θ 1
1 ≤ 0.0844, 0 ≤Θ 2

1 ≤ 0.1879,
0.3686 ≤Θ 1

2 ≤ 0.5723, 0.0329 ≤Θ 2
2 ≤ 0.3,

0.1838 ≤Θ 1
3 ≤ 0.3433, 0.0782 ≤Θ 2

3 ≤ 0.3.
(70)
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The polycrystalline texture and the martensitic microstructures displayed in Figure5 correspond to Θ 1
1 = 0,

Θ 1
2 ' 0.4662, Θ 1

3 ' 0.2337, Θ 2
1 = 0, Θ 2

2 ' 0.2, Θ 2
3 ' 0.1. Such values are compatible with the bounds (70),

as expected.
In Figure 6, the bounds (A1

i ,B
1
i ) are displayed as functions of the shear δ , for several values of ω . The

volume fraction 〈χ1〉 is set to 0.7. It is important to note that, because of the condition ∑i Θ
1
i = 〈χ1〉, the

volume fractions Θ 1
i cannot reach any arbitrary value that is compatible with the bounds (A1

i ,B
1
i ). For instance

in the case δ = 0, the upper bounds B1
i on Θ 1

i are all equal to 1/3 but the volume fractions Θ 1
i cannot be

simultaneously equal to the 1/3 (as otherwise the constraint ∑i Θ
1
i = 〈χ1〉= 0.7 would not be satisfied).

There is no general trend concerning the variations of (A1
i ,B

1
i ) with δ . For instance, in the examples

displayed in Figure 6, the function B1
1 can either be decreasing, increasing or non monotonic, depending on

the value of ω considered. Some intuitive insight in the behavior of the bounds (A1
i ,B

1
i ) can be obtained in the

infinitesimal strain approximation, using the idea that the martensitic variants that are most likely to develop
are those which are the most favorably oriented with respect to the applied strain, i.e. those that maximize the
quantity

zi(ω,δ ) = tr(ε1
i .ε(ω,δ )).

In that last equation, ε(ω,δ ) = (F(ω,δ )+ tF(ω,δ ))/2− I is the infinitesimal strain associated to F(ω,δ )
and ε1

i = (U1
i +

tU1
i )/2− I is the infinitesimal transformation strain for variant i. For the case at hand, we find

z1(ω,δ ) =
δ

2
(η1−η2)sinω , z2(ω,δ ) =−δ

2
(η1−η2)sinω , z3(ω,δ ) = 0.

The cases (a),(b) and (c) in Figure 6 correspond to sinω > 0. Therefore, for positive values of δ , variant 1
is favorably oriented and variant 2 is unfavorably oriented. Accordingly, when δ grows from 0, the bounds
(A1

1,B
1
1) initially increase while the bounds (A1

2,B
1
2) decrease. This is in line with the intuition that more

of variant 1 and less of variant 2 is expected to develop as δ increases from 0. Since z3(ω,δ ) = 0, variant
3 is neither favorably nor unfavorably oriented. Accordingly, the corresponding bounds (A1

3,B
1
3) remains

stationary (for δ small enough). The case (d) in Figure 6 is slightly different as it corresponds to sinω = 0.
In such case we have zi(ω,δ ) = 0 for all i, which explains that all the bounds (A1

i ,B
1
i ) remains stationary. All

of this reasoning is limited to the infinitesimal strain approximation, i.e. to small values for δ . As δ becomes
large, rotation effects become significant and the qualitative arguments explained above do no longer apply.
In particular, in the case (a), we can observe that B1

1 decreases for large values of δ .
The transformation F(ω,δ ) ceases to be energy-minimizing when one of the constraints A1

i < B1
i or

∑i A1
i ≤ 〈χ1〉 < ∑i B1

i is violated. The corresponding value of δ is displayed as a vertical dashed line in
Figure 6. For instance, the constraint A1

3 < B1
3 (resp. A1

2 < B1
2) is the limiting one in the case ω = 0.2 (resp.

ω = 0.75), see Figure 6 (a) and (b). For ω = 1, Figure 6(c), the limiting constraint is ∑i A1
i < 〈χ1〉. All the

remarks made so far on the bounds (A1
i ,B

1
i ) for orientation 1 can be transposed to orientation 2. In particular,

there are some values of ω for which the limiting constraints are associated with (A2
i ,B

2
i ).

7 Concluding remarks

In this paper, some rigorous upper bounds on the energy-minimizing strains of martensitic polycrystals have
been obtained in the geometrically nonlinear setting. The main results are the bounds K̄0

+ and K̄+ (defined in
(27) and (49) respectively) that depend on the texture through the volume fractions of the different orienta-
tions. Those bounds are expressed in terms of a given family C of tensors (a,b), which acts as a free parameter
in (27)-(49): each choice of C generates corresponding bounds K̄0

+ and K̄+. For a given (say discrete) C , the
bound K̄+ is tighter than K̄

0
+ but more difficult to calculate: whereas checking if a given deformation gradient

F̄ is in K̄
0
+ is a direct calculation, checking if F̄ ∈ K̄+ amounts to detecting feasibility of a linear program-

ming problem in Rn
m. In this paper, the bounds K̄0

+ and K̄+ have been used to study a 2-orientation/3-variant
polycrystal, in which case the calculations could be performed in closed form (for a well chosen C ). For
more complex textures, it is clear that numerical calculations of the bounds will be necessary at some point,
which requires adequate algorithms. In that regard, it can be noted that interior-point methods offer some
efficient algorithms for detecting feasibility in large-scale linear programming problems. Interestingly, such
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Fig. 6 Lower bound A1
i and upper bound B1

i on the volume fractions θ 1
i for MnCu, 〈χ1〉= 0.7: ω = 0.2 (a), ω = 0.75 (b), ω = 1

(c), ω = π/2 (d).

algorithms, as the self-dual algorithm of Ye [32], has been used in other problems related to shape-memory
alloys [26] and could possibly be useful for calculating the bound K̄+ in the case of a complex polycrystalline
texture. A more theoretical line of investigation consists in deriving upper bounds taking more information on
the texture (such as 2-point statistics) into account.
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A Bounds on the volume fractions for a two-orientation polycrystal of tetragonal martensite

Substituting the values of Table 1 in (54) and recalling that 0≤Θ 1
k ≤ 〈χ1〉, we find that A1

k(F̄)≤Θ 1
k ≤ B1

k(F̄) where

A1
k(F̄) = max

ε=±1

{ ‖F̄∗.vk‖−〈χ1〉η1η2−〈χ2〉maxl ‖U2,∗
l .vk‖

η1(η1−η2)
,

‖F̄.(vi + εv j)‖−
√

η2
1 +η2

2 〈χ1〉−〈χ2〉maxl ‖U2
l .(vi + εv j)‖

√
2η1−

√
η2

1 +η2
2

,

1
η2

1 −η2
2

(
‖η2F̄.vk− F̄∗.vk‖−〈χ2〉max

l
‖η2U2

l .vk−U2,∗
l .vk‖

)
,0
}

;

B1
k(F̄) = min

ε=±1

{
η1〈χ1〉−‖F̄.vk‖+ 〈χ2〉maxl ‖U2

l .vk‖
η1−η2

,

η1

√
η2

1 +η2
2 〈χ1〉−‖F̄∗.(vi + εv j)‖+ 〈χ2〉maxl ‖U2,∗

l .(vi + εv j)‖

η1(
√

η2
1 +η2

2 −
√

2η2)
,

〈χ1〉− 1
η1(η2

1 −η2
2 )

(
‖η2

1 F̄.vk−η2F̄∗.vk‖−〈χ2〉max
l
‖η2

1 U2
l .vk−η2U2,∗

l .vk‖
)
,〈χ1〉

}
.

In those expressions, the indexes (i, j) are such that (i, j,k) is a permutation of (1,2,3). Replacing vk by R2.vk and swapping the
roles of orientations 1 and 2, we obtain in a similar fashion that A2

k(F̄)≤ θ 2
k ≤ B2

k(F̄) with

A2
k(F̄) = max

ε=±1

{ ‖F̄∗.R2.vk‖−〈χ2〉η1η2−〈χ1〉maxl ‖U1,∗
l .R2.vk‖

η1(η1−η2)
,

‖F̄.R2.(vi + εv j)‖−
√

η2
1 +η2

2 〈χ2〉−〈χ1〉maxl ‖U1
l .(R

2.vi + εR2.v j)‖
√

2η1−
√

η2
1 +η2

2

,

1
η2

1 −η2
2

(
‖η2F̄.R2.vk− F̄∗.R2.vk‖−〈χ1〉max

l
‖η2U1

l .R
2.vk−U1,∗

l .R2.vk‖
)
,0
}

;

B2
k(F̄) = min

ε=±1

{
η1〈χ2〉−‖F̄.R2.vk‖+ 〈χ1〉maxl ‖U1

l .R
2.vk‖

η1−η2
,

η1

√
η2

1 +η2
2 〈χ2〉−‖F̄∗.(R2.vi + εR2.v j)‖+ 〈χ1〉maxl ‖U1,∗

l .(R2.vi + εR2.v j)‖

η1(
√

η2
1 +η2

2 −
√

2η2)
,

〈χ2〉− 1
η1(η2

1 −η2
2 )

(
‖η2

1 F̄.R2.vk−η2F̄∗.R2.vk‖−〈χ1〉max
l
‖η2

1 U1
l .R

2.vk−η2U1,∗
l .R2.vk‖

)
,〈χ2〉

}
.

Although somewhat lengthy, the obtained expressions are fully explicit and easy to calculate.

B Construction of a microstructure realizing the deformation gradient F0
1 in Eq. (69)

In this Appendix, we determine a martensitic microstructure realizing the deformation gradient F0
1 in (69) for a reference single

crystal with transformation strains given by (30). To that purpose, we first observe that F0
1 is in the quasiconvex hull of SO(3)U2∪

SO(3)U3 (which is denoted by K̃23 from now on). Following [2], symmetric positive definite tensors U in K̃23 are indeed
characterized by matrix representations (in the basis (v1,v2,v3) of the cubic austenitic lattice) of the form(

η1 0 0
0 u22 u23
0 u23 u33

)

with u22u33−u2
23 = η1η2 and

u2
22 +u2

33 +2u2
23 +2|u23(u22 +u33)| ≤ η

2
1 +η

2
2 . (71)

The fact that F0
1 is in K̃23 means that F0

1 can be realized by a microstructure involving variants 2 and 3 only. Also observe from
the characterization given above that symmetric positive definite tensors U in K̃23 can be parametrized by their components
(u23,u22). In Figure 7 is represented the set of values (u23,u22) corresponding to symmetric positive definite tensors U in K̃23.
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Fig. 7 Representation of K̃23.

Now consider a deformation gradient V+ on the boundary of the domain in Figure 7, and let V− be its symmetric with
respect to the u23 = 0 axis. We can write

V+ =

(
η1 0 0
0 v22 v23
0 v23 v33

)
, V− =

(
η1 0 0
0 v22 −v23
0 −v23 v33

)

and we assume that v23 ≥ 0. Using the fact that V+ satisfies (71) as an equality, we can relate (v22,v33) to v23 by the expressions

v22 =
1
2
(S+ ε

√
S2−4P) , v33 =

1
2
(S− ε

√
S2−4P) (72)

with S =−v23 +
√

v2
23 +(η1 +η2)2, P = η1η2 + v2

23 and ε =±1.
Following [2], deformation gradients on the boundary of the domain in Figure 7 can be realized by a simple laminate of

variants 2 and 3, i.e. there exists c± in [0,1] and R± ∈ SO(3) such that

V± = R±.(U2 +(1− c±)b⊗n) (73)

where (b,n) are solutions of the twinning equation (U2 + b⊗ n).U−1
3 ∈ SO(3). There are actually two sets of vectors (b,n)

solving the twinning equation. We denote them by (b+,n+) and (b−,n−). For (η1,η2) = (1.5,1), we have n+ = x(v2− v3)
and n− = −x(v2 + v3) with x ' 0.6934. It turns out that V+ satisfies (73) with (b,n) = (b+,n+), while V− satisfies (73) with
(b,n) = (b−,n−).

Eq. (73) expresses the fact that V± is realized by a laminate with a direction of lamination equal to n, mixing variants 2 and
3 in proportion c± and 1− c± respectively. As V+ and V− are symmetric with respect to the u23 = 0 axis in Figure 7, it can be
proved that c+ = c−. The exact value of c+ depends on the deformation gradient V+ considered.

The same argument as used in Section 6.2 shows that V+ and V− are rank-1 connected. Therefore K̃23 contains the defor-
mation gradient

H(c) = V++(1− c)b′⊗n′

where (b′,n′) solve the twinning equation (V++b′⊗n′).V−1
− ∈ SO(3). The parameter c can take any value in [0,1]. Let s be the

operator that maps any given F in GL+(3) to its symmetric definite positive part U in the polar decomposition F = R.U. When
c varies from 0 to 1, the tensor s(H(c)) remains in K̃23 and varies between V+ and V−, as represented in Figure 7 (red lines).
Since the twinning equation (V++b′⊗n′).V−1

− ∈ SO(3) generally admits two sets of solutions (b′,n′), there are two branches
c 7→ s(H(c)) to be considered, as can be seen in Figure 7. Independently on the branch considered, it can be verified that

v2.s(H(1/2)).v3 = 0,

i.e. the curve v 7→ s(H(c)) in Figure 7 crosses the u23 = 0 axis for c = 1/2. It follows that s(H(1/2)) as a matrix representation
of the form diag(η1,y,η1η2/y) with y = v2.s(H(1/2)).v2. Hence s(H(1/2)) is equal to F0

1 if

v2.s(H(1/2)).v2 = (η1η
2
2 )

1/3. (74)

Recall that H(1/2) depends on V+, the latter being parametrized by v23. The function v23 7→ v2.s(H(1/2)).v2 is represented in
Figure 8 for one of the branches c 7→H(c), with ε = 1 in (72). As can be observed on Figure 8, the condition (74) is satisfied for
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Fig. 8 Determination of the microstructural parameter v23.

some value v∗23 of the parameter v23 (numerical calculations give v∗23 ' 0.04352). The corresponding values of c+, V+, b′, n′ are
denoted by c∗+, V∗+, b′∗, n′∗, respectively. In particular, we note that c∗+ ' 0.3338 and n′∗ '−0.1868v3.

The conclusion is that the deformation gradient F0
1 can be realized by a laminate of normal n′∗, mixing the deformation

gradients V∗+ and V∗++(1/2)b′∗⊗n′∗ in equal proportion. Since V∗+ and V∗++(1/2)b′∗⊗n′∗ are themselves realized by first-
rank laminates of variants 2 and 3 (with the same volume fraction c∗+), the deformation gradient F0

1 is realized by a second-rank
laminate of variant 2 (in volume fraction c∗+) and variant 3. Such a second-rank laminate microstructure is displayed in Figure
5(c).
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