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Abstract This paper is concerned with the theoretical prediction of the energy-minimizing (or recoverable)
strains in martensitic polycrystals, considering a nonlinear elasticity model of phase transformation at �nite
strains. The main results are some rigorous upper bounds on the set of energy-minimizing strains. Those
bounds depend on the polycrystalline texture through the volume fractions of the different orientations. The
simplest form of the bounds presented is obtained by combining recent results for single crystals with a ho-
mogenization approach proposed previously for martensitic polycrystals. However, the polycrystalline bound
delivered by that procedure may fail to recover the monocrystalline bound in the homogeneous limit, as is
demonstrated in this paper by considering an example related to tetragonal martensite. This motivates the
development of a more detailed analysis, leading to improved polycrystalline bounds that are notably con-
sistent with results for single crystals in the homogeneous limit. A two-orientation polycrystal of tetragonal
martensite is studied as an illustration. In that case, analytical expressions of the upper bounds are derived and
the results are compared with lower bounds obtained by considering laminate textures.

Keywords Shape memory alloys� Polycrystal� Energy minimization� Finite strains
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1 Introduction

The peculiar properties of shape memory alloys (SMAs) – such as the shape memory effect or the superelas-
tic behavior – are the macroscopic result of a diffusionless solid/solid phase transformation between different
crystallographic structures, known as austenite and martensite [20,4]. Since the austenite has a crystallo-
graphic structure with higher symmetry than the martensite, several martensiticvariantsneed to be distin-
guished depending on the orientation of the martensitic lattice with respect to the austenitic lattice. Each
martensitic variant is characterized by atransformation strainthat is de�ned as the deformation gradient
between the austenitic and martensitic lattices. The number of martensitic variants and the corresponding
transformation strains depend on the alloy considered. MnCu and MnNi are examples of alloys undergoing
a cubic to tetragonal transformation (i.e. the austenite has a cubic lattice and the martensite has a tetragonal
lattice). In that case, there are 3 martensitic variants. Widely used alloys such as NiTi orgCuAlNi obey a
cubic-to-monoclinic transformation, in which case there are 12 martensitic variants to be considered.

The phase transformation between austenite and martensite can be triggered both by mechanical and ther-
mal loading. The most striking illustration of that phenomenon is the shape memory effect displayed by alloys
such as NiTi or CuAlNi: cooling down a stress-free sample below a critical temperatureT0 transforms the
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homogeneous austenite (stable at high temperature) to a martensitic microstructure, in which the marten-
sitic variants arrange themselves so as to produce a stress- free state with no macroscopic deformation. Once
in the cooled state, deforming the sample mechanically entails a phase transformation of some martensitic
variants to others. After unloading, a macroscopic residual stress-free strain is observed as a result from the
cooperative effect of the microscopic transformation strains in each variant. Heating the sample transforms
the martensite back in austenite, thus restoring the initial con�guration. We note that, in a polycrystalline
sample (which is the common form of commercially available SMAs), the formation of austenite/martensite
microstructures is typically observed in each grain. This leads one to distinguish between three length scales:
the microscopicscale of the austenite/martensite microstructures, themesoscopicscale of the constitutive
grains, and themacroscopicscale of the polycrystal consisting in numerous grains. The macroscopic scale
can be interpreted as the length scale of a representative volume element (RVE) of the polycrystal. Express-
ing the macroscopic free energy in terms of the mesoscopic free energies in the constitutive grains is a long
standing topic in the study of polycrystals and granular materials (see e.g. [18] for a recent work in the �eld
of granular materials).

A possible route to study the formation of microstructures in SMAs is to adopt a nonlinear elasticity
model of phase transformation [2]. The general principle is that, under a prescribed loading, the system tends
to minimize its free energy. This approach amounts to consider that the evolutions are thermodynamically
reversible and to look for stable equilibria. Assuming the microscopic, mesoscopic and macroscopic scales to
be well separated, the energy minimization principle leads to different expressions of the free energy at each
scale. Denoting the microscopic free energy byY , the mesoscopic energỹY is obtained as therelaxation(or
quasiconvexi�cation) of Y , which essentially amounts to solve an optimal design problem with respect to the
martensite/austenite geometric arrangement (see Section 2 for a precise de�nition). Viewing group of grains
with the same orientation as individual homogeneous materials (governed by mesoscopic free energies), the
polycrystal can be regarded as a composite material with a macroscopic energyȲ obtained byhomogenization
of the constitutive free energy functions.

Assuming the microscopic free energyY to be known, determining its relaxatioñY largely remains an
open problem. Estimating the macroscopic free energyȲ is even more challenging as stress and strain com-
patibility conditions between the grains need to be taken into account. Of special interest are the strains that
minimize the mesoscopic (resp. macroscopic) free-energy. Those energy-minimizing strains can indeed be
interpreted as the recoverable strains of a monocrystalline (resp. polycrystalline) shape memory alloy, i.e. the
strains that can be recovered by the shape memory effect [6]. Knowing the set of recoverable strains is crucial
for designing SMA systems. Experiments only give partial insight in the structure of that set, as they usu-
ally only give measurements along prescribed directions (see e.g. [33]). In this paper, we propose theoretical
bounds on thewholeset of recoverable strains, i.e. in the space of three-dimensional deformation gradients.
Those bounds are expressed in terms of the lattice parameters and of statistical information on the polycrys-
talline texture (namely the orientation distribution function). Such data can be obtained experimentally using
X-ray diffraction or EBSD (Electron Back Scattering Diffraction).

The problem can be formulated either in the geometrically nonlinear setting or in the geometrically lin-
ear setting. The latter assumes small deformations with respect to a reference con�guration. Although that
assumption can be regarded as questionable for shape memory alloys (notably because of possibly large ro-
tation effect), it allows the analysis to be simpli�ed signi�cantly. In the geometrically linear setting, the exact
expression of the relaxation of a (piecewise quadratic) double-well energy can been obtained [15,27]. Lower
and upper bounds have been proposed for the relaxation of a three- or more-well energy [29,11,10,23]. The
structure of the set of mesoscopic energy-minimizing strains has been studied in detail, notably for the most
challenging case of monoclinic martensite [6,7,25]. Concerning polycrystals, bounds are available for the
macroscopic energy-minimizing strains as well as for the macroscopic free energy [12,23,6,28].

In the geometrically non linear setting, the set of mesoscopic energy-minimizing strains has been obtained
in closed-form for a double-well energy [2]. Using known restrictions on Young measure, an upper bound
on the mesoscopic energy-minimizing strains has been proposed in the case of three or more wells [24].
Regarding polycrystals, a general method has been introduced in [22] for generating upper bounds on the set of
macroscopic energy-minimizing strains, assuming that the set of energy-minimizing strains of the constitutive
single crystals (or at least an upper bound on it) is known. The approach used in [22] is based on the translation
method [16], which has proved to be a powerful tool in various problems related to homogenization. In
particular, for nonlinear composites, variations of that method allows one to obtain bounds on the macroscopic
strains that are compatible with a given macroscopic stress [17,30,21].
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In this paper, we focus on upper bounds of the macroscopic energy-minimizing strains of martensitic poly-
crystals, in the geometrically non-linear setting. We begin in Section 2 by describing the nonlinear elasticity
model of phase transformation and presenting the upper bound of [24] for single crystals. In Section 3 we com-
bine the monocrystalline bound with the methodology of [22] to derive explicit upper bounds for polycrystals.
It turns out, however, that the upper bounds that are obtained may fail to recover the single crystal bound in the
homogeneous limit, as discussed in Section 4. Motivated by that observation, we modify the polycrystalline
approach so as to take the special structure of the single crystal bound into account (Section 5). This results
in new upper bounds for polycrystals, which improve on the bounds of Section 3 and are consistent with the
single crystal bound in the homogeneous limit. In Section 6, we study a two-orientation/three-well polycrystal
and compare the proposed upper bounds with lamination lower bounds.

2 Single crystal

In the framework of nonlinear elasticity at �nite strains, the microscopic behavior of a shape-memory alloy is
described by its free energy densityY , which is a function of the deformation gradientF. We denote byK the
set of deformation gradients that minimizeY . Without loss of generality, we can assume that the minimum
value ofY is equal to 0, so thatY � 0 and

K = f FjY (F) = 0g:

The principle of frame indifference implies thatY (R:F) = Y (F) for any rotationR and deformation
gradientF. Moreover, in the case of shape memory alloys,Y has a multi well structure. Accordingly, the set
K takes the form

K =
m[

i= 1

SO(3)Ui

whereU1; � � � ;Um are given symmetric positive de�nite tensors that depend both on the temperature and on
the alloy considered. At a temperatureT below the transformation temperatureT0, the numberm of wells
is equal to the numbernv of martensitic variants. The corresponding transformation strainsU1; � � � ;Um are
all symmetry related, i.e. for any(i; j) there exists a rotationRi j such thatU j = tRi j :Ui :Ri j (here and in
the following, the pre-superscriptt denotes the transpose operator). AtT = T0, both the austenite and the
martensite variants minimize the microscopic energy, so thatm= nv+ 1. In general, the deformation gradient
Unv+ 1 corresponding to the austenite is not symmetry related to any of the martensitic transformation strain.
At T > T0, there is only one well which corresponds to the austenite phase.

Consider a reference con�guration where a domainW is occupied by a single crystal of shape memory
alloy. Each material particle is identi�ed by its locationx in the reference con�guration. The deformation of
the crystal is described by a mappingu : W 7! R3 which gives the location (in the deformed con�guration)
of the material particlex. We study the equilibrium of the crystal under boundary conditions of the form
u(x) = F̃:x whereF̃ is a given mesoscopic deformation gradient (here and in the following, the superscript ˜:
denotes quantities de�ned at the mesoscopic scale). The effective free energy at equilibrium is given by

Ỹ (F̃) = inf
F2A (F̃)

hY (F)i (1)

whereh:i denotes volume average over the domainW and the setA (F̃) of admissible deformation gradient
�elds is de�ned by

A (F̃) = f FjdetF > 0;9u(x) 2 W1;¥ (W;R3) such thatF = Ñu in W;u(x) = F̃:x on¶Wg: (2)

The in�mum problem in (1) is easily solved if̃F 2 K : in that case, the homogeneous �eldF(x) = F̃ realizes
the in�mum and we haveỸ (F̃) = Y (F̃) = 0. The situation gets more complicated ifF̃ =2 K : in that case,
a minimizer of (1) does not necessarily exist. This is a consequence of the multi well structure ofY .The
non existence of a minimizer physically corresponds to the formation of microstructures at a very �ne scale
(twinned laminates are examples of microstructures which are frequently observed in shape memory alloys,
see e.g. [20]). In such a situation, the evaluation ofỸ (F̃) requires to study the weak convergence of minimizing
sequences, which involves mathematical concepts such as Young measures [14] and quasiconvexity [8]. The
functionF̃ 7! Ỹ (F̃) is mathematically referred to as thequasiconvexi�cation(or relaxation) of Y and can be



4 Michaël Peigney

interpreted as the mesoscopic energy of the material. LetK̃ be the set of deformation gradients that minimize
Ỹ . SinceỸ is positive and vanishes onK , the minimum value ofỸ is equal to 0 and we have

K̃ = f F̃jỸ (F̃) = 0g:

The setK̃ is also known as thequasiconvex hullof K [8,19]. The exact calculation of̃K still remains
a largely open question. In the framework of �nite strains as considered in this paper, the problem has been
solved exactly [2,5] only in the case where

(i) the strainsU1; � � � ;Um have same determinant;
(ii ) there existsm> 0 andv 2 R3 such thatUiv = mv for all 1 � i � m: (3)

The assumption(3ii ) show that problems of the form (3) are fundamentally two-dimensional. Commonly used
shape-memory alloys, such as TiNi or CuAlNi, do not ful�ll the assumption (3ii ) and the exact expression
of K̃ for such materials is unknown. In such a situation, one may look for bounds (in the sense of inclusion
of sets) to obtain some rigorous information onK̃ . In this paper we primarily focus on upper bounds (the
question of constructing lower bounds is addressed in Section 6).

Upper bounds oñK can be obtained using known restrictions on Young measures [24]. Some notations
are in order. We introduce the frame-indifferent functionF : R3� 3 7! R de�ned by

F (M) = max
R2SO(3)

tr(R:M): (4)

The supremum problem de�ningF (M) can be solved in closed form : we have indeed

F (M) = l 3 + l 2 + l 1sgn(detM) (5)

where 0� l 1 � l 2 � l 3 are the eigenvalues of
p

tM:M.
Let F� denote the adjugate of a matrixF 2 R3� 3, i.e. F� = detF: tF� 1. For anya 2 R3� 3, b 2 R3� 3 and

c 2 R, the functionh de�ned by
h(F) = tr(F:a+ F� :b)+ cdetF (6)

is known to be quasiconvex [8], i.e. satis�es

h(F̃) � h h(F)i for all F̃ andF 2 A (F̃): (7)

The functionsF in (4) andh in (6) are related by the following identity, which will be frequently used in this
paper:

sup
R2SO(3)

h(R:F) = F (F:a+ F� :b)+ cdetF: (8)

Finally, we set

T = f q = ( q1; � � � ;qm) 2 Rm : qi � 0;
m

å
i= 1

qi = 1g: (9)

Using those notations, it can be proved [24] that the setK̃ + de�ned by

K̃ + = f F̃ 2 R3� 3 : 9q 2 T such that det̃F =
m

å
i= 1

qi detUi

and 0� sup
(a;b)2C

f F (F̃:a+ F̃� :b) �
m

å
i= 1

qiF (Ui :a+ U�
i :b)g g

(10)

is an upper bound oñK , i.e. satis�esK̃ � K̃ + . For a givenF̃ in K̃ + , the vectorq in (10) can be interpreted as
the volume fractions of the different wells in a microstructure realizingF̃. In general there is no uniqueness
for q. This is connected to the fact that, except in special cases, energy-minimizing deformation gradientsF̃
can be realized by several microstructures.

In (10),C is a given arbitrary subset ofR3� 3 � R3� 3. Note that each choice ofC generates a corresponding
bound onK̃ . In principle, the best bound is obtained by takingC as large as possible, i.e.C = R3� 3 � R3� 3.
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In practice, however, one may restrictC to a smaller family to ease the calculations and notably obtain closed
form expressions.

For later reference, we close this section with a brief derivation of the boundK̃ + . A fundamental property
of K̃ is that any giveñF 2 K̃ can be written as

F̃ =
Z

R3� 3

A dn(A) (11)

for some Young measuren supported onK [2,19]. For our purpose, we only need to record the following
properties of Young measures [14]:

(i) n � 0 ;
Z

R3� 3
dn(A) = 1;

(ii ) f
� Z

R3� 3

A dn(A)
�

�
Z

R3� 3

f (A) dn(A) for any f quasiconvex: (12)

Moreover, sinceK = [ m
i= 1K i where the wellsK i = SO(3)Ui are closed and disjoint, the Young measuren in

(11) can be written as

n =
m

å
i= 1

ni

whereni is a positive measure supported onK i [2]. Using the properties (11-12) with quasiconvex functions
h of the form (6), we obtain

h(F̃) �
m

å
i= 1

Z

SO(3)Ui

h(A) dni(A):

The identity (8) givesh(A) � F (Ui :a+ U�
i :b)+ cdetUi for anyA 2 SO(3)Ui . Consequently we �nd

h(F̃) �
m

å
i= 1

qi
�

F (Ui :a+ U�
i :b)+ cdetUi

	
(13)

whereqi =
R

R3� 3 dni(A). As a consequence of (12i), the vectorq = ( q1; � � � ;qn) belongs to the setT in (9).
Let nowR̃ be an arbitrary rotation. Observing thatF 7! h(R̃:F) is quasiconvex and proceeding as in (13),

we obtain

h(R̃:F̃) �
m

å
i= 1

qi
�

F (Ui :a+ U�
i :b)+ cdetUi

	
:

Taking the supremum over̃R in this last equation and using the identity (8), we get

F (F̃:a+ F̃� :b)+ cdetF̃ �
m

å
i= 1

qi f F (Ui :a+ U�
i :b)+ cdetUig: (14)

The conclusion is that for anỹF 2 K̃ , there existsq 2 T such that (14) holds for any(a;b;c). In other words,
the setK̃ + in (10) is an upper bound oñK .

As detailed in [24], the bound given by (10) coincides withK̃ for the reference cases where the exact
expression of̃K is available, such as problems of the form (3).
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3 Polycrystal

Now consider a polycrystal occupying a domainW. We can decomposeW asW = [ n
r= 1Wr where each sub-

domainWr is formed by grains with the same orientation. The microscopic free energy inWr can be written
as

Y r (F) = Y (tRr :F:Rr ) (15)

whereRr is a rotation describing the orientation inWr relative to a reference single crystal. De�ningc r the
characteristic function ofWr (i.e. c r (x) = 1 if x 2 Wr , andc r (x) = 0 otherwise), the microscopic free energy
of the polycrystal is a heterogeneous function of the form

Y (F;x) =
n

å
r= 1

c r (x)Y r (F):

The setK (x) of deformation gradients minimizingF 7! Y (F;x) is thus

K (x) =
m[

i= 1

SO(3)Ui(x) (16)

whereUi(x) = å n
r= 1 c r (x)Ur

i andUr
i = Rr :Ui : tRr . The functionsc 1; � � � ; c n together with the rotationsR1; � � � ;Rn

fully describe thetextureof the polycrystal, i.e. the shapes, distributions and orientations of the grains.
Consider boundary conditions of the formu(x) = F̄:x whereF̄ is a given macroscopic deformation gradi-

ent (here and in the following, the superscript ¯: denotes macroscopic quantities). At equilibrium, one expects
the formation of microstructures in each grain. Assuming the scale of such microstructures to be much smaller
than the scale of the grains, themacroscopicfree energyȲ (F̄) of the polycrystal is given by

Ȳ (F̄) = min
F2A (F̄)

h
n

å
r= 1

c rỸ
r
(F)i (17)

whereỸ
r

is the relaxation ofY r , as de�ned in (1) (see e.g.[4] for a detailed justi�cation). In the following,
we primarily focus on the set̄K of deformation gradients that minimize the macroscopic energy, i.e.

K̄ = f F̄jȲ (F̄) = 0g:

In view of (17), we have the following characterization ofK̄ :

K̄ = f F̄j9F 2 A (F̄);F(x) 2 K̃ (x) for all x 2 Wg: (18)

Hence the distinctive property of strainsF̄ in K̄ is that they can be realized by a deformationu(x) whose
gradientF = Ñu satis�es the local constraintF(x) 2 K̃ (x) at each point.

Let K̃
r

be the quasi convex hull of[ m
i= 1SO(3)Ur

i , i.e. the set of strains minimizing̃Y
r
. For anyF̄ in

\ n
r= 1K̃

r
, the homogeneous �eldF(x) = F̄ is in A (F̄) and satis�es the constraintF(x) 2 K̃ (x) in W. The

setK̄ � = \ n
r= 1K̃

r
is thus alower bound onK̄ , in the sense that̄K � � K̄ : That lower bound (referred to as

the Taylor bound) has been studied in detail in the geometrically linear setting [6]. Note that the boundK̄ �
only depends on the rotationsR1; � � � ;Rn, and not on the functionsc 1; � � � ; c n, therefore ignoring a lot of
information about the texture.

Using the quasiconvexity of the functionh in (6), upperbounds onK̄ that take one-point statistics of the
functionsc r can be derived [22]. Let indeed̄F be inK̄ and consider a deformation gradient �eldF in A (F̄)
such thatF(x) 2 K̃ (x) for all x (recall that suchF exists by (18)). Using the property (7) and noting that
å r c r = 1, we have

h(F̄) � h h(F)i =
n

å
r= 1

hc rh(F)i : (19)

Observe from (8) thath(F(x)) � F (F(x):a+ F� (x):b) + cdetF(x). For x 2 Wr , we haveF(x) 2 K̃
r

and
consequently

h(F(x)) � F (F(x):a+ F� (x):b)+ cdetF(x) � sup
F2K̃

r
f F (F:a+ F� :b)+ cdetFg:
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Substituting in (19) gives

h(F̄) �
n

å
r= 1

�
hc r i sup

F2K̃
r
f F (F:a+ F� :b)+ cdetFg

	
: (20)

The frame-indifference of̄K implies thatR:F̄ also satis�es (20) for any rotationR, which using (8) leads to

F (F̄:a+ F̄� :b)+ cdetF̄ �
n

å
r= 1

�
hc r i sup

F2K̃
r
f F (F:a+ F� :b)+ cdetFg

	
: (21)

Let C0denote a given subset ofR3� 3 � R3� 3. From (21) we obtain that anȳF in K̄ necessarily satis�es

sup
c

sup
(a;b)2C 0

�
F (F̄:a+ F̄� :b)+ cdetF̄ �

n

å
r= 1

hc r i sup
F2K̃

r
f F (F:a+ F� :b)+ cdetFg

	
� 0: (22)

The set of deformation gradientF̄ verifying (22) is thus an upper bound ofK̄ . That upper bound has been
used in [22] on some examples where the constitutive single crystals ful�ll the conditions (3), in which case
the setsK̃

r
are known. For polycrystals that do not satisfy (3), the direct application of the bound (22) is

hampered by the fact that̃K
r

is unknown. In such case, calculating the supremum overK̃
r

that appears in
(22) remains out of reach. Such a dif�culty can be overcome by using the results from Section 2. Let indeed
K̃ r

+ be the upper bound of̃K
r

de�ned in Eq. (10). SincẽK
r

� K̃ r
+ , we have sup̃K

r F (F:a+ F� :b)+ cdetF �

supK̃ r
+

F (F:a+ F� :b)+ cdetF. Therefore, we obtain from (22) that anyF̄ in K̄ necessarily satis�es

sup
c

sup
(a;b)2C 0

f F (F̄:a+ F̄� :b)+ cdetŪ �
n

å
r= 1

hc r i sup
F2K̃ r

+

f F (F:a+ F� :b)+ cdetFgg � 0: (23)

The calculation of the right-hand side in (23) can be further simpli�ed ifC0= C, i.e. if the bound (23) and the
boundK̃ r

+ given by (10) and are calculated using the same set of tensors(a;b). In that case, we have indeed

sup
F2K̃ r

+

f F (F:a+ F� :b)+ cdetFg = max
1� i� m

f F (Ur
i :a+ Ur;�

i :b)+ cdetUr
i g (24)

for any(a;b) 2 C. That last property is easily proved: for a givenF in K̃ r
+ , Eq. (10) yields

F (F:a+ F� :b)+ cdetF �
m

å
i= 1

qi f F (Ur
i :a+ Ur;�

i :b)+ cdetUr
i g (25)

for someq 2 T. Since anyq in T veri�es qi � 0 andå i qi = 1, the right hand side of (25) is bounded from
above by max1� i� mf F (Ur

i :a+ Ur;�
i :b)+ cdetUr

i g. Therefore we have

sup
F2K̃ r

+

f F (F:a+ F� :b)+ cdetFg � max
1� i� m

f F (Ur
i :a+ Ur;�

i :b)+ cdetUr
i g:

The converse inequality follows directly from the fact thatUr
i 2 K̃ r

+ for i = 1; � � � ;m.

Combining (23) and (24) gives

K̄ � K̄ 0
+ (26)

where

K̄ 0
+ =

n
F̄ 2 R3� 3 : 0 � sup

c
sup

(a;b)2C

�
F (F̄:a+ F̄� :b)+ cdetF̄ �

n

å
r= 1

hc r i max
1� i� m

f F (Ur
i :a+ Ur;�

i :b)+ cdetUr
i g

	 o
:

(27)
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In the most usual situation when all the transformation strainsUr
i have the same determinant, the setK̄ 0

+
can be rewritten more simply as

K̄ 0
+ =

�
F̄ 2 R3� 3 : detF̄ = detU1

1; 0 � sup
(a;b)2C

f F (F̄:a+ F̄� :b) �
n

å
r= 1

hc r i max
1� i� m

F (Ur
i :a+ Ur;�

i :b)g
	

: (28)

The setK̄ 0
+ is an explicit upper bound that depends on one-point statistics of the texture, i.e. on the volume

fractionshc r i of the different orientations.

For a discreteC, checking if a given deformation gradientF̄ is in K̄ 0
+ amounts to check if̄F satis�es a

�nite number of constraints. A similar remark holds ifC is not discrete but with the form

N[

j= 1

[

w2R3

f (u j 
 w;u0
j 
 w)g:

In that case, Eq. (5) indeed shows thatF (F̄:u j 
 w+ F̄� :u0
j 
 w) = kF̄:u j + F̄� :u0

jk:kwk so that the condition

0 � sup
(a;b)2C

f F (F̄:a+ F̄� :b) �
n

å
r= 1

hc r i max
1� i� m

F (Ur
i :a+ Ur;�

i :b)g

is equivalent to

0 � max
1� j� N

fk F̄:u j + F̄� :u0
jk �

n

å
r= 1

hc r i max
1� i� m

kUr
i :u j + Ur;�

i :u0
jkg;

i.e. to a set ofN constraints on̄F.

4 Homogeneous limit

In this Section we study the behavior of the polycrystalline bound (27) in the limithc 1i ! 1. In that case, the
setK̄ 0

+ in Eq. (27) is characterized by

0 � sup
c

sup
(a;b)2C

�
F (F̄:a+ F̄� :b)+ cdetF̄ � max

1� i� m
f F (U1

i :a+ U1;�
i :b)+ cdetU1

i g
	

: (29)

In the homogeneous limithc 1i ! 1, there is no distinction between the mesoscopic scale and the macroscopic
scale. Since the bound̄K 0

+ is the result of substituting the monocrystalline upper bound (10) in the general
prescription (22), one would expect the set de�ned by (29) to coincide with the monocrystalline boundK̃ +
generated from the same familyC. This can be proved to be indeed the case for problems of the form (3), but
it is not true in general. To illustrate that point, consider the cubic to tetragonal transformation atT < T0: we
haveK 1 =

S 3
i= 1SO(3)U1

i where

U1
1 =

0

@
h2 0 0
0 h1 0
0 0 h1

1

A ; U1
2 =

0

@
h1 0 0
0 h2 0
0 0 h1

1

A ; U1
3 =

0

@
h1 0 0
0 h1 0
0 0 h2

1

A : (30)

These matrix representations are relative to the reference orthonormal basis(v1;v2;v3) of the cubic austenitic
lattice in orientation 1. The parameters(h1, h2) are non-negative and distinct. We assume in the following
thath2 < h1.

We determine the bounds̃K + in (10) andK̄ 0
+ in (29) corresponding to the familyC of tensors(a;b)

de�ned by

C =
[

j2f 1;2;3g;w2R3

f (v j 
 w;0); (0;v j 
 w)g: (31)
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Let us �rst determine the set̃K + in (10). For a �xed F̃ in K̃ + , we can see from (10) that detF̃ = h 2
1h2.

Moreover, there existsq 2 T such that

0 � F (F̃:a+ F̃� :b) �
3

å
i= 1

qiF (U1
i :a+ U1;�

i :b) (32)

for all (a;b) in the familyC de�ned by (31). Any such(a;b) can either be written as(v j 
 w;0) or (0;v j 
 w).
In the �rst case, the de�nition (4) givesF (F:a+ F� :b) = kF:v jk:kwk so that (32) becomes

0 � k F̃:v jk �
3

å
i= 1

qikU1
i :v jk:

Observing thatkU1
i :v jk = h1 + ( h2 � h1)di j and recalling thatå 3

i= 1qi = 1, we obtain

0 � k F̃:v jk � h1 � q j (h2 � h1): (33)

In the case(a;b) = ( 0;v j 
 w), a similar reasoning leads to

0 � k F̃� :v jk � h1h2 � q jh1(h1 � h2): (34)

This inequalities (33) and (34) can be combined as as

kF̃� :v jk � h1h2

h1(h1 � h2)
� q j �

h1 � k F̃:v jk
h1 � h2

: (35)

Any q in T is such thatq j � 0 andå 3
j= 1q j = 1. It follows that anyF̃ in K̃ + satis�es

0 �
h1 � k F̃:v jk

h1 � h2
;

kF̃� :v jk � h1h2

h1(h1 � h2)
� 1;

kF̃� :v jk � h1h2

h1(h1 � h2)
�

h1 � k F̃:v jk
h1 � h2

for j = 1;2;3;

� 3h2 +
1
h1

3

å
j= 1

kF̃� :vik � h1 � h2 � 3h1 �
3

å
j= 1

kF̃:v jk;
(36)

which can be rewritten more simply as

kF̃:v jk � h1 ; kF̃� :v jk � h 2
1 ; h1kF̃:v jk+ kF̃� :v jk � h1(h1 + h2) for j = 1;2;3;

3

å
j= 1

kF̃:v jk � 2h1 + h2 ;
3

å
j= 1

kF̃� :v jk � h1(2h2 + h1): (37)

Conversely, for anỹF satisfying (37), it can be veri�ed that there existsq 2 T satisfying (32) for all(a;b)
in C. Therefore, the inequalities (37) (complemented by the restriction detF̃ = h 2

1h2) characterize the upper
boundK̃ + that is generated by the familyC de�ned in Eq. (31).

Let us now calculate the bound̄K 0
+ in (29). Since the transformation strainsU1

1;U1
2;U1

3 in (30) have same

determinant, we obtain from (29) that anyF̃ in K̄ 0
+ satis�es det̃F = h 2

1h2 and

0 � F (F̃:a+ F̃� :b) � max
1� i� 3

F (U1
i :a+ U1;�

i :b) (38)

for all (a;b) in C. Using the special form of the tensors(a;b) de�ned in (31) and the corresponding values of
F (U1

i :a+ U1;�
i :b), the inequality (38) is found to be equivalent to

kF̃:v jk � h1 ;kF̃� :v jk � h 2
1 for j = 1;2;3: (39)

Comparing (39) with (37) shows thatK̃ + � K̄ 0
+ . That inclusion is actually strict: consider indeed the defor-

mation gradient̃F0 de�ned by

F̃0 = ( h 2
1h2)1=3

�
I +

�
r

(
h1

h2

� 2=3 � 1
�
v1 
 v2

�
:
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We have det̃F0 = h 2
1h2 and

kF̃0:v1k = kF̃0:v3k = ( h 2
1h2)1=3 ; kF̃0:v2k = h1 ; kF̃�

0:v2k = kF̃�
0:v3k = ( h 2

1h2)2=3 ; kF̃�
0:v1k = h 5=3

1 h 1=3
2 :

Sinceh2 < h1, it can easily be veri�ed that̃F0 satis�es (39) and therefore is in̄K 0
+ . However, we have

h1kF̃0:v2k+ kF̃�
0:v2k = h 2

1 +( h 2
1h2)2=3 > h1(h1 + h2). Therefore,̃F0 does not satisfy (37) and is not iñK + .

This example shows that the bound in (27) may fail to recover the single crystal bound in the homogeneous
limit. This is an indication that some information is lost when directly plugging the monocrystalline bound
(10) in the general prescription (22). In the following, we derive an improved upper bound onK̄ that notably
coincides with the single crystal bound (10) in the homogeneous limit.

5 Improved bound for polycrystals

The boundK̄ 0
+ in (27) can be improved upon by taking the special structure of the monocrystalline bound

(10) into account, as is now explained. Consider a givenF̄ in K̄ . By (18), there exists a �eldF 2 A (F̄) such
thatF(x) 2 K̃ (x) for all x 2 W. Recall thatK (x) =

S m
i= 1SO(3)Ui(x) whereUi(x) = å n

r= 1 c r (x)Ur
i . Using the

bound (10) onK̃ (x), we know there existsq(x) 2 T such that

0 � sup
c

sup
(a;b)2C

�
F (F(x):a+ F� (x):b)+ cdetF(x) �

m

å
i= 1

qi(x)f F (Ui(x):a+ U�
i (x):b)+ cdetUi(x)g

	
: (40)

Sincec r (x) 2 f 0;1g andå r c r (x) = 1, Eq. (40) can be rewritten as

0 � sup
c

sup
(a;b)2C

�
F (F(x):a+ F� (x):b)+ cdetF(x) �

n

å
r= 1

m

å
i= 1

c r (x)qi(x)f F (Ur
i :a+ Ur;�

i :b)+ cdetUr
i g

	
: (41)

For anyr = 1; � � � ;n andi = 1; � � � ;m, de�ne

q r
i (x) = c r (x)qi(x): (42)

Taking volume averages in (41) yields

0 � sup
c

sup
(a;b)2C

�
hF (F:a+ F� :b)+ cdetFi �

n

å
r= 1

m

å
i= 1

hq r
i if F (Ur

i :a+ Ur;�
i :b)+ cdetUr

i g
	

(43)

The crucial point is that the functionF 7! F (F:a+ F� :b) + cdetF is quasiconvex. Using (7) and observing
from (8) thath(F) � F (F:a+ F� :b)+ cdetF, we have indeed

h(F̄) � h h(F)i � h F (F:a+ F� :b)+ cdetFi : (44)

Consider a given rotation̄R. SinceR̄:F 2 A (R̄:F̄), we obtain, in a similar way to (44),

h(R̄:F̄) � h F (R̄:F:a+ R̄:F� :b)+ cdet(R̄:F)i : (45)

The functionF being frame-indifferent, the last term in (45) is equal tohF (F:a+ F� :b)+ cdetFi . Therefore,
taking the supremum over̄R in (45) and using the identity (8), we get

F (F̄:a+ F̄� :b)+ cdetF̄ � h F (F:a+ F� :b)+ cdetFi :

That last inequality, holding for anȳF andF 2 A (F̄), proves thatF 7! F (F:a+ F� :b) is quasiconvex. Al-
though it has not been stated explicitely up to this point, the quasiconvexity ofF can be regarding as the main
argument behind the bounds (10) and (27) considered in Sections 2-3. Here, in view of (43), the quasiconvex-
ity of F implies that

0 � sup
c

sup
(a;b)2C

�
F (F̄:a+ F̄� :b)+ cdetF̄ �

n

å
r= 1

m

å
i= 1

hq r
i if F (Ur

i :a+ Ur;�
i :b)+ cdetUr

i g
	

: (46)
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The scalarhq r
i i can be interpreted as the volume fraction of martensitic varianti with orientationr. Note from

(42) thatfhq r
i ig1� r� n

1� i� m belongs to the set̄T de�ned by

T̄ = f Q 2 Rn
mjQ r

i � 0 ;
m

å
i= 1

Q r
i = hc r i 8 r = 1; � � � ;ng: (47)

The developments so far show that for anyF̄ in K̄ , there existsQ 2 T̄ verifying the inequality (46). This last
statement can be rewritten as

K̄ � K̄ + (48)

where

K̄ + =
n

F̄ : 9Q 2 T̄ such that

0 � sup
c

sup
(a;b)2C

�
F (F̄:a+ F̄� :b)+ cdetF̄ �

n

å
r= 1

m

å
i= 1

Q r
i f F (Ur

i :a+ Ur;�
i :b)+ cdetUr

i g
	 o

:
(49)

In the case where all the transformation strains have the same determinant, the setK̄ + can be rewritten more
simply as

K̄ + =
�

F̄ : detF̄ = detU1
1;9Q 2 T̄ such that 0� sup

(a;b)2C
f F (F̄:a+ F̄� :b) �

n

å
r= 1

m

å
i= 1

Q r
i F (Ur

i :a+ Ur;�
i :b)g

	
:

(50)
Eq. (48) means that̄K + is an upper bound on the set of macroscopic energy-minimizing strains for the
polycrystal. In a way similar to the bound̄K 0

+ considered in Sec. 3,̄K + depends on the texture through the
volume fractionshc r i of the different orientations (the later indeed appear in the de�nition (47) of the setT̄).
Observe that the bound̄K + is always tighter than the bound̄K 0

+ obtained from the same setC. By (47), any
Q 2 T̄ indeed satis�es

m

å
i= 1

Q r
i (F (Ur

i :a+ Ur;�
i :b)+ c detUr

i ) � h c r i max
1� i� m

f F (Ur
i :a+ Ur;�

i :b)+ c detUr
i g (51)

for r = 1; � � � ;n. It follows that K̄ + � K̄ 0
+ . We also note that, contrary to the boundK̄ 0

+ , the boundK̄ + in
(49) coincides with the monocrystalline boundK̃ + in the homogeneous limit. This shows that the inclusion
K̄ + � K̄ 0

+ can be strict, i.e. that the bound̄K + can bring a genuine improvement.

Regarding the practical calculation of the boundK̄ + , observe that the inequality 0� F (F̄:a+ F̄� :b) �
å r;i Q

r
i F (Ur

i :a+ Ur;�
i :b) in (49) can be viewed as alinear constraint onQ, parametrized bȳF. Deformation

gradientsF̄ in K̄ + are characterized by the fact that those linear constraints (supplemented by the conditions
Q 2 T̄) de�ne a non empty set ofRn

m. In the language of linear programming, this amounts to detectfeasibility
of the linear constraints [31], which is not a direct calculation – even for a discreteC. In the next section, we
show how the problem can be conveniently solved in the case of a two-orientation / three-well polycrystal.

6 Analytical example

6.1 Upper bounds

We consider a polycrystal with two orientations, assuming without loss of generality that orientation 1 is
the reference orientation. The constitutive single crystals obey a cubic to tetragonal transformation. We are
interested in estimating the energy-minimizing strains atT < T0, i.e. in the case whereK 1 =

S 3
i= 1SO(3)U1

i
with U1

1, U1
2, U1

3 given by (30). The setK 2 of strains that minimize the microscopic free energy in orientation
2 can be written asK 2 = R2:K 1: tR2 whereR2 2 SO(3).
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Table 1 Values of(a;b) used for the cubic to tetragonal transformation

a b F 1
k(a;b) F 1

i (a;b) ( i 6= k)

vk 
 vk 0 h2 h1
0 vk 
 vk h 2

1 h1h2

(vi � v j ) 
 vk 0
p

2h1

q
h 2

1 + h 2
2

0 (vi � v j ) 
 vk
p

2h1h2 h1

q
h 2

1 + h 2
2

h1

h 2
1 � h 2

2
vk 
 vk �

h2

h1(h 2
1 � h 2

2 )
vk 
 vk 0 1

h2

h 2
1 � h 2

2
vk 
 vk �

1
h 2

1 � h 2
2

vk 
 vk 1 0

We �rst illustrate how the prescription (49) can be used to derive a closed-form bound onK̄ . By (49) we
know that for any given̄F in K̄ , there existsQ 2 T̄ verifying

0 � F (F̄:a+ F̄� :b) �
2

å
r= 1

3

å
l= 1

Q r
l F r

l (a;b) (52)

with the notationF r
l (a;b) = F (Ur

l :a+ Ur;�
l :b). Assume we can pick out(a;b) such that

F 1
i (a;b) = F 1

j (a;b) 6= F 1
k(a;b) (53)

for some permutation(i; j ;k) of (1;2;3). Sinceå 3
l= 1Q1

l = hc 1i , the relation (52) gives

0 � F (F̄:a+ F̄� :b)+ Q1
k (F 1

i (a;b) � F 1
k(a;b)) � h c 1i F 1

i (a;b) �
3

å
l= 1

Q2
l F 2

l (a;b):

Using the fact thatQ2
l � 0 andå 3

l= 1Q2
l = hc 2i , we get

0 � F (F̄:a+ F̄� :b)+ Q1
k (F 1

i (a;b) � F 1
k(a;b)) � h c 1i F 1

i (a;b) � h c 2i max
1� l � 3

F 2
l (a;b):

That last inequality can be rewritten as

Q1
k �

� F (F̄:a+ F̄� :b)+ hc 1i F 1
i (a;b)+ hc 2i maxl F 2

l (a;b)

F 1
i (a;b) � F 1

k(a;b)
if F 1

i (a;b) � F 1
k(a;b) > 0;

Q1
k �

� F (F̄:a+ F̄� :b)+ hc 1i F 1
i (a;b)+ hc 2i maxl F 2

l (a;b)

F 1
i (a;b) � F 1

k(a;b)
if F 1

i (a;b) � F 1
k(a;b) < 0:

(54)

Observe that tensors(a;b) of the form (31) verify the condition (53). In a separate study of the monocrystalline
cubic to tetragonal transformation [24], other tensors(a;b) verifying (53) have been found. Those tensors
(a;b) are listed in Table 1, along with the corresponding values ofF 1

l (a;b). The tensors(a;b) in Table 1 have
been found in the course of a full optimization of (10) with respect to tensors(a;b) that are diagonal in the
reference cubic lattice (see [24] for more details).

Substituting the values of Table 1 in (54), we �nd that

A1
k(F̄) � Q1

k � B1
k(F̄) (55)

whereA1
k(F̄) and B1

k(F̄) are explicit functions whose expressions are reported in Appendix A. A similar
analysis can be performed to the orientationr = 2. This is simply achieved by replacingvk by R2:vk and
swapping the roles of orientations 1 and 2 in the previous developments. Such a procedure leads to

A2
k(F̄) � Q2

k � B2
k(F̄) (56)
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Fig. 1 Representation of the deformationI + du(w) 
 v(w) : reference (left) and deformed (right) con�guration.

where the expressions ofA2
k(F̄) andB2

k(F̄) are detailed in Appendix A. In view of (55-56), some necessary
conditions forF̄ to be inK̄ are

Ar
k(F̄) � Br

k(F̄) for k = 1;2;3;
3

å
k= 1

Ar
k(F̄) � h c r i �

3

å
k= 1

Br
k(F̄);

(57)

with r = 1;2. The second inequality in (57) stems from the fact thatå 3
k= 1Q r

k = hc r i . The relations (57) de�ne
the upper bound̄K + corresponding to the set of tensors(a;b) listed in Table 1 (along with their rotated
versions obtained by replacingvk with R2:vk in Table 1).

So as to illustrate the bound obtained, consider deformation gradientsF(w;d) of the form

F(w;d) = ( h 2
1h2)1=3(I + du(w) 
 v(w)) (58)

where
u(w) = cosw v1 + sinw v2 andv(w) = � sinw v1 + cosw v2:

The deformation gradientF(w;d) is a simple shear between the directionsu(w) andv(w) (Figure 1), followed
by a uniform dilatation(h 2

1h2)1=3I . The parameterw is the angle made by the shear directions(u(w);v(w))
with the directions(v1;v2) of the cubic austenitic lattice in orientation 1.

In the following, we are interested in estimating the values(w;d) for whichF(w;d) is energy-minimizing.
Except stated otherwise, all the results presented next are obtained with the lattice parameters of MnCu, i.e.
h1 = 1:0099,h2 = 0:9656 [3]. The rotationR2 de�ning the orientation 2 is taken as

R2 =

0

@

p
2

2 �
p

2
2 0p

2
2

p
2

2 0
0 0 1

1

A : (59)

Textures satisfying the assumptions made so far (i.e.n= 2 with R1 = I andR2 given by Eq. (59) ) are observed
in some ribbons of shape memory alloys [9].

Let
D+ = f (w;d) : F(w;d) 2 K̄ + g

be the trace of̄K + on deformation gradients of the form (58). The boundary ofD+ is represented in Figures
2-4 (solid lines in blue) for several values ofhc 1i : the deformation gradientF(w;d) satis�es Eq. (57) for any
(w;d) within the bounded domainD+ delimited by the solid lines in Figures 2-4. The solid curves in Figures
2-4 can thus be interpreted as lower and upper bounds on the sheard for F(w;d) to be energy-minimizing.

Similarly, we set
D0

+ = f (w;d) : F(w;d) 2 K̄ 0
+ g

whereK̄ 0
+ is calculated by applying (28) with the tensors(a;b) listed in Table 1 (along with their rotated

versions obtained by replacingvk with R2:vk). The boundary ofD0
+ is plotted in dotted lines in Figures 2-4.

This allows one to appreciate the improvement brought by the consideration of (49) over (27). For instance,
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Fig. 2 Bounds on the sheard for MnCu,hc 1i = 0:9.

in the casehc 1i = 0:7 (Figure 3), the relative improvement of the bound on the sheard varies between 0 and
52% (depending on the anglew considered), with an average of approximatively 35%. In the casehc 1i = 0:5
(Figure 4), the relative improvement is non-negative for allw, with an average of approximatively 26% .

6.2 Lamination lower bound

Although the fact that̄K + signi�cantly improves onK̄ 0
+ is promising, it does not give any clue regarding the

sharpness of the bound. The relations de�ningK̄ + (49) are indeed necessary- but not suf�cient - conditions
for a deformation gradient to be energy-minimizing. The issue is to determine which deformation gradients
in K̄ + are indeed energy-minimizing for some polycrystalline texture that is compatible with the prescribed
statistics (i.e. with prescribed volume fractions of the different orientations). In order to address that question,
we consider the special class of laminated textures and adapt an argument introduced in [2]: letF1 2 K̃

1
and

F2 2 K̃
2

be rank-1 connected, i.e. such that

R:F2 � F1 = p 
 n (60)

for some vectors(p;n) and some rotationR. Following [2], we know that the effective deformation gradient
hc 1i F1 + ( 1� h c 1i )R:F2 is energy-minimizing for an (in�nitely �ne) laminate texture mixing orientations
1 and 2 in proportionshc 1i and 1� h c 1i , respectively. The vectorn in (60) corresponds to the normal to
the interfaces in such a laminate texture. We wish to use that argument to construct values of(w;d) such
thatF(w;d) is energy-minimizing for some well-chosen laminate texture. This requires to �nd deformation
gradients(F1;F2) that ful�ll the two following conditions:

(1) F1 2 K̃
1
, F2 2 K̃

2
.

(2) F1 andF2 are rank-1 connected.

The condition (1) means thatFi is energy-minimizing for a single crystal with orientationi. The issue
of �nding deformation gradients that are energy-minimizing for a single crystal of tetragonal martensite has
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Fig. 3 Bounds on the sheard for MnCu,hc 1i = 0:7.

Fig. 4 Bounds on the sheard for MnCu,hc 1i = 0:5.
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been addressed in [24]: it can be shown thatK̃
1

contains all the deformation gradients of the form
0

@
u11 u12 0
u12 u22 0
0 0 (h 2

1h2)1=3

1

A (61)

with (u11;u22;u12) verifying

u11u22 � u2
12 = ( h 2

1h2)2=3 ; u2
11+ u2

22+ 2u2
12+ 2ju12(u11+ u22)j � h 2

1 + ( h1h 2
2)2=3: (62)

SinceK̃
2

= R2:K̃
1
: tR2, it follows thatK̃

2
contains all the deformation gradients of the form

R2:

0

@
u0

11 u0
12 0

u0
12 u0

22 0
0 0 (h 2

1h2)1=3

1

A : tR2 (63)

where(u0
11;u

0
22;u

0
12) are submitted to the same restrictions as (62). As explained in [24], the deformation gra-

dient in (61) can be realized by some fourth-rank laminated microstructure that involves the three martensitic
variants.

Let nowF1 2 K̃
1

andF2 2 K̃
2

be two deformation gradients of the form (61) and (63), respectively. We
claim thatF1 andF2 are rank-1 connected. This can be checked by applying a general procedure proposed
in [1,13]: settingUi =

p
tFi :Fi and C = U� 1

1 :U2
2:U� 1

1 , given deformation gradientsF1 and F2 are rank-1
connected if and only if the eigenvaluesl 1 � l 2 � l 3 of C are such that

l 2 = 1: (64)

In that case, the vectorsp andn solving the twinning equation (60) are given by

p =

s
l 3(1� l 1)

l 3 � l 1
u1 + k

s
l 1(l 3 � 1)

l 3 � l 1
u3;

U� 1
1 :n = (

p
l 3 �

p
l 1p

l 3 � l 1
)( �

p
1� l 1u1 + k

p
l 3 � 1u3)

(65)

wherek 2 f� 1;1g andui is a normalized eigenvector ofC for the eigenvaluel i .
In the present case, observe from Eqs. (59)-(61)-(63) that detC = 1 andC:v3 = v3, so that the condition

(64) is necessarily satis�ed. We can thus conclude that there exists a polycrystalline texture having a volume
fractionhc 1i of orientation 1 and for which the deformation gradientG de�ned by

G = F1 + ( 1�h c 1i )p 
 n (66)

is energy-minimizing, i.e. is in the setK̄ .
The �nal step is to observe that the deformation gradientG in (66) can be written asG = R� :F(w� ;d � )

for some rotationR� and some well-chosen values(w� ;d � ). To that purpose, we �rst note thatv3 being an
eigenvector of the symmetric tensorC for the eigenvaluel 2 = 1, the two eigenvectors(u1;u3) in (65) are
orthogonal tov3. It follows from the expressions (65) that the vectorsp andn are also orthogonal tov3. We
thus have

G:v3 = tG:v3 = ( h 2
1h2)1=3v3

Using matrix representations in the basis(v1;v2;v3), the tensortG:G=(h 2
1h2)2=3 can therefore be written as

�
S 0
0 1

�

whereS is a symmetric positive de�nite matrix inR2� 2 with a determinant equal to 1. Let(m1;m2) be the
eigenvalues ofS, ordered in such a way thatm1 � m2. Sincem1m2 = detS= 1, we have necessarilym1 � 1 � m2.
Now the continuous functionw 7! u(w):S:u(w) takes values in[m1;m2], so there existsw� verifying

u(w� ):S:u(w� ) = 1: (67)
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Setting

d � = u(w� ):S:v(w� ); (68)

the relation detS= 1 implies that the matrix representation ofS in (u(w� );v(w� )) is

�
1 d �

d � 1+ d � ;2

�
:

It follows thattG:G andtF(w� ;d � ):F(w� ;d � ) have the same matrix representation in the basis(u(w);v(w);v3),
i.e. thattG:G = tF(w� ;d � ):F(w� ;d � ). That last equality implies thatG = R� :F(w� ;d � ) for some rotationR� .
SinceK̄ is frame-indifferent andG is in K̄ , we can conclude thatF(w� ;d � ) is in K̄ for the values(w� ;d � )
given by (67)-(68).

As a �rst example of the above construction, sets = ( h1=h2)1=3 and consider the deformation gradient
F0

1 2 K̃
1

de�ned by

F0
1 = ( h 2

1h2)1=3diag(s;1=s;1) (69)

which satis�es (61-62). We takeF1 = F0
1 andF2 = R2:F0

1: tR2. Settingt = s4, the eigenvaluesl 1 andl 3 of C
are

l 1 =
1
4t

(1+ 2t + t2 � (t � 1)
p

t2 + 6t + 1); l 3 =
1
4t

(1+ 2t + t2 + ( t � 1)
p

t2 + 6t + 1);

and the corresponding eigenvectors are

u1 = v2 �
(
p

t2 + 6t + 1+ t + 1)
2t

v1; u3 = v2 +

p
t2 + 6t + 1� t � 1

2t
v1:

Substituting in Eq. (65) gives two energy-minimizing strains for the polycrystal. The corresponding values
of (w� ;d � ) are shown as red dots in Figures 2-4. A corresponding laminate texture is shown in Figure 5(a-b)
for hc1i = 0:7, h1 = 1:5, h2 = 1. Layers of material with orientation 1 (shown in blue) are alternated with
layers of material with orientation 2 (shown in red). In the reference con�guration, Figure 5(a), the normal
to the layers is taken as a vectorn that is a solution of (65). In the deformed con�guration, Figure 5(b), a
homogeneous deformation gradientF0

1 (resp.F0
1 + p 
 n) is applied in the layers with orientation 1 (resp. 2).

The macroscopic deformation gradientF(w� ;d � ) that is realized that way is of the form (58). In Figure 5(a),
the cubic domain is chosen in a such a way that the edges of the top section are oriented along the shear
directions(u(w� );v(w� )) .

The deformation of each monocrystalline layer in Figure 5(b) is achieved by some geometric arrange-
ment of the martensitic variants at the microscopic level. Such a geometric arrangement is represented in
Figure 5(c) for a layer with orientation 1. As detailed in Appendix, the deformation in such a layer can be
achieved by a second-rank laminate involving only variants 2 and 3 (in proportion approximatively equal to
0.3338 and 0.6662, respectively). The deformation of a layer with orientation 2 can be realized by a similar
microstructure.

The procedure described so far can be repeated for anyF1 andF2 of the form (61)-(63), thus generat-
ing a set of values(w� ;d � ) for which F(w� ;d � ) is energy-minimizing. That set is denoted byD� in the
following. Although dif�cult to carry out by hand, the calculation ofD� can conveniently be performed nu-
merically. The results are represented as green dotted domains in Figures 2-4. The corners of the domain
D� correspond to all combinations ofF1 in f (h 2

1h2)1=3diag(s;1=s;1); (h 2
1h2)1=3diag(1=s;s;1)g andF2 in

R2:f (h 2
1h2)1=3diag(s;1=s;1); (h 2

1h2)1=3diag(1=s;s;1)g: tR2. As can be observed in Figures 2-4, the green
domainD� �lls most of the domainD+ , which means that most of the values of(w;d) in D+ can be realized
by laminate textures. The gap betweenD� andD+ could possibly be reduced by considering more complex
polycrystalline textures.
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Fig. 5 Example of energy-minimizing strain in a laminated texture,hc 1i = 0:7: (a) reference con�guration; (b) deformed con-
�guration; (c) details of the martensitic microstructure in a monocrystalline layer.

6.3 Bounds on the volume fractions

The functions(Ar
i ;B

r
i ) that de�ne the boundK̄ + in (57) are of special interest as they give some informa-

tion on the martensitic microstructures realizing any given energy-minimizing deformation gradientF̄. From
(55),Ar

i (F̄) andBr
i (F̄) are indeed lower and upper bounds on the volume fractions of martensitic varianti in

orientationr.
As a �rst example, calculatingAr

i (F̄) andBr
i (F̄) for the deformation gradient̄F corresponding to Figure 5

gives the restrictions

0 � Q1
1 � 0:0844; 0 � Q2

1 � 0:1879;
0:3686� Q1

2 � 0:5723; 0:0329� Q2
2 � 0:3;

0:1838� Q1
3 � 0:3433; 0:0782� Q2

3 � 0:3:
(70)
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The polycrystalline texture and the martensitic microstructures displayed in Figure5 correspond toQ1
1 = 0,

Q1
2 ' 0:4662,Q1

3 ' 0:2337,Q2
1 = 0, Q2

2 ' 0:2, Q2
3 ' 0:1. Such values are compatible with the bounds (70),

as expected.
In Figure 6, the bounds(A1

i ;B1
i ) are displayed as functions of the sheard, for several values ofw. The

volume fractionhc 1i is set to 0:7. It is important to note that, because of the conditionå i Q
1
i = hc 1i , the

volume fractionsQ1
i cannot reach any arbitrary value that is compatible with the bounds(A1

i ;B1
i ). For instance

in the cased = 0, the upper boundsB1
i on Q1

i are all equal to 1=3 but the volume fractionsQ1
i cannot be

simultaneously equal to the 1=3 (as otherwise the constraintå i Q
1
i = hc 1i = 0:7 would not be satis�ed).

There is no general trend concerning the variations of(A1
i ;B1

i ) with d. For instance, in the examples
displayed in Figure 6, the functionB1

1 can either be decreasing, increasing or non monotonic, depending on
the value ofw considered. Some intuitive insight in the behavior of the bounds(A1

i ;B1
i ) can be obtained in the

in�nitesimal strain approximation, using the idea that the martensitic variants that are most likely to develop
are those which are the most favorably oriented with respect to the applied strain, i.e. those that maximize the
quantity

zi(w;d) = tr(e1
i :e(w;d)) :

In that last equation,e(w;d) = ( F(w;d) + tF(w;d))=2� I is the in�nitesimal strain associated toF(w;d)
ande1

i = ( U1
i + tU1

i )=2� I is the in�nitesimal transformation strain for varianti. For the case at hand, we �nd

z1(w;d) =
d
2

(h1 � h2) sinw ; z2(w;d) = �
d
2

(h1 � h2) sinw ; z3(w;d) = 0:

The cases (a),(b) and (c) in Figure 6 correspond to sinw > 0. Therefore, for positive values ofd, variant 1
is favorably oriented and variant 2 is unfavorably oriented. Accordingly, whend grows from 0, the bounds
(A1

1;B1
1) initially increase while the bounds(A1

2;B1
2) decrease. This is in line with the intuition that more

of variant 1 and less of variant 2 is expected to develop asd increases from 0. Sincez3(w;d) = 0, variant
3 is neither favorably nor unfavorably oriented. Accordingly, the corresponding bounds(A1

3;B1
3) remains

stationary (ford small enough). The case (d) in Figure 6 is slightly different as it corresponds to sinw = 0.
In such case we havezi(w;d) = 0 for all i, which explains that all the bounds(A1

i ;B1
i ) remains stationary. All

of this reasoning is limited to the in�nitesimal strain approximation, i.e. to small values ford. As d becomes
large, rotation effects become signi�cant and the qualitative arguments explained above do no longer apply.
In particular, in the case (a), we can observe thatB1

1 decreases for large values ofd.
The transformationF(w;d) ceases to be energy-minimizing when one of the constraintsA1

i < B1
i or

å i A
1
i � h c 1i < å i B

1
i is violated. The corresponding value ofd is displayed as a vertical dashed line in

Figure 6. For instance, the constraintA1
3 < B1

3 (resp.A1
2 < B1

2) is the limiting one in the casew = 0:2 (resp.
w = 0:75), see Figure 6 (a) and (b). Forw = 1, Figure 6(c), the limiting constraint iså i A

1
i < hc 1i . All the

remarks made so far on the bounds(A1
i ;B1

i ) for orientation 1 can be transposed to orientation 2. In particular,
there are some values ofw for which the limiting constraints are associated with(A2

i ;B2
i ).

7 Concluding remarks

In this paper, some rigorous upper bounds on the energy-minimizing strains of martensitic polycrystals have
been obtained in the geometrically nonlinear setting. The main results are the boundsK̄ 0

+ andK̄ + (de�ned in
(27) and (49) respectively) that depend on the texture through the volume fractions of the different orienta-
tions. Those bounds are expressed in terms of a given familyC of tensors(a;b), which acts as a free parameter
in (27)-(49): each choice ofC generates corresponding boundsK̄ 0

+ andK̄ + . For a given (say discrete)C, the

boundK̄ + is tighter thanK̄ 0
+ but more dif�cult to calculate: whereas checking if a given deformation gradient

F̄ is in K̄ 0
+ is a direct calculation, checking if̄F 2 K̄ + amounts to detecting feasibility of a linear program-

ming problem inRn
m. In this paper, the bounds̄K 0

+ andK̄ + have been used to study a 2-orientation/3-variant
polycrystal, in which case the calculations could be performed in closed form (for a well chosenC). For
more complex textures, it is clear that numerical calculations of the bounds will be necessary at some point,
which requires adequate algorithms. In that regard, it can be noted that interior-point methods offer some
ef�cient algorithms for detecting feasibility in large-scale linear programming problems. Interestingly, such
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Fig. 6 Lower boundA1
i and upper boundB1

i on the volume fractionsq1
i for MnCu,hc 1i = 0:7: w = 0:2 (a),w = 0:75 (b),w = 1

(c), w = p=2 (d).

algorithms, as the self-dual algorithm of Ye [32], has been used in other problems related to shape-memory
alloys [26] and could possibly be useful for calculating the boundK̄ + in the case of a complex polycrystalline
texture. A more theoretical line of investigation consists in deriving upper bounds taking more information on
the texture (such as 2-point statistics) into account.
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A Bounds on the volume fractions for a two-orientation polycrystal of tetragonal martensite

Substituting the values of Table 1 in (54) and recalling that 0� Q1
k � h c 1i , we �nd thatA1

k(F̄) � Q1
k � B1

k(F̄) where

A1
k(F̄) = max

e= � 1

n kF̄� :vkk �h c 1i h1h2 � h c 2i maxl kU2;�
l :vkk

h1(h1 � h2)
;

kF̄:(vi + ev j )k �
q

h 2
1 + h 2

2hc 1i � h c 2i maxl kU2
l :(vi + ev j )k

p
2h1 �

q
h 2

1 + h 2
2

;

1
h 2

1 � h 2
2

�
kh2F̄:vk � F̄� :vkk �h c 2i max

l
kh2U2

l :vk � U2;�
l :vkk

�
;0

o
;

B1
k(F̄) = min

e= � 1

n h1hc 1i � k F̄:vkk+ hc 2i maxl kU2
l :vkk

h1 � h2
;

h1

q
h 2

1 + h 2
2hc 1i � k F̄� :(vi + ev j )k+ hc 2i maxl kU2;�

l :(vi + ev j )k

h1(
q

h 2
1 + h 2

2 �
p

2h2)
;

hc 1i �
1

h1(h 2
1 � h 2

2 )

�
kh 2

1 F̄:vk � h2F̄� :vkk �h c 2i max
l

kh 2
1U2

l :vk � h2U2;�
l :vkk

�
;hc 1i

o
:

In those expressions, the indexes(i; j) are such that(i; j ;k) is a permutation of(1;2;3). Replacingvk by R2:vk and swapping the
roles of orientations 1 and 2, we obtain in a similar fashion thatA2

k(F̄) � q2
k � B2

k(F̄) with

A2
k(F̄) = max

e= � 1

n kF̄� :R2:vkk �h c 2i h1h2 � h c 1i maxl kU1;�
l :R2:vkk

h1(h1 � h2)
;

kF̄:R2:(vi + ev j )k �
q

h 2
1 + h 2

2hc 2i � h c 1i maxl kU1
l :(R2:vi + eR2:v j )k

p
2h1 �

q
h 2

1 + h 2
2

;

1
h 2

1 � h 2
2

�
kh2F̄:R2:vk � F̄� :R2:vkk �h c 1i max

l
kh2U1

l :R2:vk � U1;�
l :R2:vkk

�
;0

o
;

B2
k(F̄) = min

e= � 1

n h1hc 2i � k F̄:R2:vkk+ hc 1i maxl kU1
l :R2:vkk

h1 � h2
;

h1

q
h 2

1 + h 2
2hc 2i � k F̄� :(R2:vi + eR2:v j )k+ hc 1i maxl kU1;�

l :(R2:vi + eR2:v j )k

h1(
q

h 2
1 + h 2

2 �
p

2h2)
;

hc 2i �
1

h1(h 2
1 � h 2

2 )

�
kh 2

1 F̄:R2:vk � h2F̄� :R2:vkk �h c 1i max
l

kh 2
1U1

l :R2:vk � h2U1;�
l :R2:vkk

�
;hc 2i

o
:

Although somewhat lengthy, the obtained expressions are fully explicit and easy to calculate.

B Construction of a microstructure realizing the deformation gradient F0
1 in Eq. (69)

In this Appendix, we determine a martensitic microstructure realizing the deformation gradientF0
1 in (69) for a reference single

crystal with transformation strains given by (30). To that purpose, we �rst observe thatF0
1 is in the quasiconvex hull of SO(3)U2 [

SO(3)U3 (which is denoted byK̃ 23 from now on). Following [2], symmetric positive de�nite tensorsU in K̃ 23 are indeed
characterized by matrix representations (in the basis(v1;v2;v3) of the cubic austenitic lattice) of the form

 
h1 0 0
0 u22 u23
0 u23 u33

!

with u22u33 � u2
23 = h1h2 and

u2
22+ u2

33+ 2u2
23+ 2ju23(u22+ u33)j � h 2

1 + h 2
2 : (71)

The fact thatF0
1 is in K̃ 23 means thatF0

1 can be realized by a microstructure involving variants 2 and 3 only. Also observe from
the characterization given above that symmetric positive de�nite tensorsU in K̃ 23 can be parametrized by their components
(u23;u22). In Figure 7 is represented the set of values(u23;u22) corresponding to symmetric positive de�nite tensorsU in K̃ 23.
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Fig. 7 Representation of̃K 23.

Now consider a deformation gradientV+ on the boundary of the domain in Figure 7, and letV� be its symmetric with
respect to theu23 = 0 axis. We can write

V+ =

 
h1 0 0
0 v22 v23
0 v23 v33

!

; V� =

 
h1 0 0
0 v22 � v23
0 � v23 v33

!

and we assume thatv23 � 0. Using the fact thatV+ satis�es (71) as an equality, we can relate(v22;v33) to v23 by the expressions

v22 =
1
2

(S+ e
p

S2 � 4P) ; v33 =
1
2

(S� e
p

S2 � 4P) (72)

with S= � v23+
q

v2
23+ ( h1 + h2)2, P = h1h2 + v2

23 ande = � 1.
Following [2], deformation gradients on the boundary of the domain in Figure 7 can be realized by a simple laminate of

variants 2 and 3, i.e. there existsc� in [0;1] andR� 2 SO(3) such that

V� = R� :(U2 + ( 1� c� )b 
 n) (73)

where(b;n) are solutions of the twinning equation(U2 + b 
 n):U� 1
3 2 SO(3). There are actually two sets of vectors(b;n)

solving the twinning equation. We denote them by(b+ ;n+ ) and(b� ;n� ). For (h1;h2) = ( 1:5;1), we haven+ = x(v2 � v3)
andn� = � x(v2 + v3) with x ' 0:6934. It turns out thatV+ satis�es (73) with(b;n) = ( b+ ;n+ ), while V� satis�es (73) with
(b;n) = ( b� ;n� ).

Eq. (73) expresses the fact thatV� is realized by a laminate with a direction of lamination equal ton, mixing variants 2 and
3 in proportionc� and 1� c� respectively. AsV+ andV� are symmetric with respect to theu23 = 0 axis in Figure 7, it can be
proved thatc+ = c� . The exact value ofc+ depends on the deformation gradientV+ considered.

The same argument as used in Section 6.2 shows thatV+ andV� are rank-1 connected. ThereforeK̃ 23 contains the defor-
mation gradient

H(c) = V+ + ( 1� c)b0
 n0

where(b0;n0) solve the twinning equation(V+ + b0
 n0):V� 1
� 2 SO(3). The parameterc can take any value in[0;1]. Let sbe the

operator that maps any givenF in GL+ (3) to its symmetric de�nite positive partU in the polar decompositionF = R:U. When
c varies from 0 to 1, the tensors(H(c)) remains inK̃ 23 and varies betweenV+ andV� , as represented in Figure 7 (red lines).
Since the twinning equation(V+ + b0
 n0):V� 1

� 2 SO(3) generally admits two sets of solutions(b0;n0), there are two branches
c 7! s(H(c)) to be considered, as can be seen in Figure 7. Independently on the branch considered, it can be veri�ed that

v2:s(H(1=2)) :v3 = 0;

i.e. the curvev 7! s(H(c)) in Figure 7 crosses theu23 = 0 axis forc = 1=2. It follows thats(H(1=2)) as a matrix representation
of the form diag(h1;y;h1h2=y) with y = v2:s(H(1=2)) :v2. Hences(H(1=2)) is equal toF0

1 if

v2:s(H(1=2)) :v2 = ( h1h 2
2 )1=3: (74)

Recall thatH(1=2) depends onV+ , the latter being parametrized byv23. The functionv23 7! v2:s(H(1=2)) :v2 is represented in
Figure 8 for one of the branchesc 7! H(c), with e = 1 in (72). As can be observed on Figure 8, the condition (74) is satis�ed for
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Fig. 8 Determination of the microstructural parameterv23.

some valuev�
23 of the parameterv23 (numerical calculations givev�

23 ' 0:04352). The corresponding values ofc+ , V+ , b0, n0are
denoted byc�

+ , V�
+ , b0�, n0�, respectively. In particular, we note thatc�

+ ' 0:3338 andn0� ' � 0:1868v3.
The conclusion is that the deformation gradientF0

1 can be realized by a laminate of normaln0�, mixing the deformation
gradientsV�

+ andV�
+ + ( 1=2)b0� 
 n0� in equal proportion. SinceV�

+ andV�
+ + ( 1=2)b0� 
 n0� are themselves realized by �rst-

rank laminates of variants 2 and 3 (with the same volume fractionc�
+ ), the deformation gradientF0

1 is realized by a second-rank
laminate of variant 2 (in volume fractionc�

+ ) and variant 3. Such a second-rank laminate microstructure is displayed in Figure
5(c).
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