MGM: A Significantly More Global Matching for Stereovision

Gabriele Facciolo 1, 2, 3 Carlo De Franchis 4 Enric Meinhardt 4
1 IMAGINE [Marne-la-Vallée]
CSTB - Centre Scientifique et Technique du Bâtiment, LIGM - Laboratoire d'Informatique Gaspard-Monge, ENPC - École des Ponts ParisTech
Abstract : Semi-global matching (SGM) is among the top-ranked stereovision algorithms. SGM is an efficient strategy for approximately minimizing a global energy that comprises a pixel-wise matching cost and pair-wise smoothness terms. In SGM the two-dimensional smoothness constraint is approximated as the average of one-dimensional line optimization problems. The accuracy and speed of SGM are the main reasons for its widespread adoption, even when applied to generic problems beyond stereovision. This approximate minimization, however, also produces characteristic low amplitude streaks in the final disparity image, and is clearly suboptimal with respect to more comprehensive minimization strategies. Based on a recently proposed interpretation of SGM as a min-sum Belief Propagation algorithm, we propose a new algorithm that allows to reduce by a factor five the energy gap of SGM with respect to reference algorithms for MRFs with truncated smoothness terms. The proposed method comes with no compromises with respect to the baseline SGM, no parameters and virtually no computational overhead. At the same time it attains higher quality results by removing the characteristic streaking artifacts of SGM.
Type de document :
Communication dans un congrès
BMVA Press. BMVC 2015, 2015, Swansea, United Kingdom. Proceedings of the British Machine Vision Conference 2015, 2015, 〈10.5244/C.29.90〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01240853
Contributeur : Gabriele Facciolo <>
Soumis le : jeudi 10 décembre 2015 - 16:24:49
Dernière modification le : jeudi 5 juillet 2018 - 14:29:13
Document(s) archivé(s) le : samedi 29 avril 2017 - 10:58:22

Fichier

mgm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Gabriele Facciolo, Carlo De Franchis, Enric Meinhardt. MGM: A Significantly More Global Matching for Stereovision. BMVA Press. BMVC 2015, 2015, Swansea, United Kingdom. Proceedings of the British Machine Vision Conference 2015, 2015, 〈10.5244/C.29.90〉. 〈hal-01240853〉

Partager

Métriques

Consultations de la notice

482

Téléchargements de fichiers

330