I. Ali, Water treatment by adsorption columns: Evaluation at ground level, Sep, Purif. Rev, vol.43, pp.175-205, 2014.

S. Bilardi, P. S. Calabrò, S. Caré, N. Moraci, and C. Noubactep, Effect of pumice and sand on the sustainability of granular iron beds for the removal of Cu II , Ni II , and Zn II, vol.41, pp.835-843, 2013.

P. A. Bland, M. D. Jackson, R. F. Coker, B. A. Cohen, J. B. Webber et al., Why aqueous alteration in asteroids was isochemical: High porosity # high permeability, vol.287, pp.559-568, 2009.

A. Bojic, M. Purenovic, B. Kocic, J. Perovic, J. Ursic-jankovic et al., The inactivation of escherichia coli by microalloyed aluminium based composite. Facta universitatis -Phys, Chem. Technol, vol.2, pp.115-124, 2001.

E. Brunazzi, G. Nardini, and A. Paglianti, An economical criterion for packed absorption column design, Chem. Biochem. Eng. Quart, vol.15, pp.199-206, 2002.

-. Btatkeu, B. D. Olvera-vargas, H. Tchatchueng, J. B. Noubactep, C. Caré et al., Determining the optimum Fe 0 ratio for sustainable granular Fe 0 /sand water filters, Chem. Eng. J, vol.247, pp.265-274, 2014.

S. Caré, R. Crane, P. S. Calabro, A. Ghauch, E. Temgoua et al., Modelling the permeability loss of metallic iron water filtration systems, Clean -Soil, Air, Water, vol.41, pp.275-282, 2013.

H. Chiew, M. L. Sampson, S. Huch, S. Ken, and B. C. Bostick, Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended biosand filters, 2009.

, Environ. Sci. Technol, vol.43, pp.6295-6300

A. Dabrowski, Adsorption -from theory to practice, Adv. Colloid Interf. Sci, vol.93, pp.135-224, 2001.

Z. Derakhshan, M. A. Baghapour, M. Ranjbar, and M. Faramarzian, Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: Kinetics and equilibrium studies, Health Scope, vol.2, pp.136-180, 2013.

R. Domga, F. Togue-kamga, C. Noubactep, and J. B. Tchatchueng, Discussing porosity loss of Fe 0 packed water filters at ground level, Chem. Eng. J, vol.263, pp.127-134, 2015.

W. B. Fortune and M. G. Mellon, Determination of iron with o-phenanthroline: a spectrophotometric study, Ind. Eng. Chem., Anal. Ed, vol.10, pp.60-64, 1938.

A. Ghauch, Iron-based metallic systems: An excellent choice for sustainable water treatment. Freiberg Online Geosci, vol.38, p.pp, 2015.

A. Ghauch, H. Abou-assi, H. Baydoun, A. M. Tuqan, and A. Bejjani, Fe 0 -based trimetallic systems for the removal of aqueous diclofenac: Mechanism and kinetics, Chem. Eng. J, vol.172, pp.1033-1044, 2011.

M. Gheju, Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems, Water Air Soil Pollut, vol.222, pp.103-148, 2011.

M. Gheju and I. Balcu, Removal of chromium from Cr(VI) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations, J. Hazard. Mater, vol.196, pp.131-138, 2011.

X. Guan, Y. Sun, H. Qin, J. Li, I. M. Lo et al., The limitations of applying zerovalent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades, Water Res, vol.75, pp.224-248, 1994.

A. D. Henderson and A. H. Demond, Impact of solids formation and gas production on the permeability of ZVI PRBs, J. Environ. Eng, vol.137, pp.689-696, 2011.

A. Hussam, Contending with a development disaster: SONO filters remove arsenic from well water in Bangladesh, Innovations, vol.4, pp.89-102, 2009.

K. Imamura, E. Ikeda, T. Nagayasu, T. Sakiyama, and K. Nakanishi, Adsorption behavior of methylene blue and its congeners on a stainless steel surface, J. Colloid Interf. Sci. ence, vol.245, pp.50-57, 2002.

A. Jada and R. A. Akbour, Adsorption and removal of organic dye at quartz sand-water interface, Oil Gas Sci. Technol, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01933388

D. I. Kaplan and T. J. Gilmore, Zero-valent iron removal rates of aqueous Cr(VI) measured under flow conditions, Water Air Soil Pollut, vol.155, pp.21-33, 2004.

M. Kosmulski, Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature, Adv. Colloid Interf. Sci, vol.152, pp.14-25, 2009.

K. C. Lai, I. M. Lo, V. Birkelund, and P. Kjeldsen, Field monitoring of a permeable reactive barrier for removal of chlorinated organics, J. Environ. Eng, vol.132, pp.199-210, 2006.

O. X. Leupin and S. J. Hug, Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron, Water Res, vol.39, pp.1729-740, 2005.

O. X. Leupin, S. J. Hug, and A. B. Badruzzaman, Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand, Environ. Sci. Technol, vol.39, pp.8032-8037, 2005.

G. Mitchell, P. Poole, and H. D. Segrove, Adsorption of methylene blue by high-silica sands, Nature, vol.176, pp.1025-1026, 1955.

K. Miyajima, Optimizing the design of metallic iron filters for water treatment, Freiberg Online Geosci, vol.32, p.pp, 2012.

K. Miyajima and C. Noubactep, Impact of Fe 0 amendment on methylene blue discoloration by sand columns, Chem. Eng. J, vol.217, pp.310-319, 2013.

C. Noubactep, Characterizing the discoloration of methylene blue in Fe 0 /H2O systems, J. Hazard. Mater, vol.166, pp.79-87, 2009.

C. Noubactep, A. Schöner, and P. Woafo, Metallic iron filters for universal access to safe drinking water, Clean Soil, Air, Water, vol.37, pp.930-937, 2009.

C. Noubactep, Metallic iron for safe drinking water worldwide, Chem. En. J, vol.165, pp.740-749, 2010.

C. Noubactep, The suitability of metallic iron for environmental remediation, Environ. Progr, vol.29, pp.286-291, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00769980

C. Noubactep and S. Caré, Dimensioning metallic iron beds for efficient contaminant removal, Chem. Eng. J, vol.163, pp.454-460, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00551360

C. Noubactep, S. Caré, F. Togue-kamga, A. Schöner, and P. Woafo, Extending service life of household water filters by mixing metallic iron with sand, Clean -Soil, Air, Water, vol.38, pp.951-959, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00551344

C. Noubactep, Metallic iron for water treatment: A critical review, Clean -Soil, Air, Water, vol.41, pp.702-710, 2013.

C. Noubactep, Metallic iron for environmental remediation: A review of reviews, Water Res, vol.85, pp.114-123, 2015.

C. Noubactep, Designing metallic iron packed-beds for water treatment: A critical review, Clean -Soil, Air, Water, 2016.

A. Nur, G. Mavko, J. Dvorkin, and D. Galmudi, Critical porosity; a key to relating physical properties to porosity in rocks, The Leading Edge, vol.17, pp.357-362, 1998.

S. F. O´hannesin and R. W. Gillham, Long-term performance of an in situ "iron wall" for remediation of VOCs, Ground Water, vol.36, pp.164-170, 1998.

M. Phukan, Characterizing the ion selective nature of Fe 0 -based systems using azo dyes: batch and column experiments. Freiberg Online Geosci, vol.42, p.pp, 2015.

M. Phukan, C. Noubactep, and T. Licha, Characterizing the ion-selective nature of Fe 0 -based filters using azo dyes, Chem. Eng. J, vol.259, pp.481-491, 2015.

N. B. Pilling and R. E. Bedworth, The oxidation of metals at high temperatures, J. Inst. Met, vol.29, pp.529-591, 1923.

M. A. Rahman, S. Karmakar, H. Salama, N. Gactha-bandjun, -. K. Btatkeu et al., Optimising the design of Fe 0 -based filtration systems for water treatment: The suitability of porous iron composites, J. Appl. Solution Chem. Model, vol.2, pp.165-177, 2013.

S. Reardon, Frugal science gets DIY diagnostics to world's poorest, New Scientist, vol.219, pp.20-21, 2013.

N. Sato, Whitney Award Lecture: Toward a more fundamental understanding of corrosion processes, Corrosion, vol.45, pp.354-368, 1989.

N. Sato, Surface oxides affecting metallic corrosion, Corros. Rev, vol.19, pp.253-272, 2001.

L. G. Saywell and B. B. Cunningham, Determination of iron: colorimetric o-phenanthroline method, Ind. Eng. Chem., Anal. Ed, vol.9, pp.67-69, 1937.

R. Tepong-tsindé, M. Phukan, A. Nassi, C. Noubactep, and H. Ruppert, Validating the efficiency of the MB discoloration method for the characterization of Fe 0 /H2O systems using accelerated corrosion by chloride ions, Chem. Eng. J, vol.279, pp.353-362, 2015.

R. Tepong-tsindé, R. Crane, C. Noubactep, A. Nassi, and H. Ruppert, Testing metallic iron filtration systems for decentralized water treatment at pilot scale, vol.7, pp.868-897, 2015.

S. Ulsamer, A model to characterize the kinetics of dechlorination of tetrachloroethylene and trichloroethylene by a zero valent iron permeable reactive barrier, vol.73, p.22, 2011.

R. T. Wilkin, S. D. Acree, R. R. Ross, R. W. Puls, T. R. Lee et al., Fifteen-year assessment of a permeable reactive barrier for treatment of chromate and trichloroethylene in groundwater, Sci. Tot. Environ, pp.186-194, 2014.

Y. You, J. Han, P. C. Chiu, and Y. Jin, Removal and inactivation of waterborne viruses using zerovalent iron, Environ. Sci. Technol, vol.39, pp.9263-9269, 2005.

Y. Zhang and R. W. Gillham, Effects of gas generation and precipitates on performance of Fe° PRBs, Ground Water, vol.43, pp.113-121, 2005.