Improving a Constraint Programming Approach for Parameter Estimation

Bertrand Neveu 1, 2, 3 Martin De La Gorce 1, 2, 3 Gilles Trombettoni 4
2 IMAGINE [Marne-la-Vallée]
CSTB - Centre Scientifique et Technique du Bâtiment, LIGM - Laboratoire d'Informatique Gaspard-Monge, ENPC - École des Ponts ParisTech
4 COCONUT - Agents, Apprentissage, Contraintes
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : The parameter estimation problem is a widespread and challenging problem in engineering sciences consisting in computing the parameters of a parametric model that fit observed data. Calibration or geolocation can be viewed as specific parameter estimation problems. In this paper we address the problem of finding all the instances of a parametric model that can explain at least q observations within a given tolerance. The computer vision community has proposed the RANSAC algorithm to deal with outliers in the observed data. This randomized algorithm is efficient but non-deterministic and therefore incomplete. Jaulin et al. proposes a complete and combinatorial algorithm that exhaustively traverses the whole space of parameter vectors to extract the valid model instances. This algorithm is based on interval constraint programming methods and on a so called q-intersection operator, a relaxed intersection operator that assumes that at least q observed data are inliers. This paper proposes several improvements to Jaulin et al.'s algorithm. Most of them are generic and some others are dedicated to the shape detection problem used to validate our approach. Compared to Jaulin et al.'s algorithm, our algorithm can guarantee a number of fitted observations in the produced model instances. Also, first experiments in plane and circle recognition highlight speedups of two orders of magnitude.
Type de document :
Communication dans un congrès
ICTAI: International Conference on Tools with Artificial Intelligence, Nov 2015, Vietri sul mare, Italy. 27th IEEE International Conference on Tools with Artificial Intelligence, 2015
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal-enpc.archives-ouvertes.fr/hal-01230041
Contributeur : Bertrand Neveu <>
Soumis le : mardi 17 novembre 2015 - 16:06:41
Dernière modification le : lundi 15 octobre 2018 - 14:06:57
Document(s) archivé(s) le : vendredi 28 avril 2017 - 15:41:54

Fichier

reconforme_ictai_2015.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01230041, version 1

Citation

Bertrand Neveu, Martin De La Gorce, Gilles Trombettoni. Improving a Constraint Programming Approach for Parameter Estimation. ICTAI: International Conference on Tools with Artificial Intelligence, Nov 2015, Vietri sul mare, Italy. 27th IEEE International Conference on Tools with Artificial Intelligence, 2015. 〈hal-01230041〉

Partager

Métriques

Consultations de la notice

284

Téléchargements de fichiers

179