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Abstract This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable)
strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at nite
strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those
bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The
simplest form of the bounds presented is obtained by combining recent results for single crystals with a ho-
mogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound
delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is
demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the
development of a more detailed analysis, leading to improved polycrystalline bounds that are notably con-
sistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal
martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and
the results are compared with lower bounds obtained by considering laminate textures.
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1 Introduction

The peculiar properties of shape memory alloys (SMAs) — such as the shape memory effect or the superelas-
tic behavior — are the macroscopic result of a diffusionless solid/solid phase transformation between different
crystallographic structures, known as austenite and martensite [20,4]. Since the austenite has a crystallo-
graphic structure with higher symmetry than the martensite, several martesiaots need to be distin-
guished depending on the orientation of the martensitic lattice with respect to the austenitic lattice. Each
martensitic variant is characterized bytransformation strainthat is de ned as the deformation gradient
between the austenitic and martensitic lattices. The number of martensitic variants and the corresponding
transformation strains depend on the alloy considered. MnCu and MnNi are examples of alloys undergoing
a cubic to tetragonal transformation (i.e. the austenite has a cubic lattice and the martensite has a tetragonal
lattice). In that case, there are 3 martensitic variants. Widely used alloys such as gJuANi obey a
cubic-to-monoclinic transformation, in which case there are 12 martensitic variants to be considered.

The phase transformation between austenite and martensite can be triggered both by mechanical and ther-
mal loading. The most striking illustration of that phenomenon is the shape memory effect displayed by alloys
such as NiTi or CuAINi: cooling down a stress-free sample below a critical temperBfuransforms the
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2 Michaél Peigney

homogeneous austenite (stable at high temperature) to a martensitic microstructure, in which the marten-
sitic variants arrange themselves so as to produce a stress- free state with no macroscopic deformation. Once
in the cooled state, deforming the sample mechanically entails a phase transformation of some martensitic
variants to others. After unloading, a macroscopic residual stress-free strain is observed as a result from the
cooperative effect of the microscopic transformation strains in each variant. Heating the sample transforms
the martensite back in austenite, thus restoring the initial con guration. We note that, in a polycrystalline
sample (which is the common form of commercially available SMAS), the formation of austenite/martensite
microstructures is typically observed in each grain. This leads one to distinguish between three length scales:
the microscopicscale of the austenite/martensite microstructuresptheoscopiscale of the constitutive

grains, and thenacroscopicscale of the polycrystal consisting in numerous grains. The macroscopic scale
can be interpreted as the length scale of a representative volume element (RVE) of the polycrystal. Express-
ing the macroscopic free energy in terms of the mesoscopic free energies in the constitutive grains is a long
standing topic in the study of polycrystals and granular materials (see e.g. [18] for a recent work in the eld
of granular materials).

A possible route to study the formation of microstructures in SMAs is to adopt a nonlinear elasticity
model of phase transformation [2]. The general principle is that, under a prescribed loading, the system tends
to minimize its free energy. This approach amounts to consider that the evolutions are thermodynamically
reversible and to look for stable equilibria. Assuming the microscopic, mesoscopic and macroscopic scales to
be well separated, the energy minimization principle leads to different expressions of the free energy at each
scale. Denoting the microscopic free energyrbythe mesoscopic enerdy is obtained as theelaxation(or
guasiconvexi catiofof Y , which essentially amounts to solve an optimal design problem with respect to the
martensite/austenite geometric arrangement (see Section 2 for a precise de nition). Viewing group of grains
with the same orientation as individual homogeneous materials (governed by mesoscopic free energies), the
polycrystal can be regarded as a composite material with a macroscopic ¥nebggined bynomogenization
of the constitutive free energy functions.

Assuming the microscopic free energyto be known, determining its relaxatiodh largely remains an
open problem. Estimating the macroscopic free en#rdy even more challenging as stress and strain com-
patibility conditions between the grains need to be taken into account. Of special interest are the strains that
minimize the mesoscopic (resp. macroscopic) free-energy. Those energy-minimizing strains can indeed be
interpreted as the recoverable strains of a monocrystalline (resp. polycrystalline) shape memory alloy, i.e. the
strains that can be recovered by the shape memory effect [6]. Knowing the set of recoverable strains is crucial
for designing SMA systems. Experiments only give partial insight in the structure of that set, as they usu-
ally only give measurements along prescribed directions (see e.g. [33]). In this paper, we propose theoretical
bounds on thevholeset of recoverable strains, i.e. in the space of three-dimensional deformation gradients.
Those bounds are expressed in terms of the lattice parameters and of statistical information on the polycrys-
talline texture (namely the orientation distribution function). Such data can be obtained experimentally using
X-ray diffraction or EBSD (Electron Back Scattering Diffraction).

The problem can be formulated either in the geometrically nonlinear setting or in the geometrically lin-
ear setting. The latter assumes small deformations with respect to a reference con guration. Although that
assumption can be regarded as questionable for shape memory alloys (notably because of possibly large ro-
tation effect), it allows the analysis to be simpli ed signi cantly. In the geometrically linear setting, the exact
expression of the relaxation of a (piecewise quadratic) double-well energy can been obtained [15,27]. Lower
and upper bounds have been proposed for the relaxation of a three- or more-well energy [29,11,10,23]. The
structure of the set of mesoscopic energy-minimizing strains has been studied in detail, notably for the most
challenging case of monoclinic martensite [6,7,25]. Concerning polycrystals, bounds are available for the
macroscopic energy-minimizing strains as well as for the macroscopic free energy [12,23,6,28].

In the geometrically non linear setting, the set of mesoscopic energy-minimizing strains has been obtained
in closed-form for a double-well energy [2]. Using known restrictions on Young measure, an upper bound
on the mesoscopic energy-minimizing strains has been proposed in the case of three or more wells [24].
Regarding polycrystals, a general method has been introduced in [22] for generating upper bounds on the set of
macroscopic energy-minimizing strains, assuming that the set of energy-minimizing strains of the constitutive
single crystals (or at least an upper bound on it) is known. The approach used in [22] is based on the translation
method [16], which has proved to be a powerful tool in various problems related to homogenization. In
particular, for nonlinear composites, variations of that method allows one to obtain bounds on the macroscopic
strains that are compatible with a given macroscopic stress [17,30, 21].
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In this paper, we focus on upper bounds of the macroscopic energy-minimizing strains of martensitic poly-
crystals, in the geometrically non-linear setting. We begin in Section 2 by describing the nonlinear elasticity
model of phase transformation and presenting the upper bound of [24] for single crystals. In Section 3 we com-
bine the monocrystalline bound with the methodology of [22] to derive explicit upper bounds for polycrystals.

It turns out, however, that the upper bounds that are obtained may fail to recover the single crystal bound in the
homogeneous limit, as discussed in Section 4. Motivated by that observation, we modify the polycrystalline
approach so as to take the special structure of the single crystal bound into account (Section 5). This results
in new upper bounds for polycrystals, which improve on the bounds of Section 3 and are consistent with the
single crystal bound in the homogeneous limit. In Section 6, we study a two-orientation/three-well polycrystal
and compare the proposed upper bounds with lamination lower bounds.

2 Single crystal

In the framework of nonlinear elasticity at nite strains, the microscopic behavior of a shape-memory alloy is
described by its free energy density which is a function of the deformation gradightWe denote bK the

set of deformation gradients that minimi¥e Without loss of generality, we can assume that the minimum
value ofY isequalto 0, sothat 0 and

K = fFjY (F) = Og:

The principle of frame indifference implies th¥t(R:F) = Y (F) for any rotationR and deformation
gradientF. Moreover, in the case of shape memory alldyshas a multi well structure. Accordingly, the set
K takes the form o

K= [ SO(3)U;
i=1

whereU;; ;Up are given symmetric positive de nite tensors that depend both on the temperature and on
the alloy considered. At a temperatuFebelow the transformation temperatufé, the numbem of wells
is equal to the numbenv of martensitic variants. The corresponding transformation sttdins ; Uy, are
all symmetry related, i.e. for anfj; j) there exists a rotatioR;; such thatU; = 'Rij:U;i:R;j (here and in
the following, the pre-superscriptdenotes the transpose operator).TAt T, both the austenite and the
martensite variants minimize the microscopic energy, sotamnv+ 1. In general, the deformation gradient
Unw 1 corresponding to the austenite is not symmetry related to any of the martensitic transformation strain.
At T > TO, there is only one well which corresponds to the austenite phase.

Consider a reference con guration where a dom@lnis occupied by a single crystal of shape memory
alloy. Each material particle is identi ed by its locatiorin the reference con guration. The deformation of
the crystal is described by a mapping W 7! R® which gives the location (in the deformed con guration)
of the material partlcle( We study the equmbrlum of the crystal under boundary conditions of the form
u(x) = F:x whereF is a given mesoscopic deformation gradient (here and in the following, the superscript ~
denotes quantities de ned at the mesoscopic scale). The effective free energy at equilibrium is given by

Y(F)= inf_ hY (Fi 1)
F2A (F)

wherehi denotes volume average over the domaimnd the seA (F) of admissible deformation gradient
elds is de ned by

A (F) = fFjdetF > 0;9u(x) 2 WX¥ (W; R®) such thaf = Nuin W;u(x) = F:x onTWg: (2)

The in mum problem in (1) is easily solved f 2 K: in that case, the homogeneous &#gx) = F realizes

the in mum and we havey (F) = Y (F) = 0. The situation gets more complicatedmif2 K: in that case,

a minimizer of (1) does not necessarily exist. This is a consequence of the multi well structre haf

non existence of a minimizer physically corresponds to the formation of microstructures at a very ne scale
(twinned laminates are examples of microstructures which are frequently observed in shape memory alloys,
see e.g. [20]). In such a situation, the evaluatiovi ¢F) requires to study the weak convergence of minimizing
sequences, which involves mathematical concepts such as Young measures [14] and quasiconvexity [8]. The
functionF 7! Y (F) is mathematically referred to as thaasiconvexi catior{or relaxatior) of Y and can be
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interpreted as the mesoscopic energy of the materiak Lis¢ the set of deformation gradients that minimize
Y . SinceY is positive and vanishes df, the minimum value oY is equal to 0 and we have

K = fFjY (F) = 0g:

The setK is also known as thguasiconvex hulbf K [8,19]. The exact calculation of still remains
a largely open question. In the framework of nite strains as considered in this paper, the problem has been
solved exactly [2,5] only in the case where

() thestraindJy; ;Um have same determingnt 3)
(ii) there existsn> 0 andv 2 R® such thatjv= mvforalll i m:

The assumptiofi3ii) show that problems of the form (3) are fundamentally two-dimensional. Commonly used
shape-memory alloys, such as TiNi or CuAINi, do not ful Il the assumptioin) (@nd the exact expression

of K for such materials is unknown. In such a situation, one may look for bounds (in the sense of inclusion
of sets) to obtain some rigorous information Kn In this paper we primarily focus on upper bounds (the
guestion of constructing lower bounds is addressed in Section 6).

Upper bounds o can be obtained using known restrictions on Young measures [24]. Some notations
are in order. We introduce the frame-indifferent functonR3 3 7! R de ned by

F(M)= Rz@acg((s) tr(R:M): 4)

The supremum problem de ning (M) can be solved in closed form : we have indeed
F(M)=13+12+11sgn(detM) (5)

where0 |3 |2 |3arethe eigenvalues 8f‘M:M.
Let F denote the adjugate of a matfx2 R3 3, i.e.F = detF:'F 1. Foranya2 R® 3, b2 R3 3and
¢ 2 R, the functionh de ned by
h(F) = tr(F:a+ F :b)+ cdetF (6)

is known to be quasiconvex [8], i.e. satis es
h(F) h h(F)i forall F andF 2 A (F): (7)

The functiond= in (4) andhin (6) are related by the following identity, which will be frequently used in this
paper:

sup h(R:F)= F(F:a+ F :b)+ cdetF: (8)
R2SQ(3)
Finally, we set
m
T=fqg=(q; ;am2R™:q 03 ¢q= 1y ©)

i=1

Using those notations, it can be proved [24] that theksetde ned by

m
Ki:=fF2R33:992T suchthat déi = § q;detU;

=t m (10)
and0 sup fF(F:a+F:b) Q qF(Uia+U :bgg
(aby2C i=1

is an upper bound oK, i.e. satis esK K . For a giverF in K , , the vectorg in (10) can be interpreted as
the volume fractions of the different wells in a microstructure realiFn¢n general there is no uniqueness
for q. This is connected to the fact that, except in special cases, energy-minimizing deformation gfadients
can be realized by several microstructures.

In (10),C is a given arbitrary subset 8 2 R® 3. Note that each choice @f generates a corresponding
bound orK . In principle, the best bound is obtained by taki®as large as possible, i€.= R® 2 R3 3,
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In practice, however, one may restrietto a smaller family to ease the calculations and notably obtain closed
form expressions.

[For later reference, we close this section with a brief derivation of the bisund fundamental property
of K is that any giveri- 2 K can be written as

Z
F=  Adn(A) (11)

R3 3

for some Young measume supported orK [2,19]. For our purpose, we only need to record the following
properties of Young measures [14]:

z

DN n o0 dn(A)= L

(ii) f Adn(A) f(A)dn(A) for any f quasiconvex
R3 3 R3 3

(12)

Moreover, sinc&K = [ [, K; where the well&K; = SQ(3)U; are closed and disjoint, the Young measuiia
(11) can be written as

m
o
n=an
i=1

wheren; is a positive measure supported k¥n[2]. Using the properties (11-12) with quasiconvex functions
h of the form (6), we obtain
m Z
h(F) a h(A) dn;(A):
=1 SOV |

The identity (8) givehi(A) F(Ui:a+ U;:b)+ cdetU; for anyA 2 SQ(3)U;. Consequently we nd

m
h(F) & g F(Ui:a+ U, :b)+ cdety; (13)
i=1

R
whereq; = g3 3dn;i(A). As a consequence of ({)2the vectorg = (q1;  ;dn) belongs to the sék in (9).

Let nowR be an arbitrary rotation. Observing tHa#! h(R:F) is quasiconvex and proceeding as in (13),
we obtain

m
h(R:F) & q F(Ui:a+ U, :b)+ cdety; :
i=1

Taking the supremum ovét in this last equation and using the identity (8), we get

m
F(F:a+ F :b)+ cdetf  § qf F(Uj:a+ U, :b)+ cdetU;g: (14)
i=1

The conclusion is that for arfy 2 K, there existg] 2 T such that (14) holds for anfg; b;c). In other words,
the setK + in (10) is an upper bound oK.

As detailed in [24], the bound given by (10) coincides withfor the reference cases where the exact
expression oK is available, such as problems of the form (3).
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3 Polycrystal

Now consider a polycrystal occupying a domélih We can decomposé/ asW = [ L ;W' where each sub-
domainW' is formed by grains with the same orientation. The microscopic free enellyy aan be written
as

Y'(F)=Y(R"FR" (15)
whereR' is a rotation describing the orientation\if relative to a reference single crystal. De nieg the
characteristic function oV (i.e.c"(x) = 1if x2 W', andc'(x) = 0 otherwise), the microscopic free energy
of the polycrystal is a heterogeneous function of the form

n
Y (Fx)= @ (Y "(F):
r=1
The setK (x) of deformation gradients minimizing 7! Y (F;X) is thus
[m
K(x)= " SQAQ)Ui(x) (16)
i=1

whereU;(x) = & ; c"(x)Ul andU! = R":U;:'R". The functiong!; ;c"together with the rotatiorR?;  ;R"

fully describe theextureof the polycrystal, i.e. the shapes, distributions and orientations of the grains.
Consider boundary conditions of the forrx) = F:x whereF is a given macroscopic deformation gradi-

ent (here and in the following, the superscripenotes macroscopic quantities). At equilibrium, one expects

the formation of microstructures in each grain. Assuming the scale of such microstructures to be much smaller

than the scale of the grains, theacroscopidree energy (F) of the polycrystal is given by

_— — n ~
Y(F)= min_hg c"Y ' (F)i (17)
F2A (F) r=1

whereY ' is the relaxation o¥ ', as de ned in (1) (see e.qg.[4] for a detailed justi cation). In the following,
we primarily focus on the sé¢ of deformation gradients that minimize the macroscopic energy, i.e.

K = fFjY (F) = Og:

In view of (17), we have the following characterizationtof

K = fF9F 2 A (F);F(x) 2 K(x) for all x 2 Wg: (18)

Hence the distinctive property of straifisin K is that they can be realized by a deformatigix) whose
gradientr = Nu satis es the local constraiti(x) 2 K (x) at each point. _

Let K" be the quasi convex hull df2,SQ(3)U;, i.e. the set of strains minimizing . For anyF in
\ L LKr, the homogeneous eldr(x) = F is in A (F) and satis es the constrairi(x) 2 IZ(x) in W. The
setk =\"_,K'isthus alowerbound onK, in the sense that K: That lower bound (referred to as
the Taylor bound) has been studied in detail in the geometrically linear setting [6]. Note that thekbound
only depends on the rotatiod®'; ;R", and not on the functions®; ;c", therefore ignoring a lot of
information about the texture. _

Using the quasiconvexity of the functidmin (6), upperbounds orK that take one-point statistics of the
functionsc' can be derived [22]. Let inded€lbe inK and consider a deformation gradient efdin A (F)

such thatF(x) 2 K (x) for all x (recall that suctF exists by (18)). Using the property (7) and noting that
4,c"= 1, wehave
_ n
h(F) h h(F)i = & hc"h(F)i: (19)
r=1

Observe from (8) thah(F(x)) F(F(x):a+ F (x):b)+ cdetF(x). For x 2 W', we haveF(x) 2 K" and
consequently
h(F(x)) F(F(x):a+ F (x):b)+ cdetF(x)  supfF(F:a+ F :b)+ cdetFg:
F2K'
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Substituting in (19) gives

h(F) a he'i sup fF (F:a+ F :b)+ cdetFg : (20)
r=1 F2K'

The frame-indifference df implies thatR:F also satis es (20) for any rotatioR, which using (8) leads to

F(F:a+ F :b)+ cdetF a hc'i supfF(F a+ F :b)+ cdetFg : (22)
r=1 F2K'

Let Cdenote a given subset B 3 R3 3. From (21) we obtain that arfyin K necessarily satis es

_ _ _ n
sup sup F(F:a+F :b)+cdetFr J hc'i supfF(F:a+F :b)+ cdetFg O (22)
¢ (ab)2C° =1 FK'

The set of deformation gradieﬁtverifying (22) is thus an upper bound &f. That upper bound has been
used in [22] on some examples where the constitutive single crystals ful Il the conditions (3), in which case
the setsK ' are known. For polycrystals that do not satisfy (3), the direct appllcat|on of the bound (22) is

hampered by the fact th#t' is unknown. In such case, calculating the supremum Kvethat appears in
(22) remains out of reach. Such a dif culty can be overcome by using the results from Section 2. Let indeed
K be the upper bound ¢¢" de nedin Eq. (10). Sinc&k" K%, we have Supr F(F:a+ F :b)+ cdetF

SUFkr F(F:a+ F :b)+ cdetF. Therefore, we obtain from (22) that aﬁyn K necessarily satis es

sup sup fF(F a+ F b))+ cdetU ahC| supfF(F a+ F :b)+ cdetFgg O: (23)
¢ (@ah)2C® =1 FaK"

The calculation of the right-hand side in (23) can be further simpli a0 C, i.e. if the bound (23) and the
boundK ", given by (10) and are calculated using the same set of tefaduks In that case, we have indeed

sup fF(F:a+ F :b)+ cdetFg= mafo(Ur a+ Ul' :b)+ cdetU[g (24)
F2K",

for any(a;b) 2 C. That last property is easily proved: for a givein IZL, Eq. (10) yields

m
F(F:a+ F :b)+ cdetF  § qif F(Ul:a+ U} :b)+ cdetUlg (25)
i=1

for someq 2 T. Since anyg in T veries g 0 anda; q; = 1, the right hand side of (25) is bounded from
above by max i mf F(U:a+ Uir' :b) + cdetU]g. Therefore we have

sup fF(F:a+ F :b)+ cdetFrg maxfF(U[:a+ U}’ :b)+ cdetU/g:
F2K', tem

The converse inequality follows directly from the fact thit2 K' fori=1, ;m.
Combining (23) and (24) gives

K K° (26)
where
— N_ o]
Ky= F2R%®3:0 sup sup F(F:a+F :b)+ cdetF a he'i mafo(Ur a+ U] :b)+ cdetU'g

¢ (ah)2C r=1
(27)
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In the most usual situation when all the transformation strainsave the same determinant, the E&
can be rewritten more simply as

kS

J— — _— _— n .
= F2R®3:detF=detU}; 0 sup fF(Fa+F:b) & hc'i maxF(Ul:a+ U :b)g : (28)
(a,‘b)ZC =1 1im

The selK_g is an explicit upper bound that depends on one-point statistics of the texture, i.e. on the volume
fractionshc'i of the different orientations.

For a discreteC, checking if a given deformation gradieftis in IZS amounts to check iF satis es a
nite number of constraints. A similar remark holdsGf is not discrete but with the form

N[ o
f(uj wiuy wa
j=1w2R3

In that case, Eq. (5) indeed shows tﬁz(tf:uj w+F :u? w) = kE:Uj +F :u?k:kwk so that the condition

— — n .
0 sup fF(F:a+F:b) & hc'i maxF(Ul:a+ U’ :b)g
@h)2C ;=1 Lim

is equivalent to

_ _ n
0 maxfkFuj+F %k § he'i

max kU[:uj + Ul :u%g;
1 j N r=1

1im

i.e. to a set oN constraints off.

4 Homogeneous limit

In this Section we study the behavior of the polycrystalline bound (27) in thetimit 1. In that case, the
0 . . .
setK, in Eq. (27) is characterized by

0 sup sup F(Fa+F :b)+cdetF maxfF(Ul:a+ U" :b)+ cdetUlg : (29)
¢ (ab)2C tem

In the homogeneous limici! 1, there is no distinction between the mesoscopic scale and the macroscopic
scale. Since the bourKl?, is the result of substituting the monocrystalline upper bound (10) in the general
prescription (22), one would expect the set de ned by (29) to coincide with the monocrystalline Kqund
generated from the same fam(@y. This can be proved to be indeed the case for problems of the form (3), but
itis not trug in general. To illustrate that point, consider the cubic to tetragonal transformafien &f: we
havek!= "2, SO(3)U! where

0 1 0 1
h, 0 0 hy 0 0 hy 0 0

Ul=@0 h; 0A ;U=@0 h, 0A ;Ui=@0 h; 0A: (30)
0 0hy 0 0hy 0 0 h;

These matrix representations are relative to the reference orthonormahaagssvs) of the cubic austenitic
lattice in orientation 1. The parametdis;, h,) are non-negative and distinct. We assume in the following
thath, < hj.

We determine the boundé. in (10) andK_g in (29) corresponding to the famil§g of tensors(a;b)
de ned by [

C= f(vi w;0);(0v; w)g: (31)
j2f 1;2;3g;W2R3
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Let us rst determine the se, in (10). For a xedF in K, we can see from (10) that det hZh,.
Moreover, there existg 2 T such that

0 F(Fa+F b gti(uil:a+ U" :b) (32)
i=1
for all (a;b) in the familyC de ned by (31). Any suclfa; b) can either be written g&; w;0) or (O;vj w).
In the rst case, the de nition (4) givek (F:a+ F :b) = kF:v;k:kwk so that (32) becomes
0 k Fuvjk és_qikuil:vjk:
i=1
Observing thakUil:ijz hi+(h2 hy)dij and recalling tha&?zlqi = 1, we obtain
0 k Fivik hy qj(hz hy): (33)
In the cas€a;b) = ( O;v; w), a similar reasoning leads to
0 k F:vjk hihy gjhi(hs hy): (34)
This inequalities (33) and (34) can be combined as as

KF wvjk hih,  hy k Fivjk,

hi(h1 h2) y hi hs (33)
Any g in Tis suchthat; 0anda$ ,qj= 1. Itfollows that anyF in K, satis es
hy k Fivjk  kF :vjk hihp  kF :vjk hihp  hy k Fivik
; 1; for j= 1,2;3;
hy hy ' hi(h; hy) hihi h)  hp hp )
18 - 3 (36)
3h,+ P a kF ik hi hx 3h1 g kFjk;
lij=1 j=1
which can be rewritten more simply as
kFivik  hy; kF wvik  h2; hikFivik+ kF ivik  hy(hg+ h) for j= 1;2;3;

a kFvjk  2hi+ hy; & kF :vik  hy(2hp+ hy):
j=1 j=1
Conversely, for any¥ satisfying (37), it can be veri ed that there exigi2 T satisfying (32) for all(a; b)
in C. Therefore, the inequalities (37) (complemented by the restrictiof det 2h,) characterize the upper
boundK ; that is generated by the famity de ned in Eq. (31).

Let us now calculate the bound in (29). Since the transformation straid; UL; UL in (30) have same
determinant, we obtain from (29) that afiyn K satis es de€ = h2h, and

0 F(F:a+F :b) lm.a>§F(Ui1:a+ U" :b) (38)
|

for all (a;b) in C. Using the special form of the tensdigs b) de ned in (31) and the corresponding values of
F(Ula+ Uil; :b), the inequality (38) is found to be equivalent to

kF:vik  hykF vk hiforj= 1,2,3: (39)

Comparing (39) with (37) shows thit, IZE. That inclusion is actually strict: consider indeed the defor-
mation gradienEq de ned by
r

Fo=(nfh)™ 1+ (127 11 ve



10 Michaél Peigney

We have defo = h2h; and

kEo:vik = kEoivak = (h2h2) 1 ; kFoivak = hy ; kFgivak = kEgivak = (h2h)22 5 kFqvik = hohl™:
Sinceh, < hy, it can easily be veri ed thaf, satis es (39) and therefore is iKS. However, we have
hikFo:vok + kFg:vak = h2+(h2h2)22 > hy(hy+ hy). Therefore o does not satisfy (37) and is notlf .

This example shows that the bound in (27) may fail to recover the single crystal bound in the homogeneous
limit. This is an indication that some information is lost when directly plugging the monocrystalline bound
(10) in the general prescription (22). In the following, we derive an improved upper bouldloat notably
coincides with the single crystal bound (10) in the homogeneous limit.

5 Improved bound for polycrystals

The boundKS in (27) can be improved upon by taking the special structure of the monocrystalline bound
(10) into account, as is now explained. C0n5|desr a givem K. By (18), there exists a eldF 2 A (F) such
thatF(x) 2 K(x) for all x 2 W. Recall thaK (x) = ~{T; SO(3)Ui(x) whereU;(x) = &, c"(x)U]. Using the
bound (10) orK(x) we know there existg(x) 2 T such that

0 sup sup F(F(X):a+F (x):b)+ cdetF(x) gqi(x)fF(Ui(x):a+ U, (x):b) + cdetUi(x)g : (40)
¢ (ab)2C i=1

Sincec’(x) 2f 0;1gandd, c"(x) = 1, Eq. (40) can be rewritten as

n m
0 sup sup F(F(x):a+F (x):b)+ cdetF(x) & & c"(X)gi(x)fF(U:a+ U’ :b)+ cdetUlg : (41)
¢ (ab)2C r=1i=1
Foranyr=1; ;nandi=1, ;mdene
i ()= c"(x)ai(x): (42)
Taking volume averages in (41) yields
n m
0 sup sup HF(F:a+F :b)+cdetFi § & hyfif F(Ul:a+ U}’ :b)+ cdetUlg (43)
¢ (ab)2C r=1i=1

The crucial point is that the functidR 7! F(F:a+ F :b)+ cdetF is quasiconvex. Using (7) and observing
from (8) thath(F) F(F:a+ F :b)+ cdetF, we have indeed

h(E) h h(F)i h F(F:a+ F :b)+ cdetFi: (44)
Consider a given rotatioR. SinceR:F 2 A (R:F), we obtain, in a similar way to (44),
h(R:F) h F(R:F:a+ R:F :b)+ cde(R:F)i: (45)

The functionF being frame-indifferent, the last term in (45) is equalfqF:a+ F :b)+ cdetFi. Therefore,
taking the supremum ové in (45) and using the identity (8), we get

F(E:a+ F :b) + cdetF h F(F:a+ F :b)+ cdetFi:

That last inequality, holding for any andF 2 A (F), proves that 7! F(F:a+ F :b) is quasiconvex. Al-

though it has not been stated explicitely up to this point, the quasiconvexitycah be regarding as the main
argument behind the bounds (10) and (27) considered in Sections 2-3. Here, in view of (43), the quasiconvex-
ity of F implies that

_ _ . nm
0 sup sup F(F:a+F :b)+cdetF § §hglif F(Ul:a+ U] :b)+ cdetUlg : (46)
¢ (abh)2C r=1i=1
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The scalaig/i can be interpreted as the volume fraction of martensitic variaith orientationr. Note from
(42) thatthgig; | ! belongs to the sék de ned by

1im

_ m
T=fQ2RNQ' 0;8Q =h'i8r=1;, ;ng (47)
i=1

The developments so far show that for &hin K, there exist® 2 T verifying the inequality (46). This last
statement can be rewritten as

K K, (48)

where
_ n_ _
K+ = F:9Q 2 T such that
C- C - - r r. . r O. (49)
0 sup sup F(Fa+F :b)+cdetr g q Q'fF(Uj:a+ U; :b)+ cdetU;g
¢ (ab)2C r=1i=1

In the case where all the transformation strains have the same determinant,kfhe(mt be rewritten more
simply as

_ _ _ _ . . n m _
K+ = F:detF=detU};9Q 2 Tsuchthat0 sup fF(F:a+F :b) & & Q'F(Ul:a+ Ul :b)g :
(ab)2C r=1i=1

50
Eq. (48) means tha ;. is an upper bound on the set of macroscopic energy-minimizing straigs )for the
polycrystal. In a way similar to the bounaf considered in Sec. ¥ . depends on the texture through the
volume fractiondc'i of the different orientations (the later indeed appear in the de nition (47) of th€)set
Observe that the bourtdl. is always tighter than the bourha? obtained from the same s€t By (47), any
Q 2 T indeed satis es

m
[o]

a Q' (F(Ul:a+ Ul :b)+ cdetU]) hc'i lmafo(U{:a+ Ul :b)+ cdetU[g (51)
i=1 tm

forr=1, :n. It follows thatK . IZS. We also note that, contrary to the bouﬁa, the boundK 4 in
(49) coincides with the monocrystalline boukd in the homogeneous limit. This shows that the inclusion
K+ KS can be strict, i.e. that the boukd. can bring a genuine improvement.

Regarding the practical calculation of the boufd, observe that the inequality O F (F:a+ F :b)
ariQf F(Ul:a+ Uir’ :b) in (49) can be viewed aslaear constraint orQ, parametrized by. Deformation
gradients in K, are characterized by the fact that those linear constraints (supplemented by the conditions
Q 2 T) de ne a non empty set d®},. In the language of linear programming, this amounts to dé&testbility
of the linear constraints [31], which is not a direct calculation — even for a disCrefte the next section, we
show how the problem can be conveniently solved in the case of a two-orientation / three-well polycrystal.

6 Analytical example
6.1 Upper bounds

We consider a polycrystal with two orientations, assuming without loss of generality that orientation 1 is
the reference orientation. The constitutive single crystals obey a cubic to tetragonal trgnsformation. We are
interested in estimating the energy-minimizing strain§ at T, i.e. in the case wheié! = ~ 2 ; SQ(3)U?t

with U1, U3, U} given by (30). The set ? of strains that minimize the microscopic free energy in orientation

2 can be written a& ? = RZ:K :'RZ whereR? 2 SQ(3).
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Table 1 Values of(a; b) used for the cubic to tetragonal transformation

a b Fi(ab) Flab)(i6k)
Vk  Vk 0 hs hy
0 Vi Vk h? q hih;
(vi Vj) Vi 0 péhl th+h22
0 (vi vj) w péhlhz hq h12+ h22
h1 h2
—_— 0 1
hz nz'* % hnz ngtk Yk
h VK V L VKV 1 0
hf h22 k k hf h22 k k

We rst illustrate how the prescription (49)_can be used to derive a closed-form boukid By (49) we
know that for any giverr in K, there exist® 2 T verifying

0 F(Fa+F:b) & & QFl(ab) (52)

with the notatiorF{(a;b) = F(U[:a+ Ul" :b). Assume we can pick o(g; b) such that
Fi(ab)= Fj(a;b) 6 Fi(ab) (53)

for some permutatioi; j; k) of (1;2;3). Sinced . ; Q! = hcli, the relation (52) gives
_ _ 3
0 F(Fa+F :h)+ QXFl(ab) Fiab)) hcliFl(ab) & QFi(a;b):
=1

Using the fact tha®? 0 and&? Q2= hc?i, we get
0 F(Fa+F :b)+ QiFi(ab) Fi(ab)) hcliFi(ab) h c?i 1m|a>§F|2(a; b):
That last inequality can be rewritten as

F(F:a+ F :b)+ hcliF}(a;b)+ hc2i max F(a;b)
_ _  FHab) Fg@ab)

F(F:a+ F :b)+ hcliF }(a;b)+ hc?i may F(a;b)
Fl(ab) Fi(ab)

Q} if Fi(a;b) Fl(a;b)> 0;

(54)

Qt if Fi(a;b) Fi(a;b) < 0
Observe that tensofs; b) of the form (31) verify the condition (53). In a separate study of the monocrystalline
cubic to tetragonal transformation [24], other tens@®) verifying (53) have been found. Those tensors
(a;b) are listed in Table 1, along with the corresponding valuesigi; b). The tensorga; b) in Table 1 have
been found in the course of a full optimization of (10) with respect to tengply that are diagonal in the
reference cubic lattice (see [24] for more details).

Substituting the values of Table 1 in (54), we nd that

ALF) Q! BYF) (55)

WhereA&(IE) and B&(IE) are explicit functions whose expressions are reported in Appendix A. A similar
analysis can be performed to the orientation 2. This is simply achieved by replacing by R%:v; and
swapping the roles of orientations 1 and 2 in the previous developments. Such a procedure leads to

AZF) Q2 BXF) (56)
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Fig. 1 Representation of the deformatibf du(w) v(w) : reference (left) and deformed (right) con guration.

where the expressions gﬁ(f) and Bﬁ(lf) are detailed in Appendix A. In view of (55-56), some necessary
conditions forF to be inK are _ _
A(F) Bi(F) fork=1;2;3;
3 _ 3 _
a AF) hc'i @ BiP);
k=1 k=1
with r = 1;2. The second inequality in (57) stems from the fact &t Qf = hc'i. The relations (57) de ne
the upper boun& ; corresponding to the set of tensdqigb) listed in Table 1 (along with their rotated
versions obtained by replacivg with R%:v,c in Table 1).

(57)

So as to illustrate the bound obtained, consider deformation gradiéntsl) of the form
F(w;d) = (hfh2)*=(1 + du(w) v(w)) (58)

where
u(w) = coswvsy + sinwvy andv(w) = sinwvy + COSW Va:

The deformation gradief(w;d) is a simple shear between the directiofi) andv(w) (Figure 1), followed
by a uniform dilatatior(h2h2)1=3I. The parametew is the angle made by the shear directi¢ngn);v(w))
with the directiongvs;V2) of the cubic austenitic lattice in orientation 1.
In the following, we are interested in estimating the valivexd) for which F(w; d) is energy-minimizing.
Except stated otherwise, all the results presented next are obtained with the lattice parameters of MnCu, i.e.
hy = 1:0099,h, = 0:9656 [3]. The rotatiorR? de ning the orientation 2 is taken as

0r; 5 1

2 @i p2 OA
R-= T2 72 o™: (59)

0 0 1

Textures satisfying the assumptions made so fam{ize2 with R = | andR? given by Eq. (59) ) are observed
in some ribbons of shape memory alloys [9].
Let _
D: = f(w;d):F(w;d)2 K+g

be the trace oK + on deformation gradients of the form (58). The boundaripofis represented in Figures

2-4 (solid lines in blue) for several valuestufli : the deformation gradieri(w; d) satis es Eq. (57) for any

(w;d) within the bounded domaib, delimited by the solid lines in Figures 2-4. The solid curves in Figures

2-4 can thus be interpreted as lower and upper bounds on thedsfardf(w; d) to be energy-minimizing.
Similarly, we set

DO = f(w;d) : F(w;d) 2 K%g

whereK_S is calculated by applying (28) with the tensdesb) listed in Table 1 (along with their rotated

versions obtained by replacing with R?:v,). The boundary ob? is plotted in dotted lines in Figures 2-4.
This allows one to appreciate the improvement brought by the consideration of (49) over (27). For instance,
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Fig. 2 Bounds on the shearfor MnCu,hcli = 0:9.

in the casdcli = 0:7 (Figure 3), the relative improvement of the bound on the stiearies between 0 and
52% (depending on the angleconsidered), with an average of approximatively 35%. In the base= 0:5
(Figure 4), the relative improvement is non-negative fomgllvith an average of approximatively 26% .

6.2 Lamination lower bound

Although the fact thaK . signi cantly improves orKE is promising, it does not give any clue regarding the
sharpness of the bound. The relations de nifg (49) are indeed necessary- but not suf cient - conditions
for a deformation gradient to be energy-minimizing. The issue is to determine which deformation gradients
in K, are indeed energy-minimizing for some polycrystalline texture that is compatible with the prescribed
statistics (i.e. with prescribed volume fractions of the different orientations). In order to address that question,

we consider the special class of laminated textures and adapt an argument introduced iﬁ{azﬁ’e]t and
F22 K? be rank-1 connected, i.e. such that

R:F, Fi=p n (60)

for some vectorgp; n) and some rotatioR. Following [2], we know that the effective deformation gradient
hcliFy+ (1 h cli)R:F, is energy-minimizing for an (in nitely ne) laminate texture mixing orientations

1 and 2 in proportionscti and 1 h cli, respectively. The vectar in (60) corresponds to the normal to
the interfaces in such a laminate texture. We wish to use that argument to construct vglwed)o$uch
thatF(w;d) is energy-minimizing for some well-chosen laminate texture. This requires to nd deformation
gradientg Fy; F») that ful Il the two following conditions:

)F12 K'Y F2 K2
(2) F1 andF; are rank-1 connected.

The condition (1) means th# is energy-minimizing for a single crystal with orientatianThe issue
of nding deformation gradients that are energy-minimizing for a single crystal of tetragonal martensite has
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Fig. 3 Bounds on the shearfor MnCu, hcli = 0:7.

Fig. 4 Bounds on the shearfor MnCu, hcli = 0:5.

15



16 Michaél Peigney

been addressed in [24]: it can be shown thatcontains all the deformation gradients of the form

0 1
Up1 Ugo 0

@Quipuz, 0 A (61)
0 0 (hihx)'=

with (u11; Ua2; Up2) verifying
Uity W, = (hfho)22; uldy+ udy+ 2uf,+ 2juio(unr + Upo)j  hE+(hihd)%2: (62)

SinceK ? = RZK 1:'R?, it follows thatK > contains all the deformation gradients of the form
0 0 1
uE)l u62 0
RZ@W,1W9, 0 A:R? (63)
0 0 (hzhy)'=

Where(ugl; ugz; u?z) are submitted to the same restrictions as (62). As explained in [24], the deformation gra-
dientin (61) can be realized by some fourth-rank laminated microstructure that involves the three martensitic
variants.

Let nowF; 2 K andF, 2 K2 be two deformation gradients of the form (61) and (63), respectively. We
claim thatF; andF, arg rank-1 connected. This can be checked by applying a general procedure proposed
in [1,13]: settingU; = 'Fi:Fj andC = Ull:Ug:Ull, given deformation gradients; andF, are rank-1
connected if and only if the eigenvalues |, |3 0f C are such that

lo=1 (64)
In that case, the vectopsandn solving the twinning equation (60) are given by
s s
[3(1 |1 l1(l3 1
b= 7( |l)U+k T(gl )U3;
p'3pt 3 11 (65)

1o_, Jda Ti, P—r P
Ul n—(ﬁﬁ)( 1 liup+k I3 21ug)
3 11
wherek 2f 1;1gandu; is a normalized eigenvector &f for the eigenvalué;.
In the present case, observe from Egs. (59)-(61)-(63) th& detl andC:v3 = vz, so that the condition
(64) is necessarily satis ed. We can thus conclude that there exists a polycrystalline texture having a volume
fractionhcli of orientation 1 and for which the deformation gradiéntle ned by

G=Fi+(1 hcli)p n (66)

is energy-minimizing, i.e. is in the skt.

The nal step is to observe that the deformation gradi@rih (66) can be written a& = R :F(w ;d )
for some rotatiorR and some well-chosen valués ;d ). To that purpose, we rst note thag being an
eigenvector of the symmetric tensGrfor the eigenvalué , = 1, the two eigenvectorfus;us) in (65) are
orthogonal tovs. It follows from the expressions (65) that the vectprandn are also orthogonal te;. We
thus have

G:vs = 'Giva = (h2hy)Fy;

Using matrix representations in the ba@is; vz;vs), the tensotG:G=(h2h;)?= can therefore be written as

SO
01

whereS is a symmetric positive de nite matrix iRR? 2 with a determinant equal to 1. Lém;np) be the
eigenvalues o8, ordered in such away thai  m. Sincemnm = detS= 1, we have necessarig 1 m.
Now the continuous functiow 7! u(w):S:u(w) takes values ifim; m], so there existas verifying

u(w ):Su(w )= 1 (67)
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Setting
d = u(w ):Sv(w ); (68)

the relation deB = 1 implies that the matrix representation®in (u(w );v(w )) is

1 d
d 1+d 2

It follows that'G:G and'F(w ;d ):F(w ;d ) have the same matrix representation in the b@gis); v(w); vs),
i.e. that'G:G = 'F(w ;d ):F(w ;d ). That last equality implies th& = R :F(w ;d ) for some rotatiorR .
SinceK is frame-indifferent and is in K, we can conclude th&t(w ;d ) is in K for the valueqw ;d )
given by (67)-(68).

As a rst example of the above construction, set ( h1=h,)'™ and consider the deformation gradient
F92 K* de ned by

F9=(hZhy) P diags 1=s;1) (69)

which satis es (61-62). We také; = F) andF, = R%FY:'R2. Settingt = s*, the eigenvaluel; andl 3 of C
are

1 pP— 1 p__
1= 21+ 20+t2 (t 1) t2+6t+1);13= iGN 2t+t2+(t 1) t2+ 6t+ 1);
and the corresponding eigenvectors are

(pt2+6t+1+t+1)v_u _V+pt2+6t+1 t 1
2t 1, 3— V2 2[

Uqg = Vo \U

Substituting in Eqg. (65) gives two energy-minimizing strains for the polycrystal. The corresponding values
of (w ;d ) are shown as red dots in Figures 2-4. A corresponding laminate texture is shown in Figure 5(a-b)
for hcai = 0:7, hy = 1.5, h, = 1. Layers of material with orientation 1 (shown in blue) are alternated with
layers of material with orientation 2 (shown in red). In the reference con guration, Figure 5(a), the normal

to the layers is taken as a vectoithat is a solution of (65). In the deformed con guration, Figure 5(b), a
homogeneous deformation gradi€it(resp.F+ p n) is applied in the layers with orientation 1 (resp. 2).

The macroscopic deformation gradiéi{iv ;d ) that is realized that way is of the form (58). In Figure 5(a),

the cubic domain is chosen in a such a way that the edges of the top section are oriented along the shear
directions(u(w );v(w )).

The deformation of each monocrystalline layer in Figure 5(b) is achieved by some geometric arrange-
ment of the martensitic variants at the microscopic level. Such a geometric arrangement is represented in
Figure 5(c) for a layer with orientation 1. As detailed in Appendix, the deformation in such a layer can be
achieved by a second-rank laminate involving only variants 2 and 3 (in proportion approximatively equal to
0.3338 and 0.6662, respectively). The deformation of a layer with orientation 2 can be realized by a similar
microstructure.

The procedure described so far can be repeated folFamnd F» of the form (61)-(63), thus generat-
ing a set of valuegw ;d ) for which F(w ;d ) is energy-minimizing. That set is denoted By in the
following. Although dif cult to carry out by hand, the calculation & can conveniently be performed nu-
merically. The results are represented as green dotted domains in Figures 2-4. The corners of the domain
D correspond to all combinations & in f (hZh,) = diag(s, 1=s;1); (h2hy)diag(1=s;s,1)g andF; in
RZ:f (h?hy) =R diag(s 1=s;1); (h?hy) P diag(1=s;s;1)g:'R?. As can be observed in Figures 2-4, the green
domainD Ils most of the domainD.. , which means that most of the valueg(af;d) in D, can be realized
by laminate textures. The gap betwd2n andD; could possibly be reduced by considering more complex
polycrystalline textures.
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Fig. 5 Example of energy-minimizing strain in a laminated textineli = 0:7: (a) reference con guration; (b) deformed con-
guration; (c) details of the martensitic microstructure in a monocrystalline layer.

6.3 Bounds on the volume fractions

The functions(A; B) that de ne the bound 4 in (57) are of special interest as they give some informa-
tion on the martensitic microstructures realizing any given energy-minimizing deformation gradienaim
(55), A (F) andB{(F) are indeed lower and upper bounds on the volume fractions of martensitic varant

orientationr.
As a rst example, calculatingy (F) andB{ (F) for the deformation gradierft corresponding to Figure 5
gives the restrictions

0 Qf 00844 0 Q2 0:1879
0:3686 Qi 0:5723 0:0329 Q% 0:3; (70)
0:1838 Qi 0:3433 0:0782 QZ 0:3:
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The polycrystalline texture and the martensitic microstructures displayed in Figure5 corresi@hd 10,
Q;' 0:4662,Q3' 0:2337,Q7 = 0,Q5" 0:2,Q5' 0:1. Such values are compatible with the bounds (70),
as expected.

In Figure 6, the boundgA}; Bl) are displayed as functions of the shearfor several values ofv. The
volume fractionhcli is set to 07. It is important to note that, because of the condiﬂn@il = hcli, the
volume fraction®! cannot reach any arbitrary value that is compatible with the bo(§d8}). For instance
in the cased = 0, the upper boundB! on Q! are all equal to 23 but the volume fraction®' cannot be
simultaneously equal to the=3 (as otherwise the constra@tQ! = hcli = 0:7 would not be satis ed).

There is no general trend concerning the variation$A$f Bil) with d. For instance, in the examples
displayed in Figure 6, the functidB} can either be decreasing, increasing or non monotonic, depending on
the value ofw considered. Some intuitive insight in the behavior of the boadsB?) can be obtained in the
in nitesimal strain approximation, using the idea that the martensitic variants that are most likely to develop
are those which are the most favorably oriented with respect to the applied strain, i.e. those that maximize the
quantity

z(w;d) = tr(eh:e(w;d)):

In that last equatione(w;d) = ( F(w;d)+ 'F(w;d))=2 | is the in nitesimal strain associated f&(w;d)
ande! = (Ul+'U1)=2 1 is the in nitesimal transformation strain for variant~or the case at hand, we nd

z(w;d) = %(hl hy)sinw ; z(w;d) = %(hl hy)sinw ; z3(w;d)= 0

The cases (a),(b) and (c) in Figure 6 correspond tavsin0. Therefore, for positive values df, variant 1
is favorably oriented and variant 2 is unfavorably oriented. Accordingly, whgrows from 0, the bounds
(Al;BY) initially increase while the bound&}; B3) decrease. This is in line with the intuition that more
of variant 1 and less of variant 2 is expected to develod axreases from 0. Sincg(w;d) = 0, variant
3 is neither favorably nor unfavorably oriented. Accordingly, the corresponding bc(lA%dB%) remains
stationary (ford small enough). The case (d) in Figure 6 is slightly different as it correspondswo=si@.
In such case we hawg(w;d) = 0 for alli, which explains that all the bounga}; B!) remains stationary. All
of this reasoning is limited to the in nitesimal strain approximation, i.e. to small valued.féss d becomes
large, rotation effects become signi cant and the qualitative arguments explained above do no longer apply.
In particular, in the case (a), we can observe Bladecreases for large valuesdf

The transformatiorF(w;d) ceases to be energy-minimizing when one of the constraihts B! or
&;Al hcli < §;B! is violated. The corresponding value dfis displayed as a vertical dashed line in
Figure 6. For instance, the constraid{< B (resp.A} < BY) is the limiting one in the case = 0:2 (resp.
w = 0:75), see Figure 6 (a) and (b). Far= 1, Figure 6(c), the limiting constraint &; A < hcli. All the
remarks made so far on the bour{dg; BY) for orientation 1 can be transposed to orientation 2. In particular,
there are some values wffor which the limiting constraints are associated wikf; B?).

7 Concluding remarks

In this paper, some rigorous upper bounds on the energy-minimizing strains of martensmc polycrystals have

been obtained in the geometrically nonlinear setting. The main results are the lb’ourauimiK+ (de ned in
(27) and (49) respectively) that depend on the texture through the volume fractions of the different orienta-
tions. Those bounds are expressed in terms of a given fﬂm:lfytensors{a b), which acts as a free parameter

in (27)- (49) each choice 0’.13 generates corresponding bourh(fs andK ; . For a given (say discret€), the
boundK “ is tighter tharK but more dif cult to calculate: whereas checking if a given deformation gradient
Fisin K+ is a direct calculation, checking F2 K, amounts to detecting feasibility of a linear program-

ming problem inRD,. In this paper, the boundeg andK + have been used to study a 2-orientation/3-variant
polycrystal, in which case the calculations could be performed in closed form (for a well cigséior

more complex textures, it is clear that numerical calculations of the bounds will be necessary at some point,
which requires adequate algorithms. In that regard, it can be noted that interior-point methods offer some
ef cient algorithms for detecting feasibility in large-scale linear programming problems. Interestingly, such
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Fig. 6 Lower boundA! and upper bounB} on the volume fractiong’ for MnCu,hcti = 0:7:w = 0:2 (a),w = 0:75 (b),w = 1
(c),w = p=2(d).

algorithms, as the self-dual algorithm of Ye [32], has been used in other problems related to shape-memory
alloys [26] and could possibly be useful for calculating the bokindin the case of a complex polycrystalline
texture. A more theoretical line of investigation consists in deriving upper bounds taking more information on
the texture (such as 2-point statistics) into account.
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A Bounds on the volume fractions for a two-orientation polycrystal of tetragonal martensite
Substituting the values of Table 1 in (54) and recalling that@! h cli, we ndthatAL(F) Q! BL(F) where

N KF :vgk h clihihy h c2i maxkU? vk
high1 o) ’

KF:(vi+ evj)k  hZ+h2hcli h c2i maxkUZ(vi + ev))k
P '

AP = a

— 9
2h1 h%+ h22

L . 0
e khoF:vik  F vk h c?i mlaxkh2U|2:vk UZ vk ;0 ;
t h3

n L E 2 2.

— hiheti k Fivgk+ hc ax kUr:vik

BY(F)= min el Vi | mavf kUvik,
e=

hi hy
hi hZ+h2heli k F :(vi+ evj)k+ hc2i max kU7 :(vi + evj)k
g _ ;
hi( hZ+hZ " 2hy)

i 1 . = . , 0
! m khle:vk hoF vk h c?i mlaxkhlzulz:vk h2U|2’ vk ;heli

In those expressions, the indeXég) are such thati; j; k) is a permutation of1; 2; 3). Replacingvy by R2:vy and swapping the
roles of orientations 1 and 2, we obtain in a similar fashion &3¢F) g2 BZ(F) with

N KkF :RZvik h c2ihihy h climax kUl :R%vek
- hghi ho) '
kF:RZ(vi+ evj)k  hZ+h3hc?i h climaxkUL:(R2Zvi + eR%v))k

_ 9
p2h1 hf+ h22

AZ(F) = max

B B _ o
hzilhz khoF:R%v,  F :R%wk hcli mlaxkh2U|1:R2:vk U :R%vk 50 ;
L

M hihc2i k F:RZ:vgk+ heli may kUL:RZ:vik
q hi1 hy '
hi hZ+h2he?i k F :(RZv+ eRZv))k+ helimax kUl :(R%:v; + eR%v))k
£ — ;
hi( hZ+hZ " 2hy)

. 1 - - , . 0
% khIFRZv  hoF :RZvik h climaxkh?ULRZv hoUP RZvk she?i
hi(hi hs) I

2(E) = mi
B (F) erlnnl

Although somewhat lengthy, the obtained expressions are fully explicit and easy to calculate.

B Construction of a microstructure realizing the deformation gradient F‘l’ in Eq. (69)

In this Appendix, we determine a martensitic microstructure realizing the deformation grﬁ@iiielrﬂeg) for a reference single
crystal with transformation strai~ns given by (30). To that purpose, we rst observEfigin the quasiconvex h~uII of S@)Uz [

SO(3)U3 (which is denoted by 23 from now on). Following [2], symmetric positive de nite tensotsin K 23 are indeed
characterized by matrix representations (in the b@gis/»; v3) of the cubic austenitic lattice) of the form

I
hy 0 0°
0 Uz Upz
0 U3 Us3

with U22U33 U%g = hih, and
Uso+ Ugs+ 2035+ 2ups(Upo+ Uga)j  hE+ h3: (71)
The fact thaFg is in K 23 means thaF‘f can be realized by a microstructure involving variants 2 and 3 only. Also observe from

the characterization given above that symmetric positive de nite terlsdrsK 3 can be parametrized by their components
(ug3; upp). In Figure 7 is represented the set of val(es; uyy) corresponding to symmetric positive de nite tensbrfn K 3.



22 Michaél Peigney

Fig. 7 Representation df »s.

Now consider a deformation gradievitt on the boundary of the domain in Figure 7, and\fet be its symmetric with
respect to theiz = 0 axis. We can write
!

I
hy 0 0° hy O 0

Vi= 0vaavez ;V = 0 v Va3
0 V23 V33 0 Vo3 Va3

and we assume thegz 0. Using the fact tha¥/ . satis es (71) as an equality, we can reléte,; va3) to Vo3 by the expressions

pP_—— pP——
Vo = %(S+e S 4P); va3= %(S e & 4pP) (72)

q__
with S= vog+  VZ,+(hi+ h)2, P= hihy+ v3;ande= 1.

Following [2], deformation gradients on the boundary of the domain in Figure 7 can be realized by a simple laminate of
variants 2 and 3, i.e. there exists in [0; 1] andR 2 SQ(3) such that

V =R :(Ux+(1 c )b n) (73)

where(b;n) are solutions of the twinning equatig¢J, + b n):U31 2 SQ(3). There are actually two sets of vectdis n)
solving the twinning equation. We denote them(ty ;n;) and(b ;n ). For(hi;hy) = ( 1:5;1), we haven, = x(v2 V3)
andn = Xx(vz2+ v3) with x' 0:6934. It turns out thaV¥/; satis es (73) with(b;n) = ( b+ ;n+), whileV satis es (73) with
(b;n)=(b ;n ).

Eq. (73) expresses the fact that is realized by a laminate with a direction of lamination equal tmixing variants 2 and
3in proportionc and 1 c¢ respectively. A3/. andV are symmetric with respect to tlues = 0 axis in Figure 7, it can be
proved that, = ¢ . The exact value of;, depends on the deformation gradi&ht considered. _

The same argument as used in Section 6.2 showd/tha&ndV are rank-1 connected. Therefdfes contains the defor-
mation gradient

H(c)= Vi +(1 ¢)b® n
where(b®n9 solve the twinning equatiof/+ + b® n%:v 12 SO(3). The parameter can take any value i[9; 1]. Letsbe the
operator that maps any givénin GL; (3) to its symmetric de nite positive patl in the polar decompositioR = R:U. When
c varies from 0 to 1, the tenss(H(c)) remains inK 23 and varies betweeX, andV , as represented in Figure 7 (red lines).
Since the twinning equatiofV+ + b® n9%:V 12 SO(3) generally admits two sets of solutiofs> n9, there are two branches
c 7! s(H(c)) to be considered, as can be seen in Figure 7. Independently on the branch considered, it can be veri ed that

v2:s(H(1=2)):v3 = 0;

i.e. the curver 7! s(H(c)) in Figure 7 crosses this = 0 axis forc = 1=2. It follows thats(H(1=2)) as a matrix representation
of the form diagh1;y; h1ho=y) with y = v2:5(H(1=2)) :vo. Hences(H(1=2)) is equal toF{ if

v2:(H(172)):v2 = (h1h3) (74)

Recall thatH(1=2) depends oV, the latter being parametrized s, The functionves 7! vo:s(H(1=2)):v2 is represented in
Figure 8 for one of the branche§! H(c), withe = 1in (72). As can be observed on Figure 8, the condition (74) is satis ed for
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Fig. 8 Determination of the microstructural parametgy.

some valuev,, of the parametev,3 (numerical calculations give,'  0:04352). The corresponding valuesmof, V., , b° nPare
denoted byc, , V., b, n®, respectively. In particular, we note that' 0:3338 anch® *  0:1868/5.

The conclusion is that the deformation gradi€ftcan be realized by a laminate of normml, mixing the deformation
gradientsv, andV, +(1=2)b® n° in equal proportion. Sinc¥, andV, +(1=2)b® n° are themselves realized by rst-
rank laminates of variants 2 and 3 (with the same volume fractjgnthe deformation gradier) is realized by a second-rank

laminate of variant 2 (in volume fractiary ) and variant 3. Such a second-rank laminate microstructure is displayed in Figure
5(c).
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