Critical size effect of particles reinforcing foamed composite materials - École des Ponts ParisTech Accéder directement au contenu
Article Dans Une Revue Composites Science and Technology Année : 2015

Critical size effect of particles reinforcing foamed composite materials

Yacine Khidas
B Haffner
  • Fonction : Auteur
Olivier Pitois

Résumé

We investigate the shear elastic modulus of soft polymer foams loaded with hard spherical particles and we show that, for constant bubble size and gas volume fraction, strengthening is strongly dependent on the size of those inclusions. Through an accurate control of the ratio λ that compares the particle size to the thickness of the struts in the foam structure, we evidence a transition in the mechanical behavior at λ ≈ 1. For λ < 1, every particle loading leads to a strengthening effect whose magnitude depends only on the particle volume fraction. On the contrary, for λ > 1, the strengthening effect weakens abruptly as a function of and a softening effect is even observed for λ ≳ 10. This transition in the mechanical behavior is reminiscent of the so-called “particle exclusion transition” that has been recently reported within the framework of drainage of foamy granular suspensions [Haffner B, Khidas Y, Pitois O. The drainage of foamy granular suspensions. J Colloid Interface Sci 2015;458:200-8]. It involves the evolution for the geometrical configuration of the particles with respect to the foam network, and it appears to control the mechanics of such foamy systems.
Fichier principal
Vignette du fichier
10_1016 j_compscitech_2015.pdf (1.24 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01221127 , version 1 (27-10-2015)

Identifiants

Citer

Yacine Khidas, B Haffner, Olivier Pitois. Critical size effect of particles reinforcing foamed composite materials. Composites Science and Technology, 2015, ⟨10.1016/j.compscitech.2015.09.024⟩. ⟨hal-01221127⟩
163 Consultations
372 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More