Stress-gradient materials: an analytical exploration
Vinh Phuc Tran, Sébastien Brisard, J Guilleminot, K Sab

To cite this version:
Vinh Phuc Tran, Sébastien Brisard, J Guilleminot, K Sab. Stress-gradient materials: an analytical exploration. Workshop on Computational Mechanics of Generalized Continua and Applications to Materials with Microstructure, Oct 2015, Catania, Italy. 2015. <hal-01226290>

HAL Id: hal-01226290
https://hal-enpc.archives-ouvertes.fr/hal-01226290
Submitted on 9 Nov 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Stress-gradient materials: an analytical exploration

V.P. Tran\(^1,2\), S. Brisard\(^1\), J. Guilleminot\(^2\), K. Sab\(^1\)

\(^1\) Laboratoire NAVIER (UMR CNRS 8205), Université Paris-Est, ENPC, IFSTTAR
\(^2\) Laboratoire MSME (UMR 8208 CNRS), Université Paris-Est

Catania, 29-31 October, 2015
Motivation (1)

At first glance...

Strain gradient elasticity theory

\[w = w(\varepsilon, \nabla\varepsilon) \]

strain energy density

strain

strain gradient

Motivation (2)

At first glance...

Strain gradient elasticity theory

\[w = w(\varepsilon, \nabla \varepsilon) \]

Stress gradient elasticity theory

\[w^* = w^*(\sigma, \nabla \sigma) \]

S. Forest, K. Sab
Mechanics Research Communications, 40, pp. 16–25, 2012

V. P. Tran, S. Brisard, J. Guilleminot, K. Sab

Motivation

Catania, 29-31 October, 2015
Motivation (3)

At first glance...

Strain gradient elasticity theory

\[w = w(\varepsilon, \nabla\varepsilon) \]

Stress gradient elasticity theory

\[w^* = w^*(\sigma, \nabla\sigma) \]

Is stress gradient elasticity equivalent or complementary to strain gradient elasticity?
How does stress gradient elasticity theory (Forest and Sab, 2012) differ from strain gradient one?

- Stress gradient elasticity theory (Forest and Sab, 2012).
- Closed form solution to Eshelby spherical inhomogeneity problem.
- Homogenization of heterogeneous stress-gradient materials (Mori Tanaka estimate)
Decomposition of stress gradient tensor

The spherical and deviatoric part of a third order tensor

Strain gradient tensor
- "free"

Stress gradient tensor
- constrained

\[
\nabla \cdot \sigma + b = 0 \iff (\nabla \sigma) : \delta + b = 0
\]

Decomposition of stress gradient tensor

\[
\nabla \sigma = J \cdot \nabla \sigma + K \cdot \nabla \sigma
\]

spherical projector
deviatoric projector

\[
J_{ijklmn} = \frac{1}{8} (\delta_{ik}\delta_{jl}\delta_{mn} + \delta_{ik}\delta_{jm}\delta_{ln} + \delta_{il}\delta_{jk}\delta_{mn} + \delta_{im}\delta_{jk}\delta_{ln})
\]

\[
K_{ijklmn} = I_{ijklmn} - J_{ijklmn}
\]
Stress energy density function

\[w^* = w^*(\sigma, \text{K} \cdot \nabla \sigma) \]

For isotropic stress gradient materials:

\[w^*(\sigma, R) = \frac{1}{2} \sigma : S : \sigma + \frac{1}{2} R : M : R \]

Constitutive laws

\[e = \frac{\partial w^*}{\partial \sigma} = S : \sigma, \quad \Phi = \frac{\partial w^*}{\partial R} = M : R \]

Nota: \(\Phi, R \) have to be deviatoric tensors!

\[M = K \cdot M : K \]
Simplified stress / strain gradient elasticity

A comparison of field equations (no body force)

<table>
<thead>
<tr>
<th></th>
<th>Simplified stress gradient</th>
<th>Simplified strain gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium</td>
<td>$\sigma_{ij,j} = 0$</td>
<td>$\tau_{ij,j} = 0$</td>
</tr>
<tr>
<td>Gradient</td>
<td>$R_{ijk} = \sigma_{ij,k}$</td>
<td>$\kappa_{ijk} = \varepsilon_{ij,k}$</td>
</tr>
<tr>
<td>Constitutive laws</td>
<td>$e_{ij} = S_{ijkl} \sigma_{kl}$</td>
<td>$\sigma_{ij} = C_{ijkl} \varepsilon_{kl}$</td>
</tr>
<tr>
<td></td>
<td>$e_{ij} = \varepsilon_{ij} + \Phi_{ijk,k}$</td>
<td>$\tau_{ij} = \sigma_{ij} - \mu_{ijk,k}$</td>
</tr>
<tr>
<td></td>
<td>$\Phi_{ijk} = \ell^2 K_{ijkpqr} S_{pqmn} R_{mnr}$</td>
<td>$\mu_{ijk} = \ell^2 C_{ijmn} \kappa_{mnk}$</td>
</tr>
<tr>
<td>SUBC</td>
<td>$\sigma_{ij} = \Sigma_{ij}$</td>
<td>$\sigma_{ij} n_j - (\mu_{ijk} n_k)j + (\mu{ijk} n_k n_l)_l n_j = t_i$ on $\partial \Omega$ (smooth part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mu_{ijk} n_j n_k = q_i$ on $\partial \Omega$ (smooth part)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$[[\mu_{ijk} m_j n_k]] = 0$ on the edge of $\partial \Omega$</td>
</tr>
</tbody>
</table>

S. Forest, K. Sab, Mechanics Research Communications, 40, pp. 16–25, 2012

V.P. Tran, S. Brisard, J. Guilleminot, K. Sab, Simplified stress / strain gradient elasticity, Catania, 29-31 October, 2015
Stress gradient (this work):
- Uniform isotropic stress:
 \[\Sigma = e_x \otimes e_x + e_y \otimes e_y + e_z \otimes e_z \]
- Uniform axial stress:
 \[\Sigma = e_z \otimes e_z \]

Strain gradient:
Postulated stress form in spherical coordinates (similar to Love’s approach)

- Uniform isotropic stress prescribed at boundary:
 \[\sigma = \sigma(r) \]
- Uniform axial stress prescribed at boundary:
 \[\sigma = \sigma(r, \theta) \]

Continuity conditions at the surface matrix-inclusion

\[\sigma_m(r = a) = \sigma_i(r = a) \]
\[[u \otimes^s n + \Phi \cdot n]_m (r = a) = [u \otimes^s n + \Phi \cdot n]_i (r = a) \]

Uniaxial problem $\Sigma = e_z \otimes e_z$

Radial stress field $\sigma_{rr}(r, \theta = 0)$

$$\mu_i = 27\mu_m, \nu_i = 0.4, \nu_m = 0.08, \ell_i = \ell_m = \ell$$

Classical elasticity
Stress gradient

$\sigma_{rr}(r, \theta = 0) / \Sigma$

$\ell/a = 0$
$\ell/a = 1$

r/a

$\ell/a = 0$
$\ell/a = 1$
Effect of material internal length (1)

Effective shear moduli (Mori Tanaka estimate)

\[\mu_i = 27\mu_m, \nu_i = 0.4, \nu_m = 0.08, \ell_i = \ell_m = \ell \]

Stress gradient is complementary to strain gradient elasticity!

Effect of material internal length (2)

Effective shear moduli: \(f = 20\% \)

\[
\mu_i = 27 \mu_m, \nu_i = 0.4, \nu_m = 0.08, \ell_i = \ell_m = \ell
\]

- **Stress gradient elasticity:** capture size effects.
- **For** \(a \gg \ell \), stress gradient effects vanish as expected.
Softening size effect

... has been reported elsewhere (molecular dynamics simulations)!

To cite some:

- Polyimide matrix "reinforced" by silica spherical nanoparticles with various surface treatment.

 Odegard, G.M., Clancy, T.C., Gates, T.S. Polymer, 46, pp.553–562, 2005

- Polystyrene matrix "reinforced" by silica spherical nanoparticles.

- etc
Conclusion & Perspective

Conclusion

- Solution to Eshelby’s spherical inhomogeneity problem
- Mori Tanaka estimate for stress gradient materials
- Stress gradient elasticity differs from strain gradient elasticity
 - Strain gradient: stiffening size effect
 - Stress gradient: softening size effect

Perspective

- Numerical implementation: FEM, FFT
- Physical interpretation of material internal length?

Acknowledgments

- This work has benefited from a French government grant managed by ANR within the frame of the national program Investments for the Future ANR-11-LABX-022-01.
Thank you for your attention!

vinh-phuc.tran@enpc.fr